Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 208: 108515, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38484681

RESUMEN

Pericarp color is a prominent agronomic trait that exerts a significant impact on consumer and breeder preferences. Genetic analysis has revealed that the pericarp color of bitter gourd is a quantitative trait. However, the underlying mechanism for this trait in bitter gourd remains largely unknown. In the present study, we employed bulked segregant analysis (BSA) to identify the candidate genes responsible for bitter gourd pericarp color (specifically, dark green versus white) within F2 segregation populations resulting from the crossing of B07 (dark green pericarp) and A06 (white pericarp). Through genomic variation, genetic mapping, and expression analysis, we identified a candidate gene named McPRR2, which was a homolog of Arabidopsis pseudo response regulator 2 (APRR2) encoded by LOC111023472. Sequence alignment of the candidate gene between the two parental lines revealed a 15-bp nucleotide insertion in the coding region of LOC111023472, leading to a premature stop codon and potentially causing a loss-of-function mutation. qRT-PCR analysis demonstrated that the expression of McPRR2 was significantly higher in B07 compared to A06, and it was primarily expressed in the immature fruit pericarp. Moreover, overexpression of McPRR2 in tomato could enhance the green color of immature fruit pericarp by increasing the chlorophyll content. Consequently, McPRR2 emerged as a strong candidate gene regulating the bitter gourd pericarp color by influencing chlorophyll accumulation. Finally, we developed a molecular marker linked to pericarp color, enabling the identification of genotypes in breeding populations. These findings provided valuable insights into the genetic improvement of bitter gourd pericarp color.


Asunto(s)
Momordica charantia , Momordica charantia/genética , Fitomejoramiento , Mapeo Cromosómico/métodos , Fenotipo , Clorofila
2.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762563

RESUMEN

The challenge of mitigating the decline in both yield and fruit quality due to the intrusion of powdery mildew (PM) fungus looms as a pivotal concern in the domain of bitter melon cultivation. Yet, the intricate mechanisms that underlie resistance against this pathogen remain inscrutable for the vast majority of bitter melon variants. In this inquiry, we delve deeply into the intricate spectrum of physiological variations and transcriptomic fluctuations intrinsic to the PM-resistant strain identified as '04-17-4' (R), drawing a sharp contrast with the PM-susceptible counterpart, designated as '25-15' (S), throughout the encounter with the pathogenic agent Podosphaera xanthii. In the face of the challenge presented by P. xanthii, the robust cultivar displays an extraordinary capacity to prolong the initiation of the pathogen's primary growth stage. The comprehensive exploration culminates in the discernment of 6635 and 6954 differentially expressed genes (DEGs) in R and S strains, respectively. Clarification through the lens of enrichment analyses reveals a prevalence of enriched DEGs in pathways interconnected with phenylpropanoid biosynthesis, the interaction of plants with pathogens, and the signaling of plant hormones. Significantly, in the scope of the R variant, DEGs implicated in the pathways of plant-pathogen interaction phenylpropanoid biosynthesis, encompassing components such as calcium-binding proteins, calmodulin, and phenylalanine ammonia-lyase, conspicuously exhibit an escalated tendency upon the encounter with P. xanthii infection. Simultaneously, the genes governing the synthesis and transduction of SA undergo a marked surge in activation, while their counterparts in the JA signaling pathway experience inhibition following infection. These observations underscore the pivotal role played by SA/JA signaling cascades in choreographing the mechanism of resistance against P. xanthii in the R variant. Moreover, the recognition of 40 P. xanthii-inducible genes, encompassing elements such as pathogenesis-related proteins, calmodulin, WRKY transcription factors, and Downy mildew resistant 6, assumes pronounced significance as they emerge as pivotal contenders in the domain of disease control. The zenith of this study harmonizes multiple analytical paradigms, thus capturing latent molecular participants and yielding seminal resources crucial for the advancement of PM-resistant bitter melon cultivars.


Asunto(s)
Momordica charantia , Humanos , Momordica charantia/genética , Transcriptoma , Calmodulina , Transducción de Señal , Erysiphe
3.
Theor Appl Genet ; 136(4): 81, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36952023

RESUMEN

KEY MESSAGE: The Mcgy1 locus responsible for gynoecy was fine-mapped into a 296.94-kb region, in which four single-nucleotide variations and six genes adjacent to them might be associate with sex differentiation in bitter gourd. Gynoecy plays an important role in high-efficiency hybrid seed production, and gynoecious plants are excellent materials for dissecting sex differentiation in Cucurbitaceae crop species, including bitter gourd. However, the gene responsible for gynoecy in bitter gourd is unknown. Here, we first identified a gynoecy locus designated Mcgy1 using the F2 population (n = 291) crossed from the gynoecious line S156G and the monoecious line K8-201 via bulked segregant analysis with whole-genome resequencing (BSA-seq) and molecular marker linkage analysis. Then, a large S156G × K8-201 F2 population (n = 5,656) was used for fine-mapping to delimit the Mcgy1 locus into a 296.94-kb physical region on pseudochromosome MC01, where included 33 annotated genes different from any homologous gynoecy genes previously reported in Cucurbitaceae species. Within this region, four underlying single-nucleotide variations (SNVs) that might cause gynoecy were identified by multiple genomic sequence variation analysis, and their six neighbouring genes were considered as potential candidate genes for Mcgy1. Of these, only MC01g1681 showed a significant differential expression at two-leaf developmental stage between S156G and its monoecious near-isogenic line S156 based on RNA sequencing (RNA-seq) and qRT-PCR analyses. In addition, transcriptome analysis revealed 21 key differentially expressed genes (DEGs) and possible regulatory pathways of the formation of gynoecy in bitter gourd. Our findings provide a new clue for researching on gynoecious plants in Cucurbitaceae species and a theoretical basis for breeding gynoecious bitter gourd lines by the use of molecular markers-assisted selection.


Asunto(s)
Cucurbitaceae , Momordica charantia , Momordica charantia/genética , Fitomejoramiento , Cucurbitaceae/genética , Nucleótidos , Estudios de Asociación Genética
4.
Mol Biol Rep ; 50(2): 1125-1132, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36401706

RESUMEN

BACKGROUND: Even though the bitter gourd hybrids are shown to have significant heterosis for many of the economic traits, processes such as manual bagging and hand pollination make the hybrid seed production labour-intensive. Use of gynoecious line as female parent makes hybrid seed production more economical. This work was performed with the objective to identify the candidate gene based molecular markers for gynoecy in bitter gourd. METHODS AND RESULTS: Seven putative genes for flowering and sex expression, isolated from the monoecious (MC-136) and gynoecious (KAU-MCGy-101) bitter gourd accessions, were sequence characterized. MADS-box transcription factor genes AG6 and McAG2 had nucleotide polymorphisms at five sites each and were potential candidates for marker development. An In/Del polymorphism of 48 bp ([TC]24) in AG6 gene was used to develop an SSR marker and a transition mutation of [A/G] in this gene was used to develop a set of SNP markers. These markers have developed distinct polymorphism between the monoecious and gynoecious genotypes and were found suited for the marker assisted selection. CONCLUSIONS: MADS box transcription factor genes AG6 and McAG2 are identified as candidates for sex expression in bitter gourd. Based on the InDels and transition in the intronic region of AG6, SSR marker BGAG6 and an SNP marker set segregating with the sex forms were developed. The markers have been validated using four other monoecious lines and are routinely used in our bitter gourd hybrid seed production programmes.


Asunto(s)
Momordica charantia , Momordica charantia/genética , Polimorfismo Genético , Genotipo , Factores de Transcripción/genética
5.
Genomics ; 115(1): 110538, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36494076

RESUMEN

Fusarium wilt is a typical soil-borne disease caused by Fusarium oxysporum f. sp. momordicae (FOM) in bitter gourd. In this study, by comparing sequencing data at multiple time points and considering the difference between resistant (R) and susceptible (S) varieties, differentially expressed genes were screened out. Short time-series expression miner analysis revealed the upregulated expression trend of genes, which were enriched in phenylpropanoid biosynthesis, plant-pathogen interaction, and mitogen-activated protein kinase signaling pathway. Further, observation of the microstructure revealed that the R variety may form tyloses earlier than the S variety to prevent mycelium diffusion from the xylem vessel. After Fusarium wilt infection, the enzymatic activities of superoxide dismutase, peroxidase, phenylalanine ammonia lyase, and catalaseas well as levels of superoxide anion and malondialdehyde were increased in the R variety higher than those in the S variety. This study provides a reference to elucidate the disease resistance mechanism of bitter gourd.


Asunto(s)
Fusarium , Momordica charantia , Momordica charantia/genética , Fusarium/genética , Lignina , Transducción de Señal , Perfilación de la Expresión Génica
6.
Mol Biol Rep ; 49(12): 12029-12037, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36273337

RESUMEN

BACKGROUND: Bitter melon (Momordica charantia L.) is a widely cultivated food and medicinal plant native to the world's subtropics and tropics. Constraints affecting cultivation of Bitter melon affect productivity of ß-carotene. Knowing the mechanism that controls the transcription of the ß-carotene biosynthesis genes in Bitter melon will be of great value in improving the yield of this important metabolite. METHODS AND RESULTS: The expressions of ß-carotene biosynthetic genes such as Phytoene Desaturase (PDS) and Phytoene Synthase (PSY) were evaluated in Bitter melon accessions 'GBK027049', 'NS1026', 'Mahy-ventura', '453B' and 'Sibuka532'. Transcript expression level analysis of PSY and PDS, and amount of ß-carotene in leaf, stem, and fruit, were determined using quantitative polymerase chain reaction and high-performance liquid chromatography (HPLC). Root transcript expression was used as a negative control for determining relative fold change in other tissues. Expression of PSY in fruit (6 to 27-fold compared to the control) was higher than in the other organs for all accessions. This was also the case of PDS expression (10 to 29-fold compared to the control). Leaves had the highest ß-carotene concentration (17.92-45.35 µg∙g-1); there was no difference between stems (5.67-12.75 µg∙g-1) and fruit (6.18-12.53 µg∙g-1). The highest ß-carotene content was in accessions 'GBK027049' (12.53-45.35 µg∙g-1) and '453B' (6.18-32.09 µg∙g-1). The PSY and PDS expressions were positively correlated with amount of ß-carotene in leaves, stems, and fruits. CONCLUSION: Bitter melon leaves, especially those of 'GBK027049' and '453B' accessions, are an alternative to alleviate the ß-carotene deficiencies in the world and especially in Africa.


Asunto(s)
Momordica charantia , Momordica charantia/genética , beta Caroteno , Kenia
7.
Sci Rep ; 12(1): 15374, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100691

RESUMEN

The bitter gourd seed oil, rich in conjugated fatty acids, has therapeutic value to treat cancer, obesity, and aging. It also has an industrial application as a drying agent. Despite its significance, genomics studies are limited, and the genes for seed oil biosynthesis are not fully understood. In this study, we assembled the fruit transcriptome of bitter gourd using 254.5 million reads (Phred score > 30) from the green rind, white rind, pulp, immature seeds, and mature seeds. It consisted of 125,566 transcripts with N50 value 2,751 bp, mean length 960 bp, and 84% completeness. Transcript assembly was validated by RT-PCR and qRT-PCR analysis of a few selected transcripts. The transcripts were annotated against the NCBI non-redundant database using the BLASTX tool (E-value < 1E-05). In gene ontology terms, 99,443, 86,681, and 82,954 transcripts were classified under biological process, molecular function, and cellular component. From the fruit transcriptome, we identified 26, 3, and 10 full-length genes coding for all the enzymes required for synthesizing fatty acids, conjugated fatty acids, and triacylglycerol. The transcriptome, transcripts with tissue-specific expression patterns, and the full-length identified from this study will serve as an important genomics resource for this important medicinal plant.


Asunto(s)
Momordica charantia , Ácidos Grasos/análisis , Frutas/química , Perfilación de la Expresión Génica , Momordica charantia/genética , Momordica charantia/metabolismo , Aceites de Plantas/metabolismo , Semillas/metabolismo
8.
Genes (Basel) ; 13(7)2022 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-35885929

RESUMEN

Bitter gourd (Momordica charantia L.) is an economically important vegetable and medicinal crop in many Asian countries. Limited work has been conducted in understanding the genetic basis of horticulturally important traits in bitter gourd. Bitter gourd is consumed primarily for its young, immature fruit, and fruit appearance plays an important role in market acceptability. One such trait is the ridges on the fruit skin. In the present study, molecular mapping of a locus underlying fruit ridge continuity was conducted. Genetic analysis in segregating populations, derived from the crosses between two inbred lines Y1 with continuous ridges (CR) and Z-1-4 with discontinuous ridges (DCR), suggested that CR was controlled by a single recessive gene (cr). High-throughput genome sequencing of CR and DCR bulks combined with high-resolution genetic mapping in an F2 population delimited cr into a 108 kb region with 16 predicted genes. Sequence variation analysis and expression profiling supported the epidermal patterning factor 2-like (McEPFL2) gene as the best candidate of the cr locus. A 1 bp deletion in the first exon of McEPFL2 in Y1 which would result in a truncated McEPFL2 protein may be the causal polymorphism for the phenotypic difference between Y1 and Z-1-4. The association of this 1 bp deletion with CR was further supported by gDNA sequencing of McEPFL2 among 31 bitter gourd accessions. This work provides a foundation for understanding the genetic and molecular control of fruit epidermal pattering and development, which also facilitates marker-assisted selection in bitter melon breeding.


Asunto(s)
Momordica charantia , Epidermis , Frutas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Momordica charantia/genética , Fitomejoramiento
9.
Genetica ; 150(1): 77-85, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34822037

RESUMEN

Relatively large number of bitter melon microsatellite markers have been reported; however, only few resulted in successful PCR amplification and a small fraction shown polymorphisms. This limited chance of recovering polymorphic markers makes the primer screening a cost-demanding process. To test the hypothesis that microsatellites with longer motifs as well as shorter motifs repeated substantially shall have better prospects to be polymorphic, we performed a genome-wide microsatellite mining. We selected a sample of genome-wide microsatellites with prescribed motif lengths or satisfying a target repeat number, which were considered potentially-hyper variable, for primer designing and validation. Seventy five microsatellites satisfying these criteria were identified, of which 69 were validated through successful PCR amplification. Among them, 40 (53.33% of the markers identified) were polymorphic. This result showed a significantly higher success compared to our initial results of 51 (20.64%) polymorphic markers out of the 188 amplified when 247 previously reported markers were screened. The screening of two cultivars revealed that markers were efficient to identify up to three alleles. The characterization of these 69 new markers with 247 markers previously reported showed that di-nucleotide motifs were most abundant, followed by tri- and tetra-nucleotide motifs. TC motif markers were most polymorphic (12.08%) followed by AG and CT motifs (both 9.89%). Similarly, AGA (6.59%) and TATT (3.29%) were most polymorphic among the tri- and tetra-nucleotide motifs. These 69 hypervariable microsatellite markers along with 188 markers initially validated in this study shall be useful for phylogenetic analyses, studies of linkage, QTL, and association mapping in bitter melon.


Asunto(s)
Momordica charantia , Alelos , Ligamiento Genético , Genoma de Planta , Repeticiones de Microsatélite , Momordica charantia/genética , Filogenia
10.
J Genet ; 1002021.
Artículo en Inglés | MEDLINE | ID: mdl-34282734

RESUMEN

Mutants with unique characters have played a key role in discovery of gene, mapping, functional genomics and breeding in many vegetable crops, but information on bitter gourd is lacking. Induction of mutation by gamma rays (Co60 source) at five different doses (50 Gy, 100 Gy, 150 Gy, 200 Gy and 250 Gy) was studied in four widely divergent bitter gourd genotypes BG-1346501, Meghna-2, Special Boulder and Selection-1 in M1 generation. Reduction in seed germination percentage, vine length and pollen fertility occurred in M1 generation with the increasing doses of mutagens. LD50 dose for BG-1346501, Meghna-2, Special Boulder and Selection-1 corresponded to 290.76 Gy, 206.12 Gy, 212.81 Gy and 213.49 Gy ᵞ radiation, respectively suggested low to medium doses (200-250 Gy) of gamma rays would be helpful in producing useful and exploitable mutants for further breeding. No remarkable effect of ᵞ radiation on fruit physicochemical characters in M1 generation were observed. M2 generation, raised from two widely divergent genotypes, BG-1346501 and Meghna-2, were screened critically and observed no significant reduction in seed germination and pollen viability, however little damage occurred particularly in vine length. There is possibility of isolating segregates in M2 generation with enhanced nutrient contents at low radiation dose. Highest mutation frequency resulted by treating Meghna-2 at 200 Gy and BG-1346501 at 100 Gy. Both genotype and mutagenic doses influenced mutagenic effectiveness. Spectrum of mutation was very low; number of putative mutants isolated from M2 generation was five in Meghna-2 and three in BG-1346501. Among six putative macro mutants isolated from M3 generation, we could identify two putative mutants, namely Meghna-2 with gynoecious sex form and BG-1346501 with high charantin, appreciable ß-carotene and high ascorbic acid contents having ample promise for further utilization in bitter gourd breeding after critical testing in subsequent generations for estimation of genetic gain and trait heritability to confirm the mutant stability.


Asunto(s)
Momordica charantia/genética , Mutagénesis/genética , Fitomejoramiento/economía , Sitios de Carácter Cuantitativo/genética , Frutas/economía , Frutas/genética , Frutas/crecimiento & desarrollo , Rayos gamma , Genotipo , Germinación/efectos de la radiación , Humanos , Momordica charantia/crecimiento & desarrollo , Momordica charantia/efectos de la radiación , Mutagénesis/efectos de la radiación , Mutación/efectos de la radiación , Sitios de Carácter Cuantitativo/efectos de la radiación
11.
BMC Genomics ; 22(1): 190, 2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33726664

RESUMEN

BACKGROUND: The preferred choice for molecular marker development is identifying existing variation in populations through DNA sequencing. With the genome resources currently available for bitter gourd (Momordica charantia), it is now possible to detect genome-wide insertion-deletion (InDel) polymorphisms among bitter gourd populations, which guides the efficient development of InDel markers. RESULTS: Here, using bioinformatics technology, we detected 389,487 InDels from 61 Chinese bitter gourd accessions with an average density of approximately 1298 InDels/Mb. Then we developed a total of 2502 unique InDel primer pairs with a polymorphism information content (PIC) ≥0.6 distributed across the whole genome. Amplification of InDels in two bitter gourd lines '47-2-1-1-3' and '04-17,' indicated that the InDel markers were reliable and accurate. To highlight their utilization, the InDel markers were employed to construct a genetic map using 113 '47-2-1-1-3' × '04-17' F2 individuals. This InDel genetic map of bitter gourd consisted of 164 new InDel markers distributed on 15 linkage groups with a coverage of approximately half of the genome. CONCLUSIONS: This is the first report on the development of genome-wide InDel markers for bitter gourd. The validation of the amplification and genetic map construction suggests that these unique InDel markers may enhance the efficiency of genetic studies and marker-assisted selection for bitter gourd.


Asunto(s)
Momordica charantia , Ligamiento Genético , Genoma , Humanos , Mutación INDEL , Momordica charantia/genética , Análisis de Secuencia de ADN
12.
Sci Rep ; 11(1): 4109, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33603131

RESUMEN

Bitter gourd (Momordica charantia L.) is an economically important vegetable crop grown in tropical parts of the world. In this study, a high-density linkage map of M. charantia was constructed through genotyping-by-sequencing (GBS) technology using F2:3 mapping population generated from the cross DBGy-201 × Pusa Do Mausami. About 2013 high-quality SNPs were assigned on a total of 20 linkage groups (LGs) spanning over 2329.2 CM with an average genetic distance of 1.16 CM. QTL analysis was performed for six major yield-contributing traits such as fruit length, fruit diameter, fruit weight, fruit flesh thickness, number of fruits per plant and yield per plant. These six quantitative traits were mapped with 19 QTLs (9 QTLs with LOD > 3) using composite interval mapping (CIM). Among 19 QTLs, 12 QTLs derived from 'Pusa Do Mausami' revealed a negative additive effect when its allele increased trait score whereas 7 QTLs derived from 'DBGy-201' revealed a positive additive effect when its allele trait score increased. The phenotypic variation (R2%) elucidated by these QTLs ranged from 0.09% (fruit flesh thickness) on LG 14 to 32.65% (fruit diameter) on LG 16 and a total of six major QTLs detected. Most QTLs detected in the present study were located relatively very close, maybe due to the high correlation among the traits. This information will serve as a significant basis for marker-assisted selection and molecular breeding in bitter gourd crop improvement.


Asunto(s)
Frutas/genética , Momordica charantia/genética , Sitios de Carácter Cuantitativo/genética , Alelos , Mapeo Cromosómico/métodos , Ligamiento Genético/genética , Pruebas Genéticas/métodos , Fenotipo , Polimorfismo de Nucleótido Simple/genética
13.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35008620

RESUMEN

The triterpenes in bitter gourd (Momordica charantia) show a variety of medicinal activities. Oxidosqualene cyclase (OSC) plays an indispensable role in the formation of triterpene skeletons during triterpene biosynthesis. In this study, we identified nine genes encoding OSCs from bitter gourd (McOSC1-9). Analyses of their expression patterns in different tissues suggested that characteristic triterpenoids may be biosynthesized in different tissues and then transported. We constructed a hairy root system in which McOSC7 overexpression led to an increased accumulation of camaldulenic acid, enoxolone, and quinovic acid. Thus, the overexpression of McOSC7 increased the active components content in bitter gourd. Our data provide an important foundation for understanding the roles of McOSCs in triterpenoid synthesis.


Asunto(s)
Genoma de Planta , Momordica charantia/genética , Familia de Multigenes , Ácido Oleanólico/análogos & derivados , Triterpenos/metabolismo , Cromosomas de las Plantas/genética , Exones/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Intrones/genética , Metaboloma/genética , Metabolómica , Ácido Oleanólico/biosíntesis , Filogenia , Raíces de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transformación Genética
14.
Gene Expr Patterns ; 40: 119160, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33253895

RESUMEN

Momordica charantia, a medicinal and edible species of the Cucurbitaceae family, has been widely used as a vegetable around the world. Hundreds of pharmacological compounds isolated from the M. charantia have been reported. However, the mechanism of action of the secondary metabolites has not been fully elucidated. In this study, 118,590 unigenes were gained by de novo assembly based on the raw data from high-throughput sequencing of mRNA (RNA-Sequencing) upon systemic analysis, among which, 51,860 (43.73%) could be annotated to the public sequence databases such as Nr, GO, Swiss-Prot, KEGG and KOG. The transcriptomic changes of M. charantia seedlings treated with or without methyl jasmonate (MeJA) were analyzed to identify key genes involved in MeJA treatment. Additionally, 554 differentially expressed genes (DEGs), including 328 up-regulated ones and 226 down-regulated genes, have been identified. Most DEGs were associated with secondary metabolism and stress responses. Meanwhile, six DEGs were further confirmed by quantitative real-time RT-PCR (qRT-PCR) analysis, resulting in similar expression patterns as compared to those of RNA-Sequencing. Nine significantly enriched pathways including 11 DEGs were identified to be possibly involved in the MeJA-responsive biosynthesis of secondary metabolites based on the transcriptome sequencing analysis. Among them, 4 DEGs, encoding two peroxidases, one cinnamyl alcohol dehydrogenase and one hypothetical protein Csa, might play important roles in the process of phenylpropanoid biosynthesis. In addition, 9 transcription factors (TFs) were also detected as DEGs from 1899 unigenes. Most of them up-regulated by MeJA treatment might be potentially involved in regulating secondary metabolites biosynthesis. This work is the first research on the large-scale assessment of M. charantia transcriptomic resources and the analysis of DEGs and TFs in secondary metabolites biosynthesis of M. charantia seedings treated with or without MeJA, which will be conducive to the further applications of M. charantia.


Asunto(s)
Acetatos/farmacología , Ciclopentanos/farmacología , Momordica charantia/genética , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Transcriptoma , Momordica charantia/efectos de los fármacos , Momordica charantia/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo , Estrés Fisiológico
15.
Proc Natl Acad Sci U S A ; 117(25): 14543-14551, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32461376

RESUMEN

The genetic architecture of quantitative traits is determined by both Mendelian and polygenic factors, yet classic examples of plant domestication focused on selective sweep of newly mutated Mendelian genes. Here we report the chromosome-level genome assembly and the genomic investigation of a nonclassic domestication example, bitter gourd (Momordica charantia), an important Asian vegetable and medicinal plant of the family Cucurbitaceae. Population resequencing revealed the divergence between wild and South Asian cultivars about 6,000 y ago, followed by the separation of the Southeast Asian cultivars about 800 y ago, with the latter exhibiting more extreme trait divergence from wild progenitors and stronger signs of selection on fruit traits. Unlike some crops where the largest phenotypic changes and traces of selection happened between wild and cultivar groups, in bitter gourd large differences exist between two regional cultivar groups, likely reflecting the distinct consumer preferences in different countries. Despite breeding efforts toward increasing female flower proportion, a gynoecy locus exhibits complex patterns of balanced polymorphism among haplogroups, with potential signs of selective sweep within haplogroups likely reflecting artificial selection and introgression from cultivars back to wild accessions. Our study highlights the importance to investigate such nonclassic example of domestication showing signs of balancing selection and polygenic trait architecture in addition to classic selective sweep in Mendelian factors.


Asunto(s)
Domesticación , Genoma de Planta , Momordica charantia/genética , Selección Genética , Especiación Genética , Herencia Multifactorial , Filogenia , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
16.
Transgenic Res ; 28(3-4): 381-390, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31214892

RESUMEN

No usable resources with high-level resistance to sheath blight (SB) have yet been found in rice germplasm resources worldwide. Therefore, creating and breeding new disease-resistant rice resources with sheath blight resistance (SBR) are imperative. In this study, we inoculated rice plants with hyphae of the highly pathogenic strain RH-9 of rice SB fungus Rhizoctonia solani to obtain eight stable transgenic rice lines harbouring the chitinase gene (McCHIT1) of bitter melon with good SBR in the T5 generation. The mean disease index for SB of wild-type plants was 92% and 37-44% in transgenic lines. From 24 h before until 120 h after inoculation with R. solani, chitinase activity in stable transgenic plants with increased SBR was 2.0-5.5 and 1.8-2.7 times that of wild-type plants and plants of a disease-susceptible stable transgenic line, respectively. The correlation between SBR and chitinase activity in McCHIT1-transgenic rice line plants was significant. This work stresses how McCHIT1 from bitter melon can be used to protect rice plants from SB infection.


Asunto(s)
Quitinasas/metabolismo , Resistencia a la Enfermedad/inmunología , Momordica charantia/enzimología , Oryza/enzimología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Quitinasas/genética , Regulación de la Expresión Génica de las Plantas , Momordica charantia/genética , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/microbiología , Rhizoctonia/fisiología
17.
Phytochemistry ; 164: 1-11, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31054374

RESUMEN

Real time quantitative reverse transcription PCR (RT-qPCR) has been attracting more attention for its high sensitivity in gene expression analysis. Given the widely use of RT-qPCR in normalization, it is playing a pivotal role for seeking suitable reference genes in different species. In current work, 12 candidate reference genes including Actin 2 (ACT2), Cyclophilin 2 (CYP2), Glyceraldehyde-3-phosphate dehydrogenase C2 (GAPC2), Elongation factor 1-α (EF1-α), Nuclear cap binding protein 20 (NCBP20), Serine/threonine-protein phosphatase PP2A (PP2A), Polypyrimidine tract-binding protein 1 (PTBP1), SAND family protein (SNAD), TIP41-like protein (TIP41), Tubulin beta-6 (TUB6), Ubiquitin-conjugating enzyme 9 (UBC9) and Glyceraldehyde-3-phosphatedehydrogenase (GAPDH) were screened from the transcriptome datasets of M. charantia. Afterwards, GeNorm, NormFinder and BestKeeper algorithms were applied to assess the expression stability of these 12 genes under different abiotic stresses including drought, cold, high-salt, hormone, UV, oxidative and metal stress. The results indicated that 12 selected genes exhibited various stability across the samples under different external stress conditions, but TIP41, PTBP1 and PP2A presented high stability among all the reference genes. To validate the suitability of the identified reference genes, the results of hormone subset were compared with RNA sequencing (RNA-seq) data, and the relative abundance of Ascorbate peroxidase 1(APX1)was used to confirm the reliability of the results. This work assesses the stability of reference genes in M. charantia under different abiotic stress conditions, which will be beneficent for accurate normalization of target genes in M. charantia.


Asunto(s)
Momordica charantia/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Perfilación de la Expresión Génica , Momordica charantia/crecimiento & desarrollo
18.
Biosci Biotechnol Biochem ; 83(2): 251-261, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30317922

RESUMEN

Cucurbitaceae plants contain characteristic triterpenoids. Momordica charantia, known as a bitter melon, contains cucurbitacins and multiflorane type triterpenes, which confer bitter tasting and exhibit pharmacological activities. Their carbon skeletons are biosynthesized from 2,3-oxidosqualene by responsible oxidosqualene cyclase (OSC). In order to identify OSCs in M. charantia, RNA-seq analysis was carried out from ten different tissues. The functional analysis of the resulting four OSC genes revealed that they were cucurbitadienol synthase (McCBS), isomultiflorenol synthase (McIMS), ß-amyrin synthase (McBAS) and cycloartenol synthase (McCAS), respectively. Their distinct expression patterns based on RPKM values and quantitative RT-PCR suggested how the characteristic triterpenoids were biosynthesized in each tissue. Although cucurbitacins were finally accumulated in fruits, McCBS showed highest expression in leaves indicating that the early step of cucurbitacins biosynthesis takes place in leaves, but not in fruits. Abbreviations: OSC: oxidosqualene cyclase; RPKM: reads perkilobase of exon per million mapped reads.


Asunto(s)
Genes de Plantas , Transferasas Intramoleculares/genética , Momordica charantia/genética , Análisis de Secuencia de ARN/métodos , Triterpenos/metabolismo , Secuencia de Aminoácidos , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Transferasas Intramoleculares/química , Transferasas Intramoleculares/metabolismo , Momordica charantia/enzimología , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
19.
Genes (Basel) ; 10(12)2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31888196

RESUMEN

This study was designed to establish a real-time quantitative polymerase chain reaction (qPCR) method to rapidly and reliably analyze the hypoglycemic polypeptide-P gene expression pattern in Momordica charantia (MC) and to examine its expression changes in different MC accessions, harvesting seasons, and tissue types. The qPCR results were further verified by using Western blotting (WB). A total of 10 MCs with different accessions were collected and tested in this study. Among the tested accessions, RU5H showed the highest expression level of the polypeptide-P gene. The expression level of the polypeptide-P gene was not only season-related (with the highest in early July) but also tissue-related (with the highest in the seed tissue). In addition, the expression characteristic of the polypeptide-P gene was maturity-related, with the highest expression level in the tender MC. The WB results show that the transcription level of this gene shows an almost similar trend to the corresponding protein expression level. In conclusion, the established qPCR method can rapidly and effectively detect the expression levels of the polypeptide-P gene in MCs with different accessions; furthermore, various factors, including the accessions, harvesting seasons, and tissue types can affect the expression level.


Asunto(s)
Hipoglucemiantes/metabolismo , Momordica charantia/genética , Péptidos/genética , Proteínas de Plantas/genética , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Momordica charantia/metabolismo , Péptidos/metabolismo , Proteínas de Plantas/metabolismo , ARN de Planta/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estaciones del Año , Semillas/genética , Semillas/metabolismo
20.
Plant Signal Behav ; 13(4): e1451710, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29533122

RESUMEN

Previous study reported a novel type of self-discrimination in the tendrils of the vine Cayratia japonica (Vitaceae). However, whether self-discrimination in tendrils is common in vine plant species has not been elucidated. Here, we investigated whether tendrils of Momordica charantia var. pavel (Cucurbitaceae), Cucumis sativus (Cucurbitaceae) and Passiflora caerulea (Passifloraceae) can discriminate self and non-self plants. We also investigated whether the tendrils of M. charantia and C. sativus can discriminate differences in cultivars to determine the discrimination ability for genetic similarity. We found that tendrils of the M. charantia and P. caerulea were more likely to coil around non-self plant than self plants, but not in C. sativus. Our findings support the common occurrence of self-discrimination in tendrils in different plant taxa, although some species lacked it. Furthermore, tendrils of M. charantia more rapidly coil around different cultivars than around same cultivars. The tendrils of M. charantia may can discriminate differences in cultivars.


Asunto(s)
Cucurbitaceae/metabolismo , Momordica charantia/metabolismo , Passifloraceae/metabolismo , Hojas de la Planta/metabolismo , Cucurbitaceae/genética , Momordica charantia/genética , Passifloraceae/genética , Hojas de la Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...