Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Biomed Pharmacother ; 174: 116505, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574614

RESUMEN

Pulmonary arterial hypertension (PAH) was a devastating disease characterized by artery remodeling, ultimately resulting in right heart failure. The aim of this study was to investigate the effects of canagliflozin (CANA), a sodium-glucose cotransporter 2 inhibitor (SGLT2i) with mild SGLT1 inhibitory effects, on rats with PAH, as well as its direct impact on pulmonary arterial smooth muscle cells (PASMCs). PAH rats were induced by injection of monocrotaline (MCT) (40 mg/kg), followed by four weeks of treatment with CANA (30 mg/kg/day) or saline alone. Pulmonary artery and right ventricular (RV) remodeling and dysfunction in PAH were alleviated with CANA, as assessed by echocardiography. Hemodynamic parameters and structural of pulmonary arteriole, including vascular wall thickness and wall area, were reduced by CANA. RV hypertrophy index, cardiomyocyte hypertrophy, and fibrosis were decreased with CANA treatment. PASMCs proliferation was inhibited by CANA under stimulation by platelet-derived growth factor (PDGF)-BB or hypoxia. Activation of AMP kinase (AMPK) was induced by CANA treatment in cultured PASMCs in a time- and concentration-dependent manner. These effects of CANA were attenuated when treatment with compound C, an AMPK inhibitor. Abundant expression of SGLT1 was observed in PASMCs and pulmonary arteries, while SGLT2 expression was undetectable. SGLT1 increased in response to PDGF-BB or hypoxia stimulation, while PASMCs proliferation was inhibited and beneficial effects of CANA were counteracted by knockdown of SGLT1. Our research demonstrated for the first time that CANA inhibited the proliferation of PASMCs by regulating SGLT1/AMPK signaling and thus exerted an anti-proliferative effect on MCT-induced PAH.


Asunto(s)
Canagliflozina , Proliferación Celular , Miocitos del Músculo Liso , Hipertensión Arterial Pulmonar , Remodelación Vascular , Animales , Ratas , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Canagliflozina/farmacología , Proliferación Celular/efectos de los fármacos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Monocrotalina/efectos adversos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/inducido químicamente , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Arteria Pulmonar/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transportador 1 de Sodio-Glucosa/efectos de los fármacos , Transportador 1 de Sodio-Glucosa/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Remodelación Vascular/efectos de los fármacos
2.
Eur J Pharmacol ; 970: 176483, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38479721

RESUMEN

Stromal derived factor 1 (SDF1) has been shown to be involved in the pathogenesis of pulmonary artery hypertension (PAH). However, the detailed molecular mechanisms remain unclear. To address this, we utilized primary cultured rat pulmonary artery smooth muscle cells (PASMCs) and monocrotaline (MCT)-induced PAH rat models to investigate the mechanisms of SDF1 driving PASMCs proliferation and pulmonary arterial remodeling. SDF1 increased runt-related transcription factor 2 (Runx2) acetylation by Calmodulin (CaM)-dependent protein kinase II (CaMKII)-dependent HDAC4 cytoplasmic translocation, elevation of Runx2 acetylation conferred its resistance to proteasome-mediated degradation. The accumulation of Runx2 further upregulated osteopontin (OPN) expression, finally leading to PASMCs proliferation. Blocking SDF1, suppression of CaMKII, inhibition the nuclear export of HDAC4 or silencing Runx2 attenuated pulmonary arterial remodeling and prevented PAH development in MCT-induced PAH rat models. Our study provides novel sights for SDF1 induction of PASMCs proliferation and suggests that targeting SDF1/CaMKII/HDAC4/Runx2 axis has potential value in the management of PAH.


Asunto(s)
Hipertensión Arterial Pulmonar , Ratas , Animales , Hipertensión Arterial Pulmonar/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Remodelación Vascular/fisiología , Proliferación Celular , Arteria Pulmonar/patología , Hipertensión Pulmonar Primaria Familiar/patología , Miocitos del Músculo Liso , Monocrotalina/efectos adversos , Modelos Animales de Enfermedad , Histona Desacetilasas/metabolismo
3.
Int Heart J ; 65(2): 318-328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556339

RESUMEN

This study investigated the effects of hydroxycitric acid tripotassium hydrate on right ventricular function, myocardial and pulmonary vascular remodeling in rats with pulmonary hypertension, and possible mechanisms. METHODS: Pulmonary hypertension was induced in male Sprague-Dawley rats by a single subcutaneous injection of monocrotaline or hypoxic chamber. In vivo, inflammatory cytokine (including TNF-α, IL-1ß, IL-6, and TGF-ß, the level of SOD) expression, superoxide dismutase and hydrogen peroxide levels, and p-IκBα and p65 expressions were detected. In vitro, pulmonary artery smooth muscle cell proliferation and migration, ROS production, and hypoxia-inducible factor-1 expression were also studied. RESULTS: Hydroxycitric acid tripotassium hydrate decreased right ventricular systolic pressure and reduced right ventricular fibrosis and pulmonary vascular remodeling in rats with two kinds of pulmonary hypertension. Moreover, the expression of both inflammatory and oxidative stress factors was effectively reduced, and the p65 signaling pathway was found to be inhibited in this study. Additionally, hydroxycitric acid tripotassium hydrate inhibited human pulmonary artery smooth cell proliferation and migration in vitro. CONCLUSIONS: This study shows that hydroxycitric acid tripotassium hydrate can alleviate pulmonary hypertension caused by hypoxia and monocycloline in rats, improve remodeling of the right ventricle and pulmonary artery, and inhibit pulmonary artery smooth muscle cell proliferation and migration. The protective effects may be achieved by regulating inflammation and oxidative stress through the p65 signaling pathway.


Asunto(s)
Citratos , Hipertensión Pulmonar , Ratas , Animales , Masculino , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/inducido químicamente , Monocrotalina/efectos adversos , Ratas Sprague-Dawley , Remodelación Vascular , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Arteria Pulmonar , Miocitos del Músculo Liso/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad
4.
Drug Des Devel Ther ; 18: 767-780, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495631

RESUMEN

Purpose: Pulmonary arterial hypertension (PAH) is a devastating disease with little effective treatment. The proliferation of pulmonary artery smooth muscle cells (PASMCs) induced by the nuclear factor-κB (NF-κB) signaling activation plays a pivotal role in the pathogenesis of PAH. Forsythoside B (FTS•B) possesses inhibitory effect on NF-κB signaling pathway. The present study aims to explore the effects and mechanisms of FTS•B in PAH. Methods: Sprague-Dawley rats received monocrotaline (MCT) intraperitoneal injection to establish PAH model, and FTS•B was co-treated after MCT injection. Right ventricular hypertrophy and pulmonary artery pressure were measured by echocardiography and right heart catheterization, respectively. Histological alterations were detected by H&E staining and immunohistochemistry. FTS•B's role in PASMC proliferation and migration were evaluated by CCK-8 and wound healing assay. To investigate the underlying mechanisms, Western blotting, immunofluorescence staining and ELISA were conducted. The NF-κB activator PMA was used to investigate the role of NF-κB in FTS•B's protective effects against PAH. Results: FTS•B markedly alleviated MCT-induced vascular remodeling and pulmonary artery pressure, and improved right ventricular hypertrophy and survival. FTS•B also reversed PDGF-BB-induced PASMC proliferation and migration, decreased PCNA and CyclinD1 expression in vitro. The elevated levels of IL-1ß and IL-6 caused by MCT were decreased by FTS•B. Mechanistically, MCT-triggered phosphorylation of p65, IκBα, IKKα and IKKß was blunted by FTS•B. FTS•B also reversed MCT-induced nuclear translocation of p65. However, all these protective effects were blocked by PMA-mediated NF-κB activation. Conclusion: FTS•B effectively attenuates PAH by suppressing the NF-κB signaling pathway to attenuate vascular remodeling. FTS•B might be a promising drug candidate with clinical translational potential for the treatment of PAH.


Asunto(s)
Ácidos Cafeicos , Glucósidos , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Ratas , Animales , FN-kappa B/metabolismo , Monocrotalina/efectos adversos , Ratas Sprague-Dawley , Remodelación Vascular , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/patología , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Transducción de Señal
5.
Cardiovasc Res ; 120(2): 203-214, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38252891

RESUMEN

AIMS: Pulmonary arterial hypertension (PAH) is characterized by extensive pulmonary arterial remodelling. Although mesenchymal stem cell (MSC)-derived exosomes provide protective effects in PAH, MSCs exhibit limited senescence during in vitro expansion compared with the induced pluripotent stem cells (iPSCs). Moreover, the exact mechanism is not known. METHODS AND RESULTS: In this study, we used murine iPSCs generated from mouse embryonic fibroblasts with triple factor (Oct4, Klf4, and Sox2) transduction to determine the efficacy and action mechanism of iPSC-derived exosomes (iPSC-Exo) in attenuating PAH in rats with monocrotaline (MCT)-induced pulmonary hypertension. Both early and late iPSC-Exo treatment effectively prevented the wall thickening and muscularization of pulmonary arterioles, improved the right ventricular systolic pressure, and alleviated the right ventricular hypertrophy in MCT-induced PAH rats. Pulmonary artery smooth muscle cells (PASMC) derived from MCT-treated rats (MCT-PASMC) developed more proliferative and pro-migratory phenotypes, which were attenuated by the iPSC-Exo treatment. Moreover, the proliferation and migration of MCT-PASMC were reduced by iPSC-Exo with suppression of PCNA, cyclin D1, MMP-1, and MMP-10, which are mediated via the HIF-1α and P21-activated kinase 1/AKT/Runx2 pathways. CONCLUSION: IPSC-Exo are effective at reversing pulmonary hypertension by reducing pulmonary vascular remodelling and may provide an iPSC-free therapy for the treatment of PAH.


Asunto(s)
Exosomas , Hipertensión Pulmonar , Células Madre Pluripotentes Inducidas , Hipertensión Arterial Pulmonar , Ratas , Animales , Ratones , Hipertensión Arterial Pulmonar/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Remodelación Vascular , Exosomas/metabolismo , Fibroblastos/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Arteria Pulmonar , Monocrotalina/efectos adversos , Monocrotalina/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo
6.
Int J Nanomedicine ; 18: 7483-7503, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090366

RESUMEN

Purpose: Fatty oil of Descurainia Sophia (OIL) has poor stability and low solubility, which limits its pharmacological effects. We hypothesized that fatty oil nanoparticles (OIL-NPs) could overcome this limitation. The protective effect of OIL-NPs against monocrotaline-induced lung injury in rats was studied. Methods: We prepared OIL-NPs by wrapping fatty oil with polylactic-polyglycolide nanoparticles (PLGA-NPs) and conducted in vivo and in vitro experiments to explore its anti-pulmonary hypertension (PH) effect. In vitro, we induced malignant proliferation of pulmonary artery smooth muscle cells (RPASMC) using anoxic chambers, and studied the effects of OIL-NPs on the malignant proliferation of RPASMC cells and phospholipase C (PLC)/inositol triphosphate receptor (IP3R)/Ca2+ signal pathways. In vivo, we used small animal echocardiography, flow cytometry, immunohistochemistry, western blotting (WB), polymerase chain reaction (PCR) and metabolomics to explore the effects of OIL-NPs on the heart and lung pathological damage and PLC/IP3R/Ca2+ signal pathway of pulmonary hypertension rats. Results: We prepared fatty into OIL-NPs. In vitro, OIL-NPs could improve the mitochondrial function and inhibit the malignant proliferation of RPASMC cells by inhibiting the PLC/IP3R/Ca2+signal pathway. In vivo, OIL-NPs could reduce the pulmonary artery pressure of rats and alleviate the pathological injury and inflammatory reaction of heart and lung by inhibiting the PLC/IP3R/Ca2+ signal pathway. Conclusion: OIL-NPs have anti-pulmonary hypertension effect, and the mechanism may be related to the inhibition of PLC/IP3R/Ca2+signal pathway.


Asunto(s)
Hipertensión Pulmonar , Nanopartículas , Ratas , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Ratas Sprague-Dawley , Monocrotalina/efectos adversos , Fosfolipasas de Tipo C/efectos adversos , Fosfolipasas de Tipo C/metabolismo , Arteria Pulmonar , Transducción de Señal
7.
Cell Biol Toxicol ; 39(6): 3269-3285, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37816928

RESUMEN

Hepatic sinusoidal obstruction syndrome (HSOS) is a death-dealing liver disease with a fatality rate of up to 67%. In the study present, we explored the efficacy of andrographolide (Andro), a diterpene lactone from Andrographis Herba, in ameliorating the monocrotaline (MCT)-induced HSOS and the underlying mechanism. The alleviation of Andro on MCT-induced rats HSOS was proved by biochemical index detection, electron microscope observation, and liver histological evaluation. Detection of hepatic ATP content, mitochondrial DNA (mtDNA) copy number, and protein expression of nuclear respiratory factor-1 (NRF1) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) demonstrated that Andro strengthened mitochondrial biogenesis in livers from MCT-treated rats. Chromatin immunoprecipitation assay exhibited that Andro enhanced the occupation of nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) in the promoter regions of both PPARGC1A and NRF1. Andro also activated the NRF2-dependent anti-oxidative response and alleviated liver oxidative injury. In Nrf2 knock-out mice, MCT induced more severe liver damage, and Andro showed no alleviation in it. Furthermore, the Andro-activated mitochondrial biogenesis and anti-oxidative response were reduced in Nrf2 knock-out mice. Contrastingly, knocking out Kelch-like ECH-associated protein 1 (Keap1), a NRF2 repressor, reduced MCT-induced liver damage. Results from co-immunoprecipitation, molecular docking analysis, biotin-Andro pull-down, cellular thermal shift assay, and surface plasmon resonance assay showed that Andro hindered the NRF2-KEAP1 interaction via directly binding to KEAP1. In conclusion, our results revealed that NRF2-dependent liver mitochondrial biogenesis and anti-oxidative response were essential for the Andro-provided alleviation of the MCT-induced HSOS. Graphical Headlights: 1. Andro alleviated MCT-induced HSOS via activating antioxidative response and promoting mitochondrial biogenesis. 2. Andro-activated antioxidative response and mitochondrial biogenesis were NRF2-dependent. 3. Andro activated NRF2 via binding to KEAP1.


Asunto(s)
Diterpenos , Enfermedad Veno-Oclusiva Hepática , Ratones , Ratas , Animales , Enfermedad Veno-Oclusiva Hepática/inducido químicamente , Enfermedad Veno-Oclusiva Hepática/metabolismo , Enfermedad Veno-Oclusiva Hepática/patología , Antioxidantes/farmacología , Monocrotalina/efectos adversos , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Simulación del Acoplamiento Molecular , Biogénesis de Organelos , Diterpenos/farmacología , Estrés Oxidativo , Ratones Noqueados , ADN Mitocondrial/metabolismo
8.
Arq Bras Cardiol ; 120(10): e20230188, 2023 09.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-37878960

RESUMEN

BACKGROUND: The high incidence of atrial arrhythmias in pulmonary hypertension (PH) might be associated with poor prognosis, and the left atrium (LA) may play a role in this. An important finding in PH studies is that LA remodeling is underestimated. OBJECTIVE: This study investigated LA morphology and mechanical function, as well as the susceptibility to develop arrhythmias in a monocrotaline-induced PH (MCT-PH) model. METHODS: Wistar rats aged 4 weeks received 50 mg/kg of MCT. Electrocardiography and histology analysis were performed to evaluate the establishment of the MCT-PH model. The tissue was mounted in an isolated organ bath to characterize the LA mechanical function. RESULTS: Compared with the control group (CTRL), the MCT-PH model presented LA hypertrophy and changes in cardiac electrical activity, as evidenced by increased P wave duration, PR and QT interval in MCT-PH rats. In LA isolated from MCT-PH rats, no alteration in inotropism was observed; however, the time to peak contraction was delayed in the experimental MCT-PH group. Finally, there was no difference in arrhythmia susceptibility of LA from MCT-PH animals after the burst pacing protocol. CONCLUSION: The morphofunctional remodeling of the LA did not lead to increased susceptibility to ex vivo arrhythmia after application of the burst pacing protocol.


FUNDAMENTO: A alta incidência de arritmias atriais na hipertensão pulmonar (HP) pode estar associada a um prognóstico ruim, e o átrio esquerdo (AE) pode desempenhar um papel neste quadro. Um achado importante nos estudos de HP é que a remodelação do AE é subestimada. OBJETIVO: Este estudo investigou a morfologia e a função mecânica do AE, bem como a suscetibilidade ao desenvolvimento de arritmias em um modelo de HP induzida por monocrotalina (HP-MCT). MÉTODOS: Ratos Wistar com 4 semanas de idade receberam 50 mg/kg de MCT. Foram realizadas análises eletrocardiográficas e histológicas para avaliar o estabelecimento do modelo de HP-MCT. O tecido foi montado em banho de órgão isolado para caracterizar a função mecânica do AE. RESULTADOS: Em comparação com o grupo controle, o modelo de HP-MCT apresentou hipertrofia do AE e alterações da atividade elétrica cardíaca, conforme evidenciadas pelo aumento da duração da onda P, PR e intervalo QT. Não foi observada alteração no inotropismo do AE isolado de ratos com HP-MCT; no entanto, o tempo para atingir a contração máxima foi atrasado. Finalmente, não observamos diferença na suscetibilidade à arritmia no AE dos ratos com HP-MCT após o protocolo de estimulação intermitente. CONCLUSÃO: A remodelação morfofuncional do AE não levou ao aumento da suscetibilidade à arritmia ex vivo após a aplicação do protocolo de estimulação intermitente.


Asunto(s)
Hipertensión Pulmonar , Ratas , Animales , Hipertensión Pulmonar/inducido químicamente , Ratas Sprague-Dawley , Ratas Wistar , Atrios Cardíacos , Arritmias Cardíacas/inducido químicamente , Arritmias Cardíacas/complicaciones , Monocrotalina/efectos adversos , Arteria Pulmonar
9.
Can J Physiol Pharmacol ; 101(9): 447-454, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37581356

RESUMEN

Oxidative stress is involved in increased pulmonary vascular resistance (PVR) and right ventricular (RV) hypertrophy, characteristics of pulmonary arterial hypertension (PAH). Copaiba oil, an antioxidant compound, could attenuate PAH damage. This study's aim was to determine the effects of copaiba oil on lung oxidative stress, PVR, and mean pulmonary arterial pressure (mPAP) in the monocrotaline (MCT) model of PAH. Male Wistar rats (170 g, n = 7/group) were divided into four groups: control, MCT, copaiba oil, and MCT + copaiba oil (MCT-O). PAH was induced by MCT (60 mg/kg i.p.) and, after 1 week, the treatment with copaiba oil (400 mg/kg/day gavage) was started for 14 days. Echocardiographic and hemodynamic measurements were performed. RV was collected for morphometric evaluations and lungs and the pulmonary artery were used for biochemical analysis. Copaiba oil significantly reduced RV hypertrophy, PVR, mPAP, and antioxidant enzyme activities in the MCT-O group. Moreover, increased nitric oxide synthase and decreased NADPH oxidase activities were observed in the MCT-O group. In conclusion, copaiba oil was able to improve the balance between nitric oxide and reactive oxygen species in lungs and the pulmonary artery and to reduce PVR, which could explain a decrease in RV hypertrophy in this PAH model.


Asunto(s)
Hipertensión Pulmonar , Aceites Volátiles , Hipertensión Arterial Pulmonar , Ratas , Masculino , Animales , Ratas Wistar , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Monocrotalina/efectos adversos , Óxido Nítrico , Antioxidantes/farmacología , Disponibilidad Biológica , Pulmón , Arteria Pulmonar , Hipertensión Pulmonar Primaria Familiar , Hipertrofia Ventricular Derecha/inducido químicamente , Hipertrofia Ventricular Derecha/tratamiento farmacológico , Aceites Volátiles/farmacología , Modelos Animales de Enfermedad
10.
Sheng Li Xue Bao ; 75(4): 503-511, 2023 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-37583037

RESUMEN

In this study, we investigated the effects of Panax notoginseng saponins (PNS) on pulmonary vascular remodeling and ADAM10/Notch3 pathway in pulmonary arterial hypertension (PAH). PAH rat model was established, and male Sprague Dawley (SD) rats were randomly divided into control group, monocrotaline (MCT) group and MCT+PNS group, with 10 rats in each group. Rats in the control group were intraperitoneally injected with equal volume of normal saline. Rats in the MCT group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with the same volume of normal saline every day. Rats in the MCT+PNS group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with 50 mg/kg PNS every day. The modeling time of each group lasted for 21 days. After the model was established, the mean pulmonary artery pressure (mPAP) was measured by right heart catheterization technique, the right ventricular hypertrophy index (RVHI) was calculated, the microscopic morphology and changes of pulmonary vascular wall were observed by HE and Masson staining, and the expressions of ADAM10, Notch3, Hes-1, P27, PCNA, Caspase-3 proteins and mRNA in pulmonary vascular tissue of rats were detected by Western blot and qPCR. The expression and localization of Notch3 and α-SMA were detected by immunofluorescence staining. The protein expression of ADAM10 was detected by immunohistochemical staining. The results showed that compared with the control group, mPAP, RVHI, pulmonary vessels and collagen fibers in the MCT group were significantly increased, the expressions of ADAM10, Notch3, Hes-1, and PCNA protein and mRNA were significantly increased, while the expressions of P27 and Caspase-3 protein and mRNA were decreased significantly. Compared with the MCT group, mPAP and RVHI were significantly decreased, pulmonary vessels were significantly improved and collagen fibers were significantly reduced, the expressions of protein and mRNA of ADAM10, Notch3, Hes-1, and PCNA were decreased in MCT+PNS group, but the expressions of protein and mRNA of P27 and Caspase-3 were increased slightly. The results of immunofluorescence showed that Notch3 and α-SMA staining could overlap, which proved that Notch3 was expressed in smooth muscle cells. The expression of Notch3 in the MCT group was increased significantly compared with that in the control group, while PNS intervention decreased the expression of Notch3. Immunohistochemical staining showed that compared with the control group, the amount of ADAM10 in the MCT group was increased significantly, and the expression of ADAM10 in the MCT+PNS group was decreased compared with the MCT group. These results indicate that PNS can improve the PAH induced by MCT in rats by inhibiting ADAM10/Notch3 signaling pathway.


Asunto(s)
Hipertensión Pulmonar , Panax notoginseng , Hipertensión Arterial Pulmonar , Saponinas , Animales , Masculino , Ratas , Caspasa 3/metabolismo , Colágeno , Modelos Animales de Enfermedad , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Monocrotalina/efectos adversos , Panax notoginseng/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/farmacología , Arteria Pulmonar/metabolismo , Ratas Sprague-Dawley , Receptor Notch3/genética , ARN Mensajero , Solución Salina , Transducción de Señal , Saponinas/farmacología
11.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3775-3788, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37338577

RESUMEN

The TASK-1 channel belongs to the two-pore domain potassium channel family. It is expressed in several cells of the heart, including the right atrial (RA) cardiomyocytes and the sinus node, and TASK-1 channel has been implicated in the pathogenesis of atrial arrhythmias (AA). Thus, using the rat model of monocrotaline-induced pulmonary hypertension (MCT-PH), we explored the involvement of TASK-1 in AA. Four-week-old male Wistar rats were injected with 50 mg/kg of MCT to induce MCT-PH and isolated RA function was studied 14 days later. Additionally, isolated RA from six-week-old male Wistar rats were used to explore the ability of ML365, a selective blocker of TASK-1, to modulate RA function. The hearts developed right atrial and ventricular hypertrophy, inflammatory infiltrate and the surface ECG demonstrated increased P wave duration and QT interval, which are markers of MCT-PH. The isolated RA from the MCT animals showed enhanced chronotropism, faster contraction and relaxation kinetics, and a higher sensibility to extracellular acidification. However, the addition of ML365 to extracellular media was not able to restore the phenotype. Using a burst pacing protocol, the RA from MCT animals were more susceptible to develop AA, and simultaneous administration of carbachol and ML365 enhanced AA, suggesting the involvement of TASK-1 in AA induced by MCT. TASK-1 does not play a key role in the chronotropism and inotropism of healthy and diseased RA; however, it may play a role in AA in the MCT-PH model.


Asunto(s)
Fibrilación Atrial , Hipertensión Pulmonar , Animales , Masculino , Ratas , Atrios Cardíacos/patología , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/patología , Hipertrofia Ventricular Derecha/inducido químicamente , Hipertrofia Ventricular Derecha/patología , Modelos Teóricos , Monocrotalina/efectos adversos , Ratas Wistar
12.
J Pharm Pharmacol ; 75(8): 1100-1110, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37158759

RESUMEN

OBJECTIVES: Nobiletin is a flavonoid found in the peel of Citrus sinensis (oranges). The purpose of this study is to investigate whether Nobiletin can alleviate the monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) and explore the underlying mechanisms. METHODS: The PAH rat model was replicated by subcutaneous injection of MCT. Nobiletin (1, 5 and 10 mg/kg) was administered by gavage from day 1 to day 21. After 21 days of MCT injection, the mean pulmonary artery pressure, pulmonary vascular resistance, Fulton Index, pulmonary artery remodelling, blood routine parameters, liver and kidney functions was measured. The level of inflammatory cytokines and PI3K/Akt/STAT3 were detected by qPCR, ELISA and western blot, the proliferation of pulmonary artery smooth muscle cells (PASMCs) was evaluated by CCK-8. KEY FINDINGS: Nobiletin (10 mg/kg) inhibited the MCT-induced increase in mean pulmonary artery pressure and pulmonary vascular resistance, right ventricular hypertrophy and pulmonary artery remodelling in rats. Nobiletin decreased the levels of inflammatory cytokines and phosphorylation level of PI3K/Akt/STAT3 in lungs of MCT-treated rats. Nobiletin inhibited the proliferation and lowered the inflammatory cytokines level induced by PDGF-BB in PASMCs. CONCLUSION: Nobiletin attenuates MCT-induced PAH, and the potential mechanism is to inhibit inflammation through PI3K/Akt/STAT3 pathway.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Ratas , Animales , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Monocrotalina/efectos adversos , Monocrotalina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Arteria Pulmonar , Citocinas/metabolismo , Modelos Animales de Enfermedad
13.
Eur J Pharmacol ; 946: 175579, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36914083

RESUMEN

Pulmonary hypertension (PH) is associated with pulmonary vasoconstriction and endothelial dysfunction leading to impaired nitric oxide (NO) and prostacyclin (PGI2) pathways. Metformin, the first line treatment for type 2 diabetes and AMP-activated protein kinase (AMPK) activator, has been recently highlighted as a potential PH treatment. AMPK activation has been reported to improve endothelial function by enhancing endothelial NO synthase (eNOS) activity and to have relaxant effects in blood vessels. In this study, we examined the effect of metformin treatment on PH as well as on NO and PGI2 pathways in monocrotaline (MCT)-injected rats with established PH. Moreover, we investigated the anti-contractile effects of AMPK activators on endothelium-denuded human pulmonary arteries (HPA) from Non-PH and Group 3 PH patients (due to lung diseases and/or hypoxia). Furthermore, we explored the interaction between treprostinil and the AMPK/eNOS pathway. Our results showed that metformin protected against PH progression in MCT rats where it reduced the mean pulmonary artery pressure, pulmonary vascular remodeling and right ventricular hypertrophy and fibrosis compared to vehicle-treated MCT rats. The protective effects on rat lungs were mediated in part by increasing eNOS activity and protein kinase G-1 expression but not through the PGI2 pathway. In addition, incubation with AMPK activators reduced the phenylephrine-induced contraction of endothelium-denuded HPA from Non-PH and PH patients. Finally, treprostinil also augmented eNOS activity in HPA smooth muscle cells. In conclusion, we found that AMPK activation can enhance the NO pathway, attenuate vasoconstriction by direct effects on smooth muscles, and reverse established MCT-induced PH in rats.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertensión Pulmonar , Metformina , Ratas , Humanos , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/prevención & control , Arteria Pulmonar , Metformina/efectos adversos , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Monocrotalina/efectos adversos
14.
Eur J Pharmacol ; 943: 175558, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36731722

RESUMEN

PURPOSE: Protective effect of 17ß-estradiol is well-known in pulmonary hypertension. However, estrogen-based therapy may potentially increase the risk of breast cancer, necessitating a search for novel drugs. This study, therefore, investigated the ameliorative effects of a selective estrogen receptor modulator, ormeloxifene, in pulmonary hypertension. METHODS: Cardiomyocytes (H9C2) and human pulmonary arterial smooth muscle cells (HPASMCs) were exposed to hypoxia (1% O2) for 42 and 96 h, respectively, with or without ormeloxifene pre-treatment (1 µM). Also, female (ovary-intact or ovariectomized) and male Sprague-Dawley rats received monocrotaline (60 mg/kg, once, subcutaneously), with or without ormeloxifene treatment (2.5 mg/kg, orally) for four weeks. RESULTS: Hypoxia dysregulated 17ß-hydroxysteroid dehydrogenase (17ßHSD) 1 & 2 expressions, reducing 17ß-estradiol production and estrogen receptors α and ß in HPASMC but increasing estrone, proliferation, inflammation, oxidative stress, and mitochondrial dysfunction. Similarly, monocrotaline decreased plasma 17ß-estradiol and uterine weight in ovary-intact rats. Further, monocrotaline altered 17ßHSD1 & 2 expressions and reduced estrogen receptors α and ß, increasing right ventricular pressure, proliferation, inflammation, oxidative stress, endothelial dysfunction, mitochondrial dysfunction, and vascular remodeling in female and male rats, with worsened conditions in ovariectomized rats. Ormeloxifene was less uterotrophic; however, it attenuated both hypoxia and monocrotaline effects by improving pulmonary 17ß-estradiol synthesis. Furthermore, ormeloxifene decreased cardiac hypertrophy and right ventricular remodeling induced by hypoxia and monocrotaline. CONCLUSION: This study demonstrates that ormeloxifene promoted pulmonary 17ß-estradiol synthesis, alleviated inflammation, improved the NOX4/HO1/Nrf/PPARγ/PGC-1α axis, and attenuated pulmonary hypertension. It is evidently safe at tested concentrations and may be effectively repurposed for pulmonary hypertension treatment.


Asunto(s)
Hipertensión Pulmonar , Moduladores Selectivos de los Receptores de Estrógeno , Ratas , Masculino , Femenino , Humanos , Animales , Moduladores Selectivos de los Receptores de Estrógeno/efectos adversos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/prevención & control , Hipertensión Pulmonar/inducido químicamente , Ratas Sprague-Dawley , Receptor alfa de Estrógeno , Monocrotalina/efectos adversos , Estradiol/farmacología , Estradiol/uso terapéutico , Arteria Pulmonar , Inflamación , Hipoxia
15.
J Pharmacol Exp Ther ; 385(2): 88-94, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36849413

RESUMEN

A pathogenic aspect of pulmonary arterial hypertension (PAH) is the aberrant pulmonary arterial smooth muscle cell (PASMC) proliferation. PASMC proliferation is significantly affected by inflammation. A selective α-2 adrenergic receptor agonist called dexmedetomidine (DEX) modulates specific inflammatory reactions. We investigated the hypothesis that anti-inflammatory characteristics of DEX could lessen PAH that monocrotaline (MCT) causes in rats. In vivo, male Sprague-Dawley rats aged 6 weeks were subcutaneously injected with MCT at a dose of 60 mg/kg. Continuous infusions of DEX (2 µg/kg per hour) were started via osmotic pumps in one group (MCT plus DEX group) at day 14 following MCT injection but not in another group (MCT group). Right ventricular systolic pressure (RVSP), right ventricular end-diastolic pressure (RVEDP), and survival rate significantly improved in the MCT plus DEX group compared with the MCT group [RVSP, 34 mmHg ± 4 mmHg versus 70 mmHg ± 10 mmHg; RVEDP, 2.6 mmHg ± 0.1 mmHg versus 4.3 mmHg ± 0.6 mmHg; survival rate, 42% versus 0% at day 29 (P < 0.01)]. In the histologic study, the MCT plus DEX group showed fewer phosphorylated p65-positive PASMCs and less medial hypertrophy of the pulmonary arterioles. In vitro, DEX dose-dependently inhibited human PASMC proliferation. Furthermore, DEX decreased the expression of interleukin-6 mRNA in human PASMCs treated with fibroblast growth factor 2 (FGF2). These consequences suggest that DEX improves PAH by inhibiting PASMC proliferation through its anti-inflammatory properties. Additionally, DEX may exert anti-inflammatory effects via blocking FGF2-induced nuclear factor κ B activation. SIGNIFICANCE STATEMENT: Dexmedetomidine, a selective α-2 adrenergic receptor agonist utilized as a sedative in the clinical setting, improves pulmonary arterial hypertension (PAH) by inhibiting pulmonary arterial smooth muscle cell proliferation through its anti-inflammatory effect. Dexmedetomidine may be a new PAH therapeutic agent with vascular reverse remodeling effect.


Asunto(s)
Dexmedetomidina , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Ratas , Masculino , Animales , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Ratas Sprague-Dawley , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/patología , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Arteria Pulmonar , Inflamación/metabolismo , Monocrotalina/efectos adversos , Monocrotalina/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Agonistas Adrenérgicos/efectos adversos , Miocitos del Músculo Liso/metabolismo , Modelos Animales de Enfermedad
16.
Mol Med Rep ; 27(3)2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36734266

RESUMEN

Pulmonary arterial hypertension (PAH), a fatal disease with an insidious onset and rapid progression, shows characteristics such as increases in pulmonary circulatory resistance and pulmonary arterial pressure, and progressive right heart failure. Shikonin can reduce right ventricular systolic pressure in chronically hypoxic mice. However, the mechanisms underlying the protective effect of shikonin against PAH pathogenesis have only been sporadically identified. The present study evaluated whether inhibiting the expression of pyruvate kinase M2 (PKM2) contributed to the improvement of pulmonary vascular remodeling in PAH rats induced by monocrotaline (MCT) treatment. Hemodynamic parameters were assessed using echocardiography and right ventricular catheterization. Right ventricular hypertrophy index analysis and hematoxylin and eosin staining were used to evaluate the degree of pulmonary vascular and right heart remodeling. Moreover, PKM2, p­PKM2, ERK, p­ERK, glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA) protein expression levels were semi­quantified using western blotting. The expression and distribution of PKM2 were assessed using immunofluorescence microscopy. The present study demonstrated that MCT treatment caused pulmonary arterial hypertension and pulmonary vascular remodeling in experimental rats. Shikonin improved hemodynamics and pulmonary vascular remodeling in MCT­induced PAH rats, decreased aerobic glycolysis and downregulated PKM2, p­PKM2, p­ERK, GLUT 1 and LDHA protein expression levels. Shikonin improved experimental pulmonary arterial hypertension hemodynamics and pulmonary vascular remodeling at least partly through the inhibition of PKM2 and the resultant suppression of aerobic glycolysis. These results provide a novel understanding of possible new treatment targets for PAH.


Asunto(s)
Hipertensión Arterial Pulmonar , Piruvato Quinasa , Animales , Ratas , Modelos Animales de Enfermedad , Monocrotalina/efectos adversos , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas Sprague-Dawley , Remodelación Vascular , Piruvato Quinasa/genética
17.
Eur J Pharmacol ; 943: 175546, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36706802

RESUMEN

Endothelial dysfunction is essential in pulmonary arterial hypertension (PAH) pathogenesis and is considered to be a therapeutic target of PAH. Curcumol is a bioactive sesquiterpenoid with pharmacological properties including restoring endothelial cells damage. This study aimed to evaluate the effect of curcumol on PAH rats and investigate its possible mechanisms. PAH was induced by subcutaneous injection of 60 mg/kg monocrotaline (MCT) in male Sprague Dawley rats. Curcumol (12.5, 25, and 50 mg/kg/day) were administered by intragastric administration for 3 weeks. The results demonstrated that curcumol dose-dependently alleviated MCT-induced right ventricular hypertrophy and pulmonary arterial wall thickness. In addition, endothelial-to-mesenchymal transition (EndMT) in the pulmonary arteries of MCT-challenged rats was inhibited after curcumol treatment, as evidenced by the restored expressions of endothelial and myofibroblast markers. The possible pharmacological mechanisms of curcumol were analyzed using network pharmacology. After screening the common therapeutic targets of PAH and curcumol by searching related databases and comparison, pathway enrichment was performed and AKT/GSK3ß was screened out as a possible signaling pathway which was relevant to the therapeutic mechanism of curcumol on PAH. Western blot analysis verified this in lung tissues. Moreover, combination of TNF-α, TGF-ß1 and IL-1ß-induced EndMT in primary rat pulmonary arterial endothelial cells were blocked by curcumol, and this effect was resembled by PI3K/AKT inhibitor LY294002. Above all, our study suggested that curcumol inhibited EndMT via inhibiting the AKT/GSK3ß signaling pathway, which may contribute to its alleviated effect on PAH. Curcumol may be developed as a therapeutic for PAH in the future.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Sesquiterpenos , Animales , Masculino , Ratas , Modelos Animales de Enfermedad , Células Endoteliales , Hipertensión Pulmonar Primaria Familiar/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Monocrotalina/efectos adversos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hipertensión Arterial Pulmonar/inducido químicamente , Arteria Pulmonar/patología , Ratas Sprague-Dawley , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Sesquiterpenos/metabolismo , Transducción de Señal , Transdiferenciación Celular
18.
Liver Int ; 43(3): 626-638, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36354295

RESUMEN

BACKGROUND AND AIMS: The definitive treatment for pyrrolizidine alkaloids (PAs)-induced hepatic sinusoidal obstruction syndrome (HSOS) is not available. The effectiveness of anticoagulation therapy remains controversial. The efficacy of low molecular weight heparin (LMWH) should be investigated in patients and animal models, and the underlying mechanism should be explored. METHODS: The prognosis of patients with PAs-HSOS who received anticoagulation therapy was retrospectively analysed. The effect of enoxaparin on the liver injury was determined in animal models of monocrotaline (MCT)-induced HSOS was determined, and the underlying mechanism was investigated using a murine model. RESULTS: The cumulative survival rate of patients with PAs-induced HSOS was 60.00% and 90.90% in the non-anticoagulation group and anticoagulation group. Enoxaparin attenuated liver injury effectively in a rat model of MCT-induced HSOS. Additionally, the improvement of severe liver injury was observed in MCT-treated mice after the administration of enoxaparin (40 mg/kg). The alleviation of liver injury was observed in mice with hepatocyte-specific deletion of oncostatin M (Osm△Hep ). In MCT-treated mice administrated with enoxaparin, no significant differences in liver injury were observed between Osm△Hep mice and Osmflox/flox mice. Additionally, adenovirus-mediated overexpression of Osm resulted in severe liver injury in MCT-induced mice after the administration of enoxaparin. CONCLUSIONS: LMWH attenuated severe liver injury in patients with PAs-Induced HSOS and animal models of MCT-induced HSOS, which provides a rationale for the application of anticoagulation therapy.


Asunto(s)
Enfermedad Veno-Oclusiva Hepática , Alcaloides de Pirrolicidina , Ratas , Ratones , Animales , Enfermedad Veno-Oclusiva Hepática/inducido químicamente , Alcaloides de Pirrolicidina/efectos adversos , Enoxaparina , Estudios Retrospectivos , Heparina de Bajo-Peso-Molecular , Oncostatina M/efectos adversos , Monocrotalina/efectos adversos , Anticoagulantes/efectos adversos
19.
Cardiovasc Drugs Ther ; 37(3): 449-460, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35088192

RESUMEN

PURPOSE: To investigate the role of cyclin-dependent kinase 9 (CDK9) and the therapeutic potential of a CDK9 inhibitor (flavopiridol) in monocrotaline (MCT)-induced pulmonary hypertension (PH). METHODS: For the in vivo experiments, rats with PH were established by a single intraperitoneal injection of MCT (60 mg/kg). After 2 weeks of MCT injection, rats were then treated with flavopiridol (5 mg/kg, i.p., twice a week) or vehicle for 2 weeks. For the in vitro experiments, human pulmonary artery smooth muscle cells (HPASMCs) were treated with flavopiridol (0.025-1 µM) or vehicle under hypoxic conditions. Hemodynamic recording, right ventricle histology, lung histology, and pulmonary arterial tissue isolation were performed. The expression levels of CDK9, RNA polymerase II, c-Myc, Mcl-1, and survivin were determined by qRT-PCR and western blotting, and the proliferation and apoptosis of rat pulmonary arterial tissues and/or HPASMCs were also assayed. RESULTS: Compared to the control group, CDK9 was upregulated in pulmonary arterial tissues from MCT-induced PH rats and hypoxic cultured HPASMCs. Upregulation of CDK9 was associated with enhanced phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (RNA pol II) at serine-2 (Ser-2), promoting the expression of prosurvival and antiapoptotic proteins (c-Myc, Mcl-1, and survivin). Furthermore, treatment with flavopiridol (5 mg/kg) significantly alleviated pulmonary artery remodeling and partially reversed the progression of MCT-induced PH. Consistently, flavopiridol (0.5 µM) treatment decreased the proliferation and induced the apoptosis of cultured HPASMCs under hypoxic conditions. As a result of CDK9 inhibition and subsequent inhibition of RNA pol II CTD phosphorylation at Ser-2, flavopiridol decreased c-Myc, Mcl-1, and survivin expression in isolated pulmonary small arteries, leading to cell growth inhibition and apoptosis. CONCLUSION: Flavopiridol mitigates the progression of MCT-induced PH in rats by targeting CDK9.


Asunto(s)
Hipertensión Pulmonar , Ratas , Humanos , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Survivin/metabolismo , ARN Polimerasa II/metabolismo , Monocrotalina/efectos adversos , Monocrotalina/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Quinasa 9 Dependiente de la Ciclina/metabolismo , Arteria Pulmonar
20.
Acta Physiologica Sinica ; (6): 503-511, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1007765

RESUMEN

In this study, we investigated the effects of Panax notoginseng saponins (PNS) on pulmonary vascular remodeling and ADAM10/Notch3 pathway in pulmonary arterial hypertension (PAH). PAH rat model was established, and male Sprague Dawley (SD) rats were randomly divided into control group, monocrotaline (MCT) group and MCT+PNS group, with 10 rats in each group. Rats in the control group were intraperitoneally injected with equal volume of normal saline. Rats in the MCT group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with the same volume of normal saline every day. Rats in the MCT+PNS group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with 50 mg/kg PNS every day. The modeling time of each group lasted for 21 days. After the model was established, the mean pulmonary artery pressure (mPAP) was measured by right heart catheterization technique, the right ventricular hypertrophy index (RVHI) was calculated, the microscopic morphology and changes of pulmonary vascular wall were observed by HE and Masson staining, and the expressions of ADAM10, Notch3, Hes-1, P27, PCNA, Caspase-3 proteins and mRNA in pulmonary vascular tissue of rats were detected by Western blot and qPCR. The expression and localization of Notch3 and α-SMA were detected by immunofluorescence staining. The protein expression of ADAM10 was detected by immunohistochemical staining. The results showed that compared with the control group, mPAP, RVHI, pulmonary vessels and collagen fibers in the MCT group were significantly increased, the expressions of ADAM10, Notch3, Hes-1, and PCNA protein and mRNA were significantly increased, while the expressions of P27 and Caspase-3 protein and mRNA were decreased significantly. Compared with the MCT group, mPAP and RVHI were significantly decreased, pulmonary vessels were significantly improved and collagen fibers were significantly reduced, the expressions of protein and mRNA of ADAM10, Notch3, Hes-1, and PCNA were decreased in MCT+PNS group, but the expressions of protein and mRNA of P27 and Caspase-3 were increased slightly. The results of immunofluorescence showed that Notch3 and α-SMA staining could overlap, which proved that Notch3 was expressed in smooth muscle cells. The expression of Notch3 in the MCT group was increased significantly compared with that in the control group, while PNS intervention decreased the expression of Notch3. Immunohistochemical staining showed that compared with the control group, the amount of ADAM10 in the MCT group was increased significantly, and the expression of ADAM10 in the MCT+PNS group was decreased compared with the MCT group. These results indicate that PNS can improve the PAH induced by MCT in rats by inhibiting ADAM10/Notch3 signaling pathway.


Asunto(s)
Animales , Masculino , Ratas , Caspasa 3/metabolismo , Colágeno , Modelos Animales de Enfermedad , Hipertensión Pulmonar/tratamiento farmacológico , Monocrotalina/efectos adversos , Panax notoginseng/química , Antígeno Nuclear de Célula en Proliferación/farmacología , Hipertensión Arterial Pulmonar , Arteria Pulmonar/metabolismo , Ratas Sprague-Dawley , Receptor Notch3/genética , ARN Mensajero , Solución Salina , Transducción de Señal , Saponinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...