Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
mBio ; 14(1): e0311422, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36645301

RESUMEN

Wild-type canine distemper virus (CDV) is an important pathogen of dogs as well as wildlife that can infect immune and epithelial cells through two known receptors: the signaling lymphocytic activation molecule (SLAM) and nectin-4, respectively. Conversely, the ferret and egg-adapted CDV-Onderstepoort strain (CDV-OP) is employed as an effective vaccine for dogs. CDV-OP also exhibits promising oncolytic properties, such as its abilities to infect and kill multiple cancer cells in vitro. Interestingly, several cancer cells do not express SLAM or nectin-4, suggesting the presence of a yet unknown entry factor for CDV-OP. By conducting a genome-wide CRISPR/Cas9 knockout (KO) screen in CDV-OP-susceptible canine mammary carcinoma P114 cells, which neither express SLAM nor nectin-4, we identified low-density lipoprotein receptor-related protein 6 (LRP6) as a host factor that promotes CDV-OP infectivity. Whereas the genetic ablation of LRP6 rendered cells resistant to infection, ectopic expression in resistant LRP6KO cells restored susceptibility. Furthermore, multiple functional studies revealed that (i) the overexpression of LRP6 leads to increased cell-cell fusion, (ii) a soluble construct of the viral receptor-binding protein (solHOP) interacts with a soluble form of LRP6 (solLRP6), (iii) an H-OP point mutant that prevents interaction with solLRP6 abrogates cell entry in multiple cell lines once transferred into recombinant viral particles, and (iv) vesicular stomatitis virus (VSV) pseudotyped with CDV-OP envelope glycoproteins loses its infectivity in LRP6KO cells. Collectively, our study identified LRP6 as the long sought-after cell entry receptor of CDV-OP in multiple cell lines, which set the molecular bases to refine our understanding of viral-cell adaptation and to further investigate its oncolytic properties. IMPORTANCE Oncolytic viruses (OV) have gathered increasing interest in recent years as an alternative option to treat cancers. The Onderstepoort strain of canine distemper virus (CDV-OP), an enveloped RNA virus belonging to the genus Morbillivirus, is employed as a safe and efficient vaccine for dogs against distemper disease. Importantly, although CDV-OP can infect and kill multiple cancer cell lines, the basic mechanisms of entry remain to be elucidated, as most of those transformed cells do not express natural receptors (i.e., SLAM and nectin-4). In this study, using a genome-wide CRISPR/Cas9 knockout screen, we describe the discovery of LRP6 as a novel functional entry receptor for CDV-OP in various cancer cell lines and thereby uncover a basic mechanism of cell culture adaptation. Since LRP6 is upregulated in various cancer types, our data provide important insights in order to further investigate the oncolytic properties of CDV-OP.


Asunto(s)
Virus del Moquillo Canino , Moquillo , Animales , Perros , Virus del Moquillo Canino/genética , Nectinas/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Hurones , Receptores Virales/genética , Receptores Virales/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Moquillo/prevención & control , Moquillo/genética , Moquillo/metabolismo
2.
Microbiol Spectr ; 11(1): e0406022, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36533959

RESUMEN

Measles virus and canine distemper virus (CDV) cause lethal infections in their respective hosts characterized by severe immunosuppression. To furtherly acknowledge the attenuated mechanisms of the regionally ongoing epidemic CDV isolates and provide novel perspectives for designing new vaccines and therapeutic drugs, a recombinant CDV rHBF-vacH was employed with a vaccine hemagglutinin (H) gene replacement by reverse genetics based on an infectious cDNA clone for the CDV wild-type HBF-1 strain. Interestingly, unlike previously published reports that a vaccine H protein completely changed a pathogenic wild-type CDV variant to be avirulent, rHBF-vacH was only partially attenuated by alleviating the degree of viral immunosuppression, and still caused 66.7% lethality in ferrets with a prolonged period of disease. Further comparisons of pathogenic mechanisms proved that the weaker but necessary invasions into peripheral blood mononuclear cells (PBMCs) of rHBF-vacH, and subsequently persistent viral replications in PBMCs and multiple organs, together contributed to its 66.7% mortality. In addition, despite significantly higher titers than the parent viruses, rHBF-vacH would not be a suitable candidate for a live vaccine, with great invasion and infection potentials of PBMCs from 16 tested kinds of host species. Altogether, sustained and severe viral replication in PBMCs with moderate immunosuppression was first proven to be an alternative novel pathogenic mechanism for CDV, which might help us to understand possible reasons for CDV fatal infections among domestic dogs and the highly susceptible wild species during natural transmission. IMPORTANCE Despite widespread vaccine campaigns for domestic dogs, CDV remained an important infectious disease in vaccinated carnivores and wild species. In recent years, the regionally ongoing epidemic CDV isolates have emphasized conservation threats to, and potentially disastrous epidemics in, endangered species worldwide. However, little is known about how to deal with the CDV variants constantly regional epidemic. In this study, we employed a recombinant CDV rHBF-vacH with a vaccine H gene replacement in a CDV wild-type HBF-1 context to attenuate the epidemic CDV variant to design a new vaccine candidate. Interestingly, rHBF-vacH was only partially attenuated by alleviating the degree of viral immunosuppression, and still caused 66.7% lethality in ferrets by weaker but necessary invasions into PBMCs, and subsequently persistent and severe viral replications in PBMCs. Significantly higher virus titers of rHBF-vacH in vitro might indicate the rapid cell-to-cell spreads in vivo that indirectly contribute to fatal infections of rHBF-vacH in ferrets.


Asunto(s)
Virus del Moquillo Canino , Moquillo , Leucocitos Mononucleares , Replicación Viral , Animales , Perros , Moquillo/inmunología , Moquillo/metabolismo , Moquillo/virología , Virus del Moquillo Canino/genética , Virus del Moquillo Canino/patogenicidad , Hurones , Terapia de Inmunosupresión , Leucocitos Mononucleares/virología
3.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808256

RESUMEN

Histiocytic sarcomas refer to highly aggressive tumors with a poor prognosis that respond poorly to conventional treatment approaches. Oncolytic viruses, which have gained significant traction as a cancer therapy in recent decades, represent a promising option for treating histiocytic sarcomas through their replication and/or by modulating the tumor microenvironment. The live attenuated canine distemper virus (CDV) vaccine strain Onderstepoort represents an attractive candidate for oncolytic viral therapy. In the present study, oncolytic virotherapy with CDV was used to investigate the impact of this virus infection on tumor cell growth through direct oncolytic effects or by virus-mediated modulation of the tumor microenvironment with special emphasis on angiogenesis, expression of selected MMPs and TIMP-1 and tumor-associated macrophages in a murine xenograft model of canine histiocytic sarcoma. Treatment of mice with xenotransplanted canine histiocytic sarcomas using CDV induced overt retardation in tumor progression accompanied by necrosis of neoplastic cells, increased numbers of intratumoral macrophages, reduced angiogenesis and modulation of the expression of MMPs and TIMP-1. The present data suggest that CDV inhibits tumor growth in a multifactorial way, including direct cell lysis and reduction of angiogenesis and modulation of MMPs and their inhibitor TIMP-1, providing further support for the concept of its role in oncolytic therapies.


Asunto(s)
Sarcoma Histiocítico/metabolismo , Neoplasias/metabolismo , Viroterapia Oncolítica/métodos , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Moquillo/metabolismo , Moquillo/virología , Virus del Moquillo Canino/patogenicidad , Enfermedades de los Perros/inmunología , Perros , Femenino , Xenoinjertos , Sarcoma Histiocítico/veterinaria , Sarcoma Histiocítico/virología , Metaloendopeptidasas/metabolismo , Ratones , Ratones SCID , Necrosis/metabolismo , Neoplasias/virología , Neovascularización Patológica/metabolismo , Virus Oncolíticos , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Microambiente Tumoral/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Viruses ; 13(1)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477492

RESUMEN

Canine distemper virus (CDV), a close relative of the human pathogen measles virus (MeV), is an enveloped, negative sense RNA virus that belongs to the genus Morbillivirus and causes severe diseases in dogs and other carnivores. Although the vaccination is available as a preventive measure against the disease, the occasional vaccination failure highlights the importance of therapeutic alternatives such as antivirals against CDV. The morbilliviral cell entry system relies on two interacting envelope glycoproteins: the attachment (H) and fusion (F) proteins. Here, to potentially discover novel entry inhibitors targeting CDV H, F and/or the cognate receptor: signaling lymphocyte activation molecule (SLAM) proteins, we designed a quantitative cell-based fusion assay that matched high-throughput screening (HTS) settings. By screening two libraries of small molecule compounds, we successfully identified two membrane fusion inhibitors (F2736-3056 and F2261-0043). Although both inhibitors exhibited similarities in structure and potency with the small molecule compound 3G (an AS-48 class morbilliviral F-protein inhibitor), F2736-3056 displayed improved efficacy in blocking fusion activity when a 3G-escape variant was employed. Altogether, we present a cell-based fusion assay that can be utilized not only to discover antiviral agents against CDV but also to dissect the mechanism of morbilliviral-mediated cell-binding and cell-to-cell fusion activity.


Asunto(s)
Antivirales/farmacología , Virus del Moquillo Canino/efectos de los fármacos , Virus del Moquillo Canino/fisiología , Moquillo/virología , Evaluación Preclínica de Medicamentos , Internalización del Virus , Animales , Antivirales/química , Sitios de Unión , Células Cultivadas , Chlorocebus aethiops , Moquillo/tratamiento farmacológico , Moquillo/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Interacciones Huésped-Patógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Conformación Proteica , Receptores Virales/metabolismo , Bibliotecas de Moléculas Pequeñas , Células Vero , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo
5.
Arch Virol ; 165(6): 1321-1331, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32253618

RESUMEN

The aim of the study was to determine the expression profiles of GABAA, GABAB, and GAT1 using RT-PCR and the immunoreactivity of GAT1 via immunohistochemical and immunofluorescence assays in CDV-infected brain tissue of dogs. For this purpose, dogs with CDV and dogs without CDV were selected. The mRNA transcript levels of GABAA, GABAB, and GAT1 were significantly downregulated in brain tissue in the CDV-infected group as compared with that in non-CDV-infected brain tissue in the control group (p < 0.01, p < 0.001). In addition, the immunoreactivity of GAT1 in CDV-infected brain tissue was significantly lower than in the uninfected group (p < 0.05). We conclude that one of the main causes of myoclonus in CDV infections may be the blockage of postsynaptic inhibition in neurons or a lack of metabolism of GABA. In addition, a GABA neurotransmission imbalance could play a role in demyelination in CDV infections.


Asunto(s)
Encéfalo/metabolismo , Virus del Moquillo Canino , Moquillo/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/genética , Receptores de GABA-A/genética , Receptores de GABA-B/genética , Animales , Autofagia , Encéfalo/patología , Encéfalo/virología , Moquillo/patología , Perros , Regulación hacia Abajo , Femenino , Masculino , Transcripción Genética
6.
Viruses ; 11(8)2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31430904

RESUMEN

Measles virus (MV) and canine distemper virus (CDV) are highly contagious and deadly, forming part of the morbillivirus genus. The receptor recognition by morbillivirus hemagglutinin (H) is important for determining tissue tropism and host range. Recent reports largely urge caution as regards to the potential expansion of host specificities of morbilliviruses. Nonetheless, the receptor-binding potential in different species of morbillivirus H proteins is largely unknown. Herein, we show that the CDV-H protein binds to the dog signaling lymphocyte activation molecule (SLAM), but not to the human, tamarin, or mouse SLAM. In contrast, MV-H can bind to human, tamarin and dog SLAM, but not to that of mice. Notably, MV binding to dog SLAM showed a lower affinity and faster kinetics than that of human SLAM, and MV exhibits a similar entry activity in dog SLAM- and human SLAM-expressing Vero cells. The mutagenesis study using a fusion assay, based on the MV-H-SLAM complex structure, revealed differences in tolerance for the receptor specificity between MV-H and CDV-H. These results provide insights into H-SLAM specificity related to potential host expansion.


Asunto(s)
Virus del Moquillo Canino/metabolismo , Moquillo/metabolismo , Hemaglutininas Virales/metabolismo , Virus del Sarampión/metabolismo , Sarampión/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Animales , Moquillo/genética , Moquillo/virología , Virus del Moquillo Canino/genética , Perros , Hemaglutininas Virales/genética , Humanos , Sarampión/genética , Sarampión/virología , Virus del Sarampión/genética , Ratones , Unión Proteica , Receptores Virales/genética , Receptores Virales/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Especificidad de la Especie
7.
Int J Mol Sci ; 20(13)2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31262031

RESUMEN

(1) Background: Canine distemper virus (CDV)-induced demyelinating leukoencephalitis (CDV-DL) in dogs and Theiler's murine encephalomyelitis (TME) virus (TMEV)-induced demyelinating leukomyelitis (TMEV-DL) are virus-induced demyelinating conditions mimicking Multiple Sclerosis (MS). Reactive oxygen species (ROS) can induce the degradation of lipids and nucleic acids to characteristic metabolites such as oxidized lipids, malondialdehyde, and 8-hydroxyguanosine. The hypothesis of this study is that ROS are key effector molecules in the pathogenesis of myelin membrane breakdown in CDV-DL and TMEV-DL. (2) Methods: ROS metabolites and antioxidative enzymes were assessed using immunofluorescence in cerebellar lesions of naturally CDV-infected dogs and spinal cord tissue of TMEV-infected mice. The transcription of selected genes involved in ROS generation and detoxification was analyzed using gene-expression microarrays in CDV-DL and TMEV-DL. (3) Results: Immunofluorescence revealed increased amounts of oxidized lipids, malondialdehyde, and 8-hydroxyguanosine in CDV-DL while TMEV-infected mice did not reveal marked changes. In contrast, microarray-analysis showed an upregulated gene expression associated with ROS generation in both diseases. (4) Conclusion: In summary, the present study demonstrates a similar upregulation of gene-expression of ROS generation in CDV-DL and TMEV-DL. However, immunofluorescence revealed increased accumulation of ROS metabolites exclusively in CDV-DL. These results suggest differences in the pathogenesis of demyelination in these two animal models.


Asunto(s)
Moquillo/metabolismo , Encefalitis Viral/metabolismo , Vaina de Mielina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Catalasa/metabolismo , Moquillo/patología , Perros , Encefalitis Viral/patología , Encefalitis Viral/virología , Femenino , Masculino , Ratones , Vaina de Mielina/patología , Médula Espinal/metabolismo , Médula Espinal/patología , Superóxido Dismutasa/metabolismo , Theilovirus/patogenicidad
8.
Sci Rep ; 9(1): 1714, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30737428

RESUMEN

Prompt identification of the causative pathogen of an infectious disease is essential for the choice of treatment or preventive measures. In this perspective, nucleic acids purified from the brain tissue of a dog succumbed after severe neurological signs were processed with the MinION (Oxford Nanopore Technologies, Oxford UK) sequencing technology. Canine distemper virus (CDV) sequence reads were detected. Subsequently, a specific molecular test and immunohistochemistry were used to confirm the presence of CDV RNA and antigen, respectively, in tissues. This study supports the use of the NGS in veterinary clinical practice with potential advantages in terms of rapidity and broad-range of molecular diagnosis.


Asunto(s)
Virus del Moquillo Canino/aislamiento & purificación , Moquillo/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Animales , Antígenos Virales/metabolismo , Encéfalo/virología , Cadáver , Chlorocebus aethiops , Moquillo/metabolismo , Virus del Moquillo Canino/genética , Virus del Moquillo Canino/inmunología , Perros , Genoma Viral , Masculino , Análisis de Secuencia de ARN , Células Vero , Secuenciación Completa del Genoma
9.
J Virol ; 92(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29793948

RESUMEN

Upon infection, morbilliviruses such as measles virus, rinderpest virus, and canine distemper virus (CDV) initially target immune cells via the signaling lymphocyte activation molecule (SLAM) before spreading to respiratory epithelia through the adherens junction protein nectin-4. However, the roles of these receptors in transmission from infected to naive hosts have not yet been formally tested. To experimentally addressing this question, we established a model of CDV contact transmission between ferrets. We show here that transmission of wild-type CDV sometimes precedes the onset of clinical disease. In contrast, transmission was not observed in most animals infected with SLAM- or nectin-4-blind CDVs, even though all animals infected with the nectin-4-blind virus developed sustained viremia. There was an unexpected case of transmission of a nectin-4-blind virus, possibly due to biting. Another unprecedented event was transient viremia in an infection with a SLAM-blind virus. We identified three compensatory mutations within or near the SLAM-binding surface of the attachment protein. A recombinant CDV expressing the mutated attachment protein regained the ability to infect ferret lymphocytes in vitro, but its replication was not as efficient as that of wild-type CDV. Ferrets infected with this virus developed transient viremia and fever, but there was no transmission to naive contacts. Our study supports the importance of epithelial cell infection and of sequential CDV H protein interactions first with SLAM and then nectin-4 receptors for transmission to naive hosts. It also highlights the in vivo selection pressure on the H protein interactions with SLAM.IMPORTANCE Morbilliviruses such as measles virus, rinderpest virus, and canine distemper virus (CDV) are highly contagious. Despite extensive knowledge of how morbilliviruses interact with their receptors, little is known about how those interactions influence viral transmission to naive hosts. In a ferret model of CDV contact transmission, we showed that sequential use of the signaling lymphocytic activation molecule (SLAM) and nectin-4 receptors is essential for transmission. In one animal infected with a SLAM-blind CDV, we documented mild viremia due to the acquisition of three compensatory mutations within or near the SLAM-binding surface. The interaction, however, was not sufficient to cause disease or sustain transmission to naive contacts. This work confirms the sequential roles of SLAM and nectin-4 in morbillivirus transmission and highlights the selective pressure directed toward productive interactions with SLAM.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Virus del Moquillo Canino/patogenicidad , Moquillo/transmisión , Hemaglutininas Virales/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Viremia/transmisión , Animales , Sitios de Unión , Chlorocebus aethiops , Modelos Animales de Enfermedad , Moquillo/genética , Moquillo/metabolismo , Virus del Moquillo Canino/genética , Femenino , Hurones , Hemaglutininas Virales/química , Hemaglutininas Virales/genética , Activación de Linfocitos , Linfocitos/virología , Masculino , Modelos Moleculares , Mutación , Unión Proteica , Células Vero , Viremia/genética , Viremia/metabolismo , Internalización del Virus
10.
Sci Rep ; 7(1): 349, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28336928

RESUMEN

Canine distemper virus (CDV) exhibits lymphotropic, epitheliotropic, and neurotropic nature, and causes a severe systemic infection in susceptible animals. Initially, signaling lymphocyte activation molecule (SLAM) expressed on immune cells has been identified as a crucial cellular receptor for CDV. Currently, nectin-4 expressed in epithelia has been shown to be another receptor for CDV. Our previous study demonstrated that neurons express nectin-4 and are infected with CDV. In this study, we investigated the distribution pattern of nectin-4 in various cell types in the canine central nervous system and showed its relation to CDV infection to further clarify the pathology of disease. Histopathological, immunohistochemical and immunofluorescent analyses were done using formalin-fixed paraffin-embedded tissues of CDV-infected dogs. Dual staining of nectin-4 and CDV antigen or nectin-4 and brain cell markers was performed. Nectin-4 was detected in ependymal cells, epithelia of choroid plexus, meningeal cells, neurons, granular cells, and Purkinje's cells. CDV antigens were detected in these nectin-4-positive cells, further suggesting contribution of nectin-4 for the CDV neurovirulence. On the other hand, astrocytes did not express nectin-4, although they were frequently infected with CDV. Since astrocytes are negative for SLAM expression, they must express an unidentified CDV receptor, which also contributes to CDV neurovirulence.


Asunto(s)
Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/virología , Virus del Moquillo Canino/metabolismo , Moquillo/metabolismo , Moquillo/patología , Nectinas/análisis , Receptores Virales/análisis , Animales , Astrocitos/metabolismo , Astrocitos/virología , Sistema Nervioso Central/patología , Perros , Neuronas/virología , Especificidad de Órganos
11.
PLoS One ; 11(12): e0167517, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27911942

RESUMEN

Histiocytic sarcomas represent rare but fatal neoplasms in humans. Based on the absence of a commercially available human histiocytic sarcoma cell line the frequently affected dog displays a suitable translational model. Canine distemper virus, closely related to measles virus, is a highly promising candidate for oncolytic virotherapy. Therapeutic failures in patients are mostly associated with tumour invasion and metastasis often induced by misdirected cytoskeletal protein activities. Thus, the impact of persistent canine distemper virus infection on the cytoskeletal protein cortactin, which is frequently overexpressed in human cancers with poor prognosis, was investigated in vitro in a canine histiocytic sarcoma cell line (DH82). Though phagocytic activity, proliferation and apoptotic rate were unaltered, a significantly reduced migration activity compared to controls (6 hours and 1 day after seeding) accompanied by a decreased number of cortactin mRNA transcripts (1 day) was detected. Furthermore, persistently canine distemper virus infected DH82 cells showed a predominant diffuse intracytoplasmic cortactin distribution at 6 hours and 1 day compared to controls with a prominent membranous expression pattern (p ≤ 0.05). Summarized, persistent canine distemper virus infection induces reduced tumour cell migration associated with an altered intracellular cortactin distribution, indicating cytoskeletal changes as one of the major pathways of virus-associated inhibition of tumour spread.


Asunto(s)
Movimiento Celular , Cortactina/biosíntesis , Virus del Moquillo Canino/metabolismo , Moquillo/metabolismo , Regulación Neoplásica de la Expresión Génica , Sarcoma Histiocítico/metabolismo , Proteínas de Neoplasias/biosíntesis , Animales , Línea Celular Tumoral , Moquillo/patología , Perros , Sarcoma Histiocítico/patología , Sarcoma Histiocítico/virología , Humanos
12.
J Virol ; 90(20): 9285-92, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27489268

RESUMEN

UNLABELLED: In the current study, we generated recombinant chimeric canine distemper viruses (CDVs) by replacing the hemagglutinin (H) and/or phosphoprotein (P) gene in an avirulent strain expressing enhanced green fluorescent protein (EGFP) with those of a mouse-adapted neurovirulent strain. An in vitro experimental infection indicated that the chimeric CDVs possessing the H gene derived from the mouse-adapted CDV acquired infectivity for neural cells. These cells lack the CDV receptors that have been identified to date (SLAM and nectin-4), indicating that the H protein defines infectivity in various cell lines. The recombinant viruses were administered intracerebrally to 1-week-old mice. Fatal neurological signs of disease were observed only with a recombinant CDV that possessed both the H and P genes of the mouse-adapted strain, similar to the parental mouse-adapted strain, suggesting that both genes are important to drive virulence of CDV in mice. Using this recombinant CDV, we traced the intracerebral propagation of CDV by detecting EGFP. Widespread infection was observed in the cerebral hemispheres and brainstems of the infected mice. In addition, EGFP fluorescence in the brain slices demonstrated a sequential infectious progression in the central nervous system: CDV primarily infected the neuroependymal cells lining the ventricular wall and the neurons of the hippocampus and cortex adjacent to the ventricle, and it then progressed to an extensive infection of the brain surface, followed by the parenchyma and cortex. In the hippocampal formation, CDV spread in a unidirectional retrograde pattern along neuronal processes in the hippocampal formation from the CA1 region to the CA3 region and the dentate gyrus. Our mouse model demonstrated that the main target cells of CDV are neurons in the acute phase and that the virus spreads via neuronal transmission pathways in the hippocampal formation. IMPORTANCE: CDV is the etiological agent of distemper in dogs and other carnivores, and in many respects, the pathogenesis of CDV infection in animals resembles that of measles virus infection in humans. We successfully generated a recombinant CDV containing the H and P genes from a mouse-adapted neurovirulent strain and expressing EGFP. The recombinant CDV exhibited severe neurovirulence with high mortality, comparable to the parental mouse-adapted strain. The mouse-infectious model could become a useful tool for analyzing CDV infection of the central nervous system subsequent to passing through the blood-cerebrospinal fluid barrier and infectious progression in the target cells in acute disease.


Asunto(s)
Líquido Cefalorraquídeo/virología , Virus del Moquillo Canino/patogenicidad , Moquillo/virología , Hipocampo/virología , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/virología , Línea Celular , Línea Celular Tumoral , Líquido Cefalorraquídeo/metabolismo , Chlorocebus aethiops , Moquillo/metabolismo , Perros , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Hipocampo/metabolismo , Humanos , Sarampión/metabolismo , Sarampión/virología , Virus del Sarampión/patogenicidad , Ratones , Neuronas/metabolismo , Neuronas/virología , Receptores Virales/metabolismo , Células Vero
13.
PLoS One ; 11(7): e0159752, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27441688

RESUMEN

In demyelinating diseases, changes in the quality and quantity of the extracellular matrix (ECM) may contribute to demyelination and failure of myelin repair and axonal sprouting, especially in chronic lesions. To characterize changes in the ECM in canine distemper demyelinating leukoencephalitis (DL), histochemical and immunohistochemical investigations of formalin-fixed paraffin-embedded cerebella using azan, picrosirius red and Gomori`s silver stain as well as antibodies directed against aggrecan, type I and IV collagen, fibronectin, laminin and phosphacan showed alterations of the ECM in CDV-infected dogs. A significantly increased amount of aggrecan was detected in early and late white matter lesions. In addition, the positive signal for collagens I and IV as well as fibronectin was significantly increased in late lesions. Conversely, the expression of phosphacan was significantly decreased in early and more pronounced in late lesions compared to controls. Furthermore, a set of genes involved in ECM was extracted from a publically available microarray data set and was analyzed for differential gene expression. Gene expression of ECM molecules, their biosynthesis pathways, and pro-fibrotic factors was mildly up-regulated whereas expression of matrix remodeling enzymes was up-regulated to a relatively higher extent. Summarized, the observed findings indicate that changes in the quality and content of ECM molecules represent important, mainly post-transcriptional features in advanced canine distemper lesions. Considering the insufficiency of morphological regeneration in chronic distemper lesions, the accumulated ECM seems to play a crucial role upon regenerative processes and may explain the relatively small regenerative potential in late stages of this disease.


Asunto(s)
Enfermedades Desmielinizantes/veterinaria , Virus del Moquillo Canino , Moquillo/metabolismo , Moquillo/virología , Matriz Extracelular/metabolismo , Animales , Estudios de Casos y Controles , Progresión de la Enfermedad , Moquillo/genética , Moquillo/patología , Perros , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Inmunohistoquímica
14.
Brain Behav ; 6(7): e00472, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27247850

RESUMEN

INTRODUCTION: CDV-DL (Canine distemper virus-induced demyelinating leukoencephalitis) represents a spontaneously occurring animal model for demyelinating disorders. Axonopathy represents a key pathomechanism in this disease; however, its underlying pathogenesis has not been addressed in detail so far. This study aimed at the characterization of axonal cytoskeletal, transport, and potential regenerative changes with a parallel focus upon Schwann cell remyelination. METHODS: Immunohistochemistry of canine cerebellar tissue as well as a comparative analysis of genes from an independent microarray study were performed. RESULTS: Increased axonal immunoreactivity for nonphosphorylated neurofilament was followed by loss of cytoskeletal and motor proteins. Interestingly, a subset of genes encoding for neurofilament subunits and motor proteins was up-regulated in the chronic stage compared to dogs with subacute CDV-DL. However, immunohistochemically, hints for axonal regeneration were restricted to up-regulated axonal positivity of hypoxia-inducible factor 1 alpha, while growth-associated protein 43, erythropoietin and its receptor were not or even down-regulated. Periaxin-positive structures, indicative of Schwann cell remyelination, were only detected within few advanced lesions. CONCLUSIONS: The present findings demonstrate a complex sequence of axonal cytoskeletal breakdown mechanisms. Moreover, though sparse, this is the first report of Schwann cell remyelination in CDV-DL. Facilitation of these very limited endogenous regenerative responses represents an important topic for future research.


Asunto(s)
Transporte Axonal/fisiología , Moquillo/genética , Moquillo/metabolismo , Leucoencefalopatías/veterinaria , Animales , Estudios de Casos y Controles , Moquillo/patología , Virus del Moquillo Canino/aislamiento & purificación , Perros , Femenino , Inmunohistoquímica , Leucoencefalopatías/genética , Leucoencefalopatías/metabolismo , Leucoencefalopatías/virología , Masculino , Fibras Nerviosas Mielínicas/patología , Regeneración Nerviosa/fisiología , Estudios Retrospectivos , Células de Schwann/patología , Transcriptoma
15.
Biotech Histochem ; 90(8): 601-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26179070

RESUMEN

We investigated the expression of microtubule-associated protein 1 light chain 3 (LC3) protein in the cerebellums of dogs infected with canine distemper virus (CDV) using immunohistochemistry to detect autophagy. The cerebellums of 20 dogs infected with CDV were used. Specimens showing demyelination of white matter were considered to have an acute infection, whereas specimens showing signs of severe perivascular cuffing and demyelination of white matter were classified as having chronic CDV. Cerebellar sections were immunostained with CDV and LC3 antibodies. The cytoplasm of Purkinje cells, granular layer cells, motor neurons in large cerebellar ganglia and some neurons in white matter were positive for the LC3 antibody in both the control and CDV-infected dogs. In the infected cerebellums, however, white matter was immunostained more intensely, particularly the neurons and gemistocytic astrocytes in the demyelinated areas, compared to controls. Autophagy also was demonstrated in CDV-positive cells using double immunofluorescence staining. Our findings indicate that increased autophagy in the cerebellum of dogs naturally infected with CDV may play a role in transferring the virus from cell to cell.


Asunto(s)
Autofagia , Cerebelo/metabolismo , Cerebelo/patología , Virus del Moquillo Canino , Moquillo/metabolismo , Moquillo/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Biomarcadores/metabolismo , Perros , Distribución Tisular
16.
J Virol ; 89(10): 5724-33, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25787275

RESUMEN

UNLABELLED: Measles and canine distemper viruses (MeV and CDV, respectively) first replicate in lymphatic and epithelial tissues by using SLAM and nectin-4 as entry receptors, respectively. The viruses may also invade the brain to establish persistent infections, triggering fatal complications, such as subacute sclerosis pan-encephalitis (SSPE) in MeV infection or chronic, multiple sclerosis-like, multifocal demyelinating lesions in the case of CDV infection. In both diseases, persistence is mediated by viral nucleocapsids that do not require packaging into particles for infectivity but are directly transmitted from cell to cell (neurons in SSPE or astrocytes in distemper encephalitis), presumably by relying on restricted microfusion events. Indeed, although morphological evidence of fusion remained undetectable, viral fusion machineries and, thus, a putative cellular receptor, were shown to contribute to persistent infections. Here, we first showed that nectin-4-dependent cell-cell fusion in Vero cells, triggered by a demyelinating CDV strain, remained extremely limited, thereby supporting a potential role of nectin-4 in mediating persistent infections in astrocytes. However, nectin-4 could not be detected in either primary cultured astrocytes or the white matter of tissue sections. In addition, a bioengineered "nectin-4-blind" recombinant CDV retained full cell-to-cell transmission efficacy in primary astrocytes. Combined with our previous report demonstrating the absence of SLAM expression in astrocytes, these findings are suggestive for the existence of a hitherto unrecognized third CDV receptor expressed by glial cells that contributes to the induction of noncytolytic cell-to-cell viral transmission in astrocytes. IMPORTANCE: While persistent measles virus (MeV) infection induces SSPE in humans, persistent canine distemper virus (CDV) infection causes chronic progressive or relapsing demyelination in carnivores. Common to both central nervous system (CNS) infections is that persistence is based on noncytolytic cell-to-cell spread, which, in the case of CDV, was demonstrated to rely on functional membrane fusion machinery complexes. This inferred a mechanism where nucleocapsids are transmitted through macroscopically invisible microfusion events between infected and target cells. Here, we provide evidence that CDV induces such microfusions in a SLAM- and nectin-4-independent manner, thereby strongly suggesting the existence of a third receptor expressed in glial cells (referred to as GliaR). We propose that GliaR governs intercellular transfer of nucleocapsids and hence contributes to viral persistence in the brain and ensuing demyelinating lesions.


Asunto(s)
Antígenos CD/metabolismo , Astrocitos/virología , Moléculas de Adhesión Celular/metabolismo , Virus del Moquillo Canino/fisiología , Virus del Moquillo Canino/patogenicidad , Receptores de Superficie Celular/metabolismo , Sustitución de Aminoácidos , Animales , Antígenos CD/genética , Encéfalo/metabolismo , Encéfalo/virología , Moléculas de Adhesión Celular/genética , Células Cultivadas , Chlorocebus aethiops , Moquillo/metabolismo , Moquillo/transmisión , Moquillo/virología , Virus del Moquillo Canino/genética , Perros , Genes Virales , Interacciones Huésped-Patógeno , Humanos , Virus del Sarampión/patogenicidad , Nectinas , Receptores de Superficie Celular/genética , Receptores Virales/genética , Receptores Virales/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Panencefalitis Esclerosante Subaguda/etiología , Células Vero , Proteínas Virales/genética , Proteínas Virales/metabolismo , Internalización del Virus
17.
Vet Immunol Immunopathol ; 161(3-4): 170-83, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25190509

RESUMEN

Canine distemper virus (CDV) is a highly contagious viral pathogen. Domesticated dogs are the main reservoir of CDV. Although phocine distemper virus was responsible for the recent epidemics in seals in the North and Baltic Seas, most devastating epidemics in seals were also caused by CDV. To further study the pathogenesis of CDV infection in seals, it was the aim of the present study to investigate the mechanisms of CDV induced immunosuppression in seals by analyzing the gene transcription of different pro- and anti-inflammatory cytokines in Concanavalin A (Con A) stimulated and non-stimulated phocine lymphocytes in vitro following infection with the CDV Onderstepoort (CDV-OND) strain. Phocine lymphocytes were isolated via density gradient centrifugation. The addition of 1 µg/ml Con A and virus was either performed simultaneously or lymphocytes were stimulated for 48 h with Con A prior to virus infection. Gene transcription of interleukin (IL)-6, IL-12 and tumor necrosis factor alpha (TNFα) as pro-inflammatory cytokines and IL-4, IL-10 and transforming growth factor beta (TGFß) as anti-inflammatory cytokines were determined by using RT-qPCR. CDV-OND infection caused an initial increase of pro-inflammatory phocine cytokines mRNA 24h after infection, followed by a decrease in gene transcription after 48 h. A strong increase in the transcription of IL-4 and TGFß was detected after 48 h when virus and mitogen were added simultaneously. An increased IL-10 production occurred only when stimulation and infection were performed simultaneously. Furthermore, an inhibition of IL-12 on IL-4 was noticed in phocine lymphocytes which were stimulated for 48 h prior to infection. In summary, the duration of the stimulation or the lymphocytes seem to have an important influence on the cytokine transcription and indicates that the outcome of CDV infection is dependent on various factors that might sensitize lymphocytes or make them more susceptible or reactive to CDV infection.


Asunto(s)
Citocinas/metabolismo , Virus del Moquillo Canino , Moquillo/inmunología , Regulación de la Expresión Génica/inmunología , Linfocitos/metabolismo , Phocidae , Animales , Citocinas/genética , Moquillo/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
PLoS One ; 9(8): e106281, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25171206

RESUMEN

Signalling lymphocyte activation molecule (SLAM) has been identified as an immune cell receptor for the morbilliviruses, measles (MV), canine distemper (CDV), rinderpest and peste des petits ruminants (PPRV) viruses, while CD46 is a receptor for vaccine strains of MV. More recently poliovirus like receptor 4 (PVRL4), also known as nectin 4, has been identified as a receptor for MV, CDV and PPRV on the basolateral surface of polarised epithelial cells. PVRL4 is also up-regulated by MV in human brain endothelial cells. Utilisation of PVRL4 as a receptor by phocine distemper virus (PDV) remains to be demonstrated as well as confirmation of use of SLAM. We have observed that unlike wild type (wt) MV or wtCDV, wtPDV strains replicate in African green monkey kidney Vero cells without prior adaptation, suggesting the use of a further receptor. We therefore examined candidate molecules, glycosaminoglycans (GAG) and the tetraspan proteins, integrin ß and the membrane bound form of heparin binding epithelial growth factor (proHB-EGF),for receptor usage by wtPDV in Vero cells. We show that wtPDV replicates in Chinese hamster ovary (CHO) cells expressing SLAM and PVRL4. Similar wtPDV titres are produced in Vero and VeroSLAM cells but more limited fusion occurs in the latter. Infection of Vero cells was not inhibited by anti-CD46 antibody. Removal/disruption of GAG decreased fusion but not the titre of virus. Treatment with anti-integrin ß antibody increased rather than decreased infection of Vero cells by wtPDV. However, infection was inhibited by antibody to HB-EGF and the virus replicated in CHO-proHB-EGF cells, indicating use of this molecule as a receptor. Common use of SLAM and PVRL4 by morbilliviruses increases the possibility of cross-species infection. Lack of a requirement for wtPDV adaptation to Vero cells raises the possibility of usage of proHB-EGF as a receptor in vivo but requires further investigation.


Asunto(s)
Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Virus del Moquillo Focino/fisiología , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Virales/metabolismo , Internalización del Virus , Animales , Antígenos CD/genética , Células CHO , Moléculas de Adhesión Celular/genética , Chlorocebus aethiops , Cricetinae , Cricetulus , Moquillo/genética , Moquillo/metabolismo , Perros , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Humanos , Receptores de Superficie Celular/genética , Receptores Virales/genética , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Células Vero
19.
Viruses ; 6(7): 2571-601, 2014 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-24992230

RESUMEN

Canine distemper virus (CDV) is a member of the genus morbillivirus, which is known to cause a variety of disorders in dogs including demyelinating leukoencephalitis (CDV-DL). In recent years, substantial progress in understanding the pathogenetic mechanisms of CDV-DL has been made. In vivo and in vitro investigations provided new insights into its pathogenesis with special emphasis on axon-myelin-glia interaction, potential endogenous mechanisms of regeneration, and astroglial plasticity. CDV-DL is characterized by lesions with a variable degree of demyelination and mononuclear inflammation accompanied by a dysregulated orchestration of cytokines as well as matrix metalloproteinases and their inhibitors. Despite decades of research, several new aspects of the neuropathogenesis of CDV-DL have been described only recently. Early axonal damage seems to represent an initial and progressive lesion in CDV-DL, which interestingly precedes demyelination. Axonopathy may, thus, function as a potential trigger for subsequent disturbed axon-myelin-glia interactions. In particular, the detection of early axonal damage suggests that demyelination is at least in part a secondary event in CDV-DL, thus challenging the dogma of CDV as a purely primary demyelinating disease. Another unexpected finding refers to the appearance of p75 neurotrophin (NTR)-positive bipolar cells during CDV-DL. As p75NTR is a prototype marker for immature Schwann cells, this finding suggests that Schwann cell remyelination might represent a so far underestimated endogenous mechanism of regeneration, though this hypothesis still remains to be proven. Although it is well known that astrocytes represent the major target of CDV infection in CDV-DL, the detection of infected vimentin-positive astrocytes in chronic lesions indicates a crucial role of this cell population in nervous distemper. While glial fibrillary acidic protein represents the characteristic intermediate filament of mature astrocytes, expression of vimentin is generally restricted to immature or reactive astrocytes. Thus, vimentin-positive astrocytes might constitute an important cell population for CDV persistence and spread, as well as lesion progression. In vitro models, such as dissociated glial cell cultures, as well as organotypic brain slice cultures have contributed to a better insight into mechanisms of infection and certain morphological and molecular aspects of CDV-DL. Summarized, recent in vivo and in vitro studies revealed remarkable new aspects of nervous distemper. These new perceptions substantially improved our understanding of the pathogenesis of CDV-DL and might represent new starting points to develop novel treatment strategies.


Asunto(s)
Axones/patología , Virus del Moquillo Canino/patogenicidad , Moquillo/patología , Leucoencefalopatías/patología , Leucoencefalopatías/veterinaria , Animales , Astrocitos/metabolismo , Astrocitos/patología , Astrocitos/virología , Axones/metabolismo , Axones/virología , Moquillo/genética , Moquillo/metabolismo , Moquillo/virología , Virus del Moquillo Canino/fisiología , Perros , Regulación de la Expresión Génica , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Leucoencefalopatías/genética , Leucoencefalopatías/virología , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Vaina de Mielina/virología , Neuroglía/metabolismo , Neuroglía/patología , Neuroglía/virología , Receptor de Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/metabolismo , Vimentina/genética , Vimentina/metabolismo
20.
Glia ; 62(10): 1559-81, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24889922

RESUMEN

Schwann cells (SCs), olfactory ensheathing cells (OECs), and central nervous system Schwann cell-like glia (SG) represent a group of nerve growth factor receptor p75 (NGFR)-positive cells, originating from different tissues. Because of their pro-regenerative capacities, these cells are subjects in experimental transplantation-based therapies of spinal cord trauma. The objective of this study was to compare the transcriptomes of uninfected and canine distemper virus-infected OECs, SCs, SG and fibroblasts (FBs) derived from four beagle dogs and cultured under identical conditions in vitro, employing canine genome 2.0 arrays (Affymetrix). Here, we observed a complete lack of transcriptional differerences between OECs and SG, a high similarity of OECs/SG to SCs, and a marked difference of SCs and OECs/SG towards FBs. Differentially expressed genes possibly involved in the maintenance of cell type-specific identity included an up-regulation of HOXD8 and HOXC4 in SCs, and an up-regulation of CNTNAP2 and EFEMP1 in OECs/SG. We identified cell type-specific biomarkers employing supervised clustering with a K-nearest-neighbors algorithm and correlation-based feature selection. Thereby AQP1 and SCRG1 were predicted to be the most powerful biomarkers distinguishing SCs from OECs/SG. Immunofluorescence confirmed a higher expression of SCRG1 in OECs and SG, and conversely a higher expression of AQP1 in SCs in vitro. Furthermore, canine and murine olfactory nerves showed SCRG1-positive, AQP1-negative OECs and/or axons, whereas sciatic nerves displayed multifocal non-myelinated, AQP1-positive, SCRG1-negative cells. Conclusively, OECs/SG are suggested to be a uniform cell type differing only in the tissue of origin and highly related to SCs.


Asunto(s)
Neuroglía/metabolismo , Nervio Olfatorio/metabolismo , Células de Schwann/metabolismo , Animales , Axones/metabolismo , Axones/ultraestructura , Axones/virología , Biomarcadores/metabolismo , Células Cultivadas , Moquillo/metabolismo , Virus del Moquillo Canino , Perros , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Fibroblastos/virología , Perfilación de la Expresión Génica , Inmunohistoquímica , Ratones , Análisis por Micromatrices , Microscopía Electrónica , Neuroglía/ultraestructura , Neuroglía/virología , Nervio Olfatorio/ultraestructura , Nervio Olfatorio/virología , Células de Schwann/ultraestructura , Células de Schwann/virología , Nervio Ciático/metabolismo , Nervio Ciático/ultraestructura , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...