Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003319

RESUMEN

Non-mycorrhizal but beneficial fungi often mitigate (a)biotic stress-related traits in host plants. The underlying molecular mechanisms are mostly still unknown, as in the interaction between the endophytic growth-promoting soil fungus Mortierella hyalina and Arabidopsis thaliana. Here, abiotic stress in the form of nitrogen (N) deficiency was used to investigate the effects of the fungus on colonized plants. In particular, the hypothesis was investigated that fungal infection could influence N deficiency via an interaction with the high-affinity nitrate transporter NRT2.4, which is induced by N deficiency. For this purpose, Arabidopsis wild-type nrt2.4 knock-out and NRT2.4 reporter lines were grown on media with different nitrate concentrations with or without M. hyalina colonization. We used chemical analysis methods to determine the amino acids and phytohormones. Experimental evidence suggests that the fungus does not modulate NRT2.4 expression under N starvation. Instead, M. hyalina alleviates N starvation in other ways: The fungus supplies nitrogen (15N) to the N-starved plant. The presence of the fungus restores the plants' amino acid homeostasis, which was out of balance due to N deficiency, and causes a strong accumulation of branched-chain amino acids. We conclude that the plant does not need to invest in defense and resources for growth are maintained, which in turn benefits the fungus, suggesting that this interaction should be considered a mutualistic symbiosis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Mortierella , Proteínas de Arabidopsis/genética , Nitrógeno/metabolismo , Mortierella/metabolismo , Nitratos/metabolismo , Aminoácidos/metabolismo , Homeostasis , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Anión/metabolismo , Raíces de Plantas/metabolismo
2.
J Agric Food Chem ; 71(33): 12519-12527, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37561084

RESUMEN

Arachidonic acid (ARA) is an essential fatty acid in human nutrition. Mortierella alpina, a filamentous fungus, has been widely used for the production of ARA. Here, we report a modular engineering approach that systematically eliminates metabolic bottlenecks in the multigene elongase/desaturase pathway and has led to significant improvements of the ARA titer. The elongase/desaturase pathway in Mortierella alpina was recast into two modules, namely, push and pull modules, based on its function in the ARA synthesis. Combinatorial optimization of these two modules has balanced the production and consumption of intermediate metabolites. A 2A peptide-based facile assembly platform that can achieve multigene expression as a polycistron was first established. The platform was then applied to express the push and pull modules in Mortierella alpina. In the shake-flask fermentation, the lipid and ARA contents of the engineered strain MA5 were increased by 1.2-fold and 77.6%, respectively, resulting in about fivefold increase of the ARA yield. The final ARA titer reached 4.4 g L-1 in shake-flask fermentation. The modular engineering strategies presented in this study demonstrate a generalized approach for the engineering of cell factories in the production of valuable metabolites.


Asunto(s)
Ingeniería Metabólica , Mortierella , Humanos , Ácido Araquidónico/metabolismo , Elongasas de Ácidos Grasos/metabolismo , Mortierella/genética , Mortierella/metabolismo , Ácido Graso Desaturasas/metabolismo
3.
ACS Synth Biol ; 12(6): 1750-1760, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37166287

RESUMEN

Increasing carbon flux toward target metabolites is important in improving microbial productivity and economic value. To improve the efficiency of lipid production in Mortierella alpina, we knocked down genes for trehalose-6-phosphate synthetase (Matps) and phosphoenolpyruvate carboxykinase (Mapepck) in the major pathways for saccharide synthesis. The knockdown of Matps reduced trehalose content by an average of 31.87%, while the knockdown of Mapepck reduced the total saccharide content by 28.6%, and both recombinant strains showed more than 20% increased lipid yield. Trehalose plays a vital role in stress resistance, but a higher polyunsaturated fatty acid-rich lipid content was found to partly compensate for the loss of trehalose after Matps knockdown. As compared with Matps knockdown, the knockdown of Mapepck gave better lipid production by bringing forward the time to maximum lipid yield by three days in a scale-up test. The arachidonic acid yield after the Mapepck knockdown reached 1.23 g/L, which was 39.9% higher than that of the original strain. The present research provided an efficient strategy for redistributing carbon flux among different metabolites and therefore promoted microbial lipid yield in a shorter fermentation period.


Asunto(s)
Mortierella , Trehalosa , Trehalosa/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácido Araquidónico/metabolismo , Mortierella/genética , Mortierella/metabolismo
4.
Microbiol Spectr ; 10(1): e0130021, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35138146

RESUMEN

The present study was designed to explore the possibility of improving lipid production in oleaginous filamentous fungus Mortierella alpina based on an autophagy regulation strategy. According to multiomics information, vacuolate-centered macroautophagy was identified as the main type of autophagy in M. alpina under nitrogen-limited conditions. Mutation of autophagy-related gene MAatg8 led to impaired fatty acid synthesis, while overexpression of both MAatg8 and phosphatidylserine decarboxylases (MApsd2) showed promoting effects on fatty acid synthesis. MAatg8 overexpression strain with external supply of ethanolamine significantly increased arachidonic acid (ARA)-rich triacylglycerol (TAG) and biomass synthesis in M. alpina, and the final fatty acid content increased by approximately 110% compared with that in the wild-type strain. Metabolomics and lipidomics analyses revealed that cell autophagy enhanced the recycling of preformed carbon, nitrogen, and lipid in mycelium, and the released carbon skeleton and energy were contributed to the accumulation of TAG in M. alpina. This study suggests that regulation of autophagy-related MAatg8-phosphatidylethanolamine (MAatg8-PE) conjugation system could be a promising strategy for attaining higher lipid production and biomass growth. The mechanism of autophagy in regulating nitrogen limitation-induced lipid accumulation elucidated in this study provides a reference for development of autophagy-based strategies for improving nutrient use efficiency and high value-added lipid production by oleaginous microorganism. IMPORTANCE Studies have indicated that functional oil accumulation occurs in oleaginous microorganisms under nitrogen limitation. However, until now, large-scale application of nitrogen-deficiency strategies was limited by low biomass. Therefore, the identification of the critical nodes of nitrogen deficiency-induced lipid accumulation is urgently needed to further guide functional oil production. The significance of our research is in uncovering the function of cell autophagy in the ARA-rich TAG accumulation of oleaginous fungus M. alpina and demonstrating the feasibility of improving lipid production based on an autophagy regulation strategy at the molecular and omics levels. Our study proves that regulation of cell autophagy through the MAatg8-PE conjugation system-related gene overexpression or exogenous supply of ethanolamine would be an efficient strategy to increase and maintain biomass productivity when high TAG content is obtained under nitrogen deficiency, which could be useful for the development of new strategies that will achieve more biomass and maximal lipid productivity.


Asunto(s)
Ácido Araquidónico/metabolismo , Autofagia , Mortierella/citología , Mortierella/metabolismo , Triglicéridos/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Metabolismo de los Lípidos , Mortierella/genética
5.
Biotechnol Adv ; 54: 107794, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34245810

RESUMEN

The oleaginous fungus Mortierella alpina has distinct advantages in long-chain PUFAs production, and it is the only source for dietary arachidonic acid (ARA) certificated by FDA and European Commission. This review provides an overall introduction to M. alpina, including its major research methods, key factors governing lipid biosynthesis, metabolic engineering and omics studies. Currently, the research interests in M. alpina focus on improving lipid yield and fatty acid desaturation degree by enhancing fatty acid precursors and the reducing power NADPH, and genetic manipulation on PUFAs synthetic pathways is carried to optimise fatty acid composition. Besides, multi-omics studies have been applied to elucidate the global regulatory mechanism of lipogenesis in M. alpina. However, research challenges towards achieving a lipid cell factory lie in strain breeding and cost control due to the coenocytic mycelium, long fermentation period and insufficient conversion rate from carbon to lipid. We also proposed future research goals based on a multilevel regulating strategy: obtaining ideal chassis by directional evolution and high-throughput screening; rewiring central carbon metabolism and inhibiting competitive pathways by multi-gene manipulation system to enhance carbon to lipid conversion rate; optimisation of protein function based on post-translational modification; application of dynamic fermentation strategies suitable for different fermentation phases. By reviewing the comprehensive research progress of this oleaginous fungus, we aim to further comprehend the fungal lipid metabolism and provide reference information and guidelines for the exploration of microbial oils from the perspectives of fundamental research to industrial application.


Asunto(s)
Metabolismo de los Lípidos , Mortierella , Ácido Araquidónico/metabolismo , Lipogénesis/genética , Mortierella/genética , Mortierella/metabolismo
6.
Fungal Genet Biol ; 152: 103572, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34015432

RESUMEN

Branched-chain amino acids (BCAAs) play an important role in lipid metabolism by serving as signal molecules as well as a potential acetyl-CoA source. Our previous study found that in the oleaginous fungus Mucor circinelloides, beta-isopropylmalate dehydrogenase (IPMDH), an important enzyme participating in the key BCAA leucine biosynthesis, was differentially expressed during lipid accumulation phase and has a positive role on lipogenesis. To further analyze its effects on lipogenesis in another oleaginous fungus Mortierella alpina, the IPMDH-encoding gene MaLeuB was homologously expressed. It was found that the total fatty acid content in the recombinant strain was increased by 20.2% compared with the control strain, which correlated with a 4-fold increase in the MaLeuB transcriptional level. Intracellular metabolites analysis revealed significant changes in amino acid biosynthesis and metabolism, tricarboxylic acid cycle and butanoate metabolism; specifically, leucine and isoleucine levels were upregulated by 6.4-fold and 2.2-fold, respectively. Our genetic engineering approach and metabolomics study demonstrated that MaLeuB is involved in fatty acid metabolism in M. alpina by affecting BCAAs metabolism, and this newly discovered role of IPMDH provides a potential bypass route to increase lipogenesis in oleaginous fungi.


Asunto(s)
3-Isopropilmalato Deshidrogenasa/metabolismo , Metabolismo de los Lípidos/fisiología , Lipogénesis/fisiología , Mortierella/enzimología , Mortierella/metabolismo , 3-Isopropilmalato Deshidrogenasa/genética , Acetilcoenzima A , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Ácidos Grasos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Cetoácidos/metabolismo , Metabolismo de los Lípidos/genética , Lipogénesis/genética , Metabolómica , Mortierella/genética , Mucor/metabolismo , Alineación de Secuencia
7.
World J Microbiol Biotechnol ; 37(1): 4, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33392832

RESUMEN

Arachidonic acid (ARA, 5, 8, 11, 14-cis-eicosatetraenoic acid) is a relevant ω-6 polyunsaturated fatty acid, which plays essential roles in human immune, cardiovascular, and nervous systems. It is widely used in medicine, cosmetics, nutrition, and other fields. Traditionally, ARA is obtained from animal tissues. However, due to the limitation and unsustainability of existing resources, microorganisms are a potential alternative resource for ARA production. In this regard, major efforts have been made on algae and filamentous fungi, among which Mortierella alpina is the most effective strain for industrial ARA production. In this review, we summarized the recent progress in enhancing M. alpina production by optimization of culture medium and fermentation process and genetic modification. In addition, we provided perspectives in synthetic biology methods and technologies to further increase ARA production.


Asunto(s)
Ácido Araquidónico/biosíntesis , Ácido Araquidónico/genética , Fermentación , Edición Génica , Mortierella/genética , Mortierella/metabolismo , Reactores Biológicos , Vías Biosintéticas/genética , Medios de Cultivo , Humanos , Ingeniería Metabólica/métodos , Oxígeno/metabolismo
8.
J Appl Microbiol ; 130(5): 1592-1601, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32975836

RESUMEN

AIMS: This research aimed to determine the potential use of wastes from the potato chips industry as a carbon source to develop an economical culture medium for the production of biomass, lipids and arachidonic acid (ARA) by Mortierella alpina. METHODS AND RESULTS: A synthetic culture medium was optimized using a Plackett-Burman and central composite rotatable design, and used as a base to evaluate and characterize the potential use of wastes from the potato chips industry as carbon sources for the production of biomass, lipids and ARA by M. alpina. The waste was selected among other solid and liquid hydrolysed residues/by-products, and local low-cost alternatives for nitrogen sources were also evaluated. After 6 days of fermentation, the biomass concentration reached 20 g l-1 with 40% of total lipids, and a 35% ARA content in the lipids fraction. Savings in production were calculated using a sensitivity analysis for the alternative culture medium in different scenarios. CONCLUSIONS: This study showed a 7% savings in culture media expenses in the production of ARA-enriched biomass of M. alpina, compared to the conventional synthetic culture medium, when waste from the potato chips industry was used as an alternative source of carbon and macro/microelements, supplemented with a low-cost yeast extract alternative. SIGNIFICANCE AND IMPACT OF THE STUDY: The demonstration of the use of potato chips wastes as a low-cost carbon source for the biomass, lipids and ARA production, suggesting an eco-friendly alternative for the use of agri-food wastes for valuable metabolites production.


Asunto(s)
Ácido Araquidónico/biosíntesis , Mortierella/metabolismo , Eliminación de Residuos/métodos , Solanum tuberosum , Ácido Araquidónico/economía , Biomasa , Carbono/metabolismo , Medios de Cultivo/economía , Medios de Cultivo/metabolismo , Fermentación , Lípidos/biosíntesis , Lípidos/economía , Mortierella/crecimiento & desarrollo , Nitrógeno/metabolismo , Solanum tuberosum/química
9.
Biotechnol Prog ; 37(3): e3113, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33342062

RESUMEN

Polyunsaturated fatty acids (PUFAs) are essential in healthy diets and their production is extremely important. Natural sources of PUFAs includes animal and aquatic products such as marine fish oil, however there are several limitations such as the decrease of fish stocks throughout the world. Thus, microbial oils are a preferable source of PUFAs. Herein, it was studied the production of PUFAs by Mortierella alpina under solid-state fermentation (SSF) using polyurethane foam as inert substrate and synthetic medium or lignocellulosic hydrolysate as source of C, N, and other nutrients. Several parameters of fermentation conditions were evaluated as carbon source, inductors addition, ratio C/N and temperature. The highest amount of total PUFAs per mass of solid (535.41 ± 24.12 mg/g), linoleic acid (129.66 ± 5.84 mg/g), and α-linoleic acid (401.93 ± 18.10 mg/g) were produced when the culture medium contained 20 g/L glucose, 10% (w/v) linseed oil, the C/N ratio was adjusted to 25 and the incubation temperature was 25°C for 3 days decreasing to 16°C on the remaining 4 days of fermentation. In addition, a hemicellulosic hydrolysate can be used as low-cost substrate to produce PUFAs, although the production was lower than the achieved with synthetic medium. SSF showed an interesting technology for microbial PUFAs production.


Asunto(s)
Ácidos Grasos Insaturados , Fermentación/fisiología , Mortierella/metabolismo , Poliuretanos/química , Ácidos Grasos Insaturados/análisis , Ácidos Grasos Insaturados/metabolismo , Lignina/química , Lignina/metabolismo
10.
J Agric Food Chem ; 68(50): 14907-14916, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33274638

RESUMEN

The combined action of biosorption and biodegradation can achieve a remarkable reduction of organic pollutants. In this study, Pseudomonas sp. SDR4 and Mortierella alpina JDR7 were selected as the representative microorganisms to investigate adsorption and degradation of polycyclic aromatic hydrocarbons (PAHs) in soil using immobilization technology and the subsequent change of the microbial community structure. The results showed that the adsorption capacity of immobilized carriers was much higher than that of dead microorganisms and that the addition of dead microorganisms did not affect the adsorption characteristics of immobilized carriers. The chemical reaction was the major factor controlling the adsorption rate of PAHs in sterilized soil (CK), nonsterilized soil (CK-1), and soil amended with dead body immobilized JDR7 and SDR4 mixed bacteria (MB-D). The growth and metabolism of Pseudomonas sp. SDR4 and M. alpina JDR7 are the main reason for enhanced PAH degradation in the soil amended with living body immobilized JDR7, SDR4 mixed bacteria (MB).


Asunto(s)
Bacterias/metabolismo , Mortierella/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Pseudomonas/metabolismo , Microbiología del Suelo , Suelo/química , Adsorción , Bacterias/clasificación , Bacterias/genética , Biodegradación Ambiental , Microbiota , Mortierella/crecimiento & desarrollo , Hidrocarburos Policíclicos Aromáticos/química , Pseudomonas/crecimiento & desarrollo
11.
J Agric Food Chem ; 68(39): 10787-10798, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32880458

RESUMEN

Sensing nutrient levels and coordinating metabolism are requisites for all living organisms. In eukaryotes, heterotrimeric adenosine monophosphate-activated protein kinase/sucrose nonfermenting 1 (SNF1) is an energy monitor that primarily functions by regulating cell metabolism with its γ-subunit being responsible for energy sensing. Because of its strong lipogenesis capacity and dependence on nutrient availability, Mortierella alpina is an ideal model to investigate the SNF1 role. Knockdown of the M. alpina SNF1-γ-subunit (MaSnf4) abolished the energy preservation mode. In a low glucose medium (15 g/L), the fatty acid content in the MaSnf4-knockdown strain was similar to that in a high glucose medium (50 g/L), comprising 16 ± 1.17% of the dry cell weight after 96 h of culture (1.59 g/L), together with 1.41 ± 0.13 and 4.15 ± 0.19 fold increased acetyl-CoA carboxylase 1 and ATP-citrate lyase enzymatic activities, respectively. Metabolite analysis confirmed that knocking down MaSnf4 enhanced amino acid recycling and repressed the tricarboxylic acid cycle. In this case, more carbon skeleton acetyl-CoA and reductive nicotinamide adenine dinucleotide phosphate were rerouted into the fatty acid synthesis pathway. These findings provide new insight into the correlation between energy preservation and MaSnf4-regulated lipogenesis, which may enhance further development of cost-effective strategies to enhance lipid productivity in M. alpina.


Asunto(s)
Proteínas Fúngicas/genética , Glucosa/metabolismo , Mortierella/metabolismo , Factores de Transcripción/genética , Medios de Cultivo/metabolismo , Metabolismo Energético , Proteínas Fúngicas/metabolismo , Silenciador del Gen , Lipogénesis , Mortierella/genética , Factores de Transcripción/metabolismo
12.
Carbohydr Polym ; 247: 116716, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32829843

RESUMEN

The production of a chitin-like exopolysaccharide (EPS) was optimized through experimental design methods, evaluating the influence of urea, phosphate, and glucose. Under optimized conditions, up to 1.51 g/L was produced and its physicochemical characteristics were evaluated by chromatography, NMR, and FTIR spectroscopy, and rheological techniques. The results showed a homogeneous EPS (Mw 4.9 × 105 g mol-1) composed of chitin, linear polymer of ß-(1→4)-linked N-acetyl-d-glucosamine residues. The acetylation degree as determined by 13C CP-MAS NMR spectroscopy was over 90 %. The EPS biological activities, such as antioxidant effect and antitumor properties, were evaluated. To the best of our knowledge, this is the first study on the production of a new alternative of extracellular chitin-like polysaccharide with promising bioactive properties from the filamentous fungus M. alpina.


Asunto(s)
Antineoplásicos/farmacología , Antioxidantes/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Quitina/química , Fermentación , Mortierella/metabolismo , Polisacáridos/farmacología , Antineoplásicos/química , Antioxidantes/química , Neoplasias de la Mama/patología , Femenino , Glucosa/metabolismo , Humanos , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Células Tumorales Cultivadas
13.
Bioprocess Biosyst Eng ; 43(11): 1943-1949, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32474747

RESUMEN

The objective of this work was to concentrate, through a membrane separation process, the fatty acids from oil/solvent mixture. The oil was obtained by ultrasound-assisted extraction from freeze-dried cells of Mortierella isabellina. The concentration of the fatty acids was investigated using flat-sheet polymer membranes of ultrafiltration and nanofiltration. The effects of temperature and pressure were evaluated by the retention of the fatty acids. Oil retentions between 45.23 and 58.20% to ultrafiltration membrane and 43.50 and 56.00% to nanofiltration membrane were observed. The best condition for the ultrafiltration membrane was 4 bar and 40 °C and for nanofiltration membrane was 12 bar and 50 °C. The oil contains a high concentration of oleic acid and palmitic acid that is a desirable property for the biodiesel production. The results showed the applicability of this technology in the solvent recovery step whereas the oil recovered contains a high concentration of fatty acids.


Asunto(s)
Biocombustibles , Biotecnología/métodos , Ácidos Grasos/aislamiento & purificación , Microbiología Industrial/métodos , Mortierella/metabolismo , Diseño de Equipo , Ácidos Grasos/análisis , Ácidos Grasos/química , Fermentación , Liofilización , Membranas Artificiales , Ácido Oléico , Polímeros/química , Presión , Temperatura , Factores de Tiempo , Ultrafiltración/métodos , Ultrasonido
14.
Lett Appl Microbiol ; 71(2): 164-170, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32306412

RESUMEN

Mortierella alpina has gained remarkable interest due to its high capacity for arachidonic acid (AA) production and potential for eicosapentaenoic acid (EPA) production recently. However, the development of genetically modified strains is limited by lacking inducible promoters, which can express genes conditionally. Here the inducible promoter of cellobiohydrolase (Pcbh1) was utilized in M. alpina and the gene oPpFADS17 encoding ω-3 fatty acid desaturase was selected as the reporter gene. Under conditions with inducer, expression of this gene enables M. alpina to produce EPA at room temperature, while no EPA was detected without inducer. We then optimized the induction conditions. The results demonstrated that the optimal induction condition was broth medium with 1% avicel as the inducer and 5% glucose as extra carbon source and the transcription level of the reporter gene was increasing with the extension of induction time. Successful application of Pcbh1 in M. alpina would significantly contribute to the steerable system to construct engineered strains for industrial production of microbial oils. SIGNIFICANCE AND IMPACT OF THE STUDY: Mortierella alpina is a commercial strain for production of polyunsaturated fatty acids. Genetic engineering strategies based on M. alpina require the development of inducible promoters to regulate gene expression conditionally at specific times. However, available inducible promoters for M. alpina were limited. In this study, we explore the feasibility of inducible cbh1 promoter in M. alpina and determined the optimal induction condition, which accelerates the genetic manipulation of M. alpina. Besides, high transcriptional levels of the reporter gene under the control of Pcbh1 showed that Pcbh1 is a strong inducible promoter for M. alpina.


Asunto(s)
Ácido Graso Desaturasas/genética , Ingeniería Genética/métodos , Mortierella/genética , Mortierella/metabolismo , Regiones Promotoras Genéticas/genética , Ácido Araquidónico/biosíntesis , Celulosa 1,4-beta-Celobiosidasa/genética , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/biosíntesis , Ácido Eicosapentaenoico/metabolismo , Ácidos Grasos Insaturados/metabolismo , Expresión Génica , Genes Reporteros/genética , Mortierella/crecimiento & desarrollo
15.
Microbiology (Reading) ; 166(7): 617-623, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32209171

RESUMEN

The oleaginous fungus Mortierella alpina can synthesize a variety of polyunsaturated fatty acids, which are used extensively in industry for the production of arachidonic acid (AA). NADPH is the limiting factor and critical reducing agent in lipid biosynthesis. In the folate cycle, methylenetetrahydrofolate dehydrogenase (MTHFDL) catalyzes the conversion of methylene tetrahydrofolate into 10-formyl-tetrahydrofolate with the reduction of NADP+ to NADPH. MTHFDL RNAi was used to investigate the role of the folate cycle in lipogenesis. Gene knockdown decreased the transcript levels of MTHFDL by about 50 % and attenuated cell fatty acid synthesis. The observation of decreased NADPH levels and downregulated NADPH-producing genes in response to MTHFDL RNAi indicates a novel aspect of the NADPH regulatory mechanism. Thus, our study demonstrates that MTHFDL plays key role in the mediation of NADPH in lipogenesis in M. alpina.


Asunto(s)
Ácido Fólico/metabolismo , Lipogénesis , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Mortierella/genética , Mortierella/metabolismo , ADN de Hongos , Regulación Fúngica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Metabolismo de los Lípidos , Redes y Vías Metabólicas/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , NADP/metabolismo , Oxidación-Reducción
16.
Gene ; 741: 144559, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32169630

RESUMEN

The fungi in order Mortierellales are attractive producers for long-chain polyunsaturated fatty acids (PUFAs). Here, the genome sequencing and assembly of a novel strain of Mortierella sp. BCC40632 were done, yielding 65 contigs spanning of 49,964,116 total bases with predicted 12,149 protein-coding genes. We focused on the acetyl-CoA in relevant to its derived metabolic pathways for biosynthesis of macromolecules with biological functions, including PUFAs, eicosanoids and carotenoids. By comparative genome analysis between Mortierellales and Mucorales, the signature genetic characteristics of the arachidonic acid-producing strains, including Δ5-desaturase and GLELO-like elongase, were also identified in the strain BCC40632. Remarkably, this fungal strain contained only n-6 pathway of PUFA biosynthesis due to the absence of Δ15-desaturase or ω3-desaturase gene in contrast to other Mortierella species. Four putative enzyme sequences in the eicosanoid biosynthetic pathways were identified in the strain BCC40632 and others Mortierellale fungi, but were not detected in the Mucorales. Another unique metabolic trait of the Mortierellales was the inability in carotenoid synthesis as a result of the lack of phytoene synthase and phytoene desaturase genes. The findings provide a perspective in strain optimization for production of tailored-made products with industrial applications.


Asunto(s)
Acetilcoenzima A/biosíntesis , Ácido Araquidónico/genética , Genoma Fúngico/genética , Mortierella/metabolismo , Acetilcoenzima A/genética , Ácido Araquidónico/biosíntesis , Vías Biosintéticas/genética , Ácido Graso Desaturasas/genética , Elongasas de Ácidos Grasos/genética , Ácidos Grasos Insaturados/genética , Ácidos Grasos Insaturados/metabolismo , Mortierella/genética , Mucorales/genética , Mucorales/metabolismo , Ácido gammalinolénico/genética , Ácido gammalinolénico/metabolismo
17.
Enzyme Microb Technol ; 131: 109381, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31615662

RESUMEN

Phytohormones are chemical messengers that have a positive effect at low concentrations on the biosynthesis of high-value compounds. Therefore, the effects of phytohormones on lipid and arachidonic acid (ARA) biosynthesis in Mortierella alpina were investigated in this study. At proper concentrations, the stimulatory effects of phytohormones on lipid production were determined to be as follows: 6-benzyl adenine (BA) > indole-3-acetic acid (IAA) > furfuryl adenine (KT) > gibberellin (GA) > indole-3-butyric acid (IBA) > abscisic acid (ABA). The results show that in the presence of 15 mg L-1 BA, the best positive effect was obtained, in which the lipid and ARA yields of M. alpina increased by 20.34% and 29.17%, respectively. Surprisingly, there was no synergy between the addition of two cytokinins (KT and BA), while adding cytokinins (KT or BA) and auxin (IAA) inhibited the growth of M. alpina and the ARA yield decreased by approximately 64%. Additional studies, such as those involving enzyme activity detection and quantitative real time polymerase chain reaction were carried out to check the fatty acid and lipid biosynthesis when the phytohormones were present. The activity of the main NADPH-supplying enzyme, 6-phosphoglucose dehydrogenase (G6PDH), increased by 19.52%. Moreover, the transcription levels of fatty acid synthase (FAS), Δ9-desaturase, and diacylglycerolacyltransferase (DGAT) increased by 9.3, 9.6 and 7.7 times, respectively, when only one type of phytohormone was present, indicating the enhancement of fatty acid and lipid biosynthesis in M. alpina. This study demonstrates the potential application of phytohormones for improving ARA yields of M. alpina.


Asunto(s)
Ácido Araquidónico/biosíntesis , Vías Biosintéticas/efectos de los fármacos , Mortierella/efectos de los fármacos , Mortierella/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos
18.
J Agric Food Chem ; 67(39): 10984-10993, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31525294

RESUMEN

The objective of the present study was to reveal the effects of four types of nitrogen sources (soymeal, yeast extract, KNO3, and ammonium tartrate) on the lipid metabolism of the oleaginous fungus Mortierella alpina using untargeted lipidomics, targeted fatty acid, and reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis. Our results showed clear differences in the contents and compositions of lipids between four types of nitrogen sources. Soymeal and ammonium tartrate supplementation favored the accumulation of triglycerides with arachidonic acid (ARA) and C16-18 fatty acids, respectively. These results were further validated by our targeted fatty acid analysis. RT-qPCR analysis of related genes in M. alpina between the four nitrogen source conditions found that soymeal supplementation dramatically increased the expression of GPAT, ELOVL, and Δ12/Δ6 desaturase. Our findings provided new insights into the regulation of lipid biosynthesis in M. alpina and potential avenues for genetic manipulation and highlighted the importance of an optimal nitrogen source for ARA-rich oil production.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Lípidos/biosíntesis , Lípidos/química , Espectrometría de Masas/métodos , Mortierella/metabolismo , Nitrógeno/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/biosíntesis , Ácidos Grasos/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mortierella/química , Mortierella/enzimología , Mortierella/genética
19.
J Agric Food Chem ; 67(34): 9551-9559, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31379157

RESUMEN

In oleaginous micro-organisms, nitrogen limitation activates adenosine monophosphate deaminase (AMPD) and promotes lipogenesis via the inhibition of isocitrate dehydrogenase. We found that the overexpression of homologous AMPD in Mortierella alpina favored lipid synthesis over cell growth. Total fatty acid content in the recombinant strain was 15.0-34.3% higher than that in the control, even though their biomass was similar. During the early fermentation stage, the intracellular AMP level reduced by 40-60%, together with a 1.9-2.7-fold increase in citrate content compared with the control, therefore provided more precursors for fatty acid synthesis. Moreover, the decreased AMP level resulted in metabolic reprogramming, reflected by the blocked TCA cycle and reduction of amino acids, distributing more carbon to lipid synthesis pathways. By coupling the energy balance with lipogenesis, this study provides new insights into cell metabolism under nitrogen-limited conditions and targets the regulation of fatty acid accumulation in oleaginous micro-organisms.


Asunto(s)
AMP Desaminasa/metabolismo , Ácidos Grasos/metabolismo , Proteínas Fúngicas/metabolismo , Mortierella/enzimología , AMP Desaminasa/genética , Adenosina Monofosfato/metabolismo , Aminoácidos/metabolismo , Proteínas Fúngicas/genética , Metabolismo de los Lípidos , Mortierella/genética , Mortierella/crecimiento & desarrollo , Mortierella/metabolismo
20.
Elife ; 82019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31307571

RESUMEN

Mutualistic interactions between free-living algae and fungi are widespread in nature and are hypothesized to have facilitated the evolution of land plants and lichens. In all known algal-fungal mutualisms, including lichens, algal cells remain external to fungal cells. Here, we report on an algal-fungal interaction in which Nannochloropsis oceanica algal cells become internalized within the hyphae of the fungus Mortierella elongata. This apparent symbiosis begins with close physical contact and nutrient exchange, including carbon and nitrogen transfer between fungal and algal cells as demonstrated by isotope tracer experiments. This mutualism appears to be stable, as both partners remain physiologically active over months of co-cultivation, leading to the eventual internalization of photosynthetic algal cells, which persist to function, grow and divide within fungal hyphae. Nannochloropsis and Mortierella are biotechnologically important species for lipids and biofuel production, with available genomes and molecular tool kits. Based on the current observations, they provide unique opportunities for studying fungal-algal mutualisms including mechanisms leading to endosymbiosis.


Asunto(s)
Endocitosis , Mortierella/metabolismo , Micelio/metabolismo , Fotosíntesis , Estramenopilos/metabolismo , Simbiosis , Biocombustibles , Metabolismo de los Lípidos , Mortierella/crecimiento & desarrollo , Micelio/crecimiento & desarrollo , Estramenopilos/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...