Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 463
Filtrar
1.
Nat Commun ; 15(1): 3900, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724552

RESUMEN

By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.


Asunto(s)
Asma , Proteínas Ligadas a GPI , Interleucina-13 , Lectinas , Mucina 5AC , Moco , Niño , Humanos , Asma/genética , Asma/metabolismo , Citocinas , Células Epiteliales/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Lectinas/genética , Lectinas/metabolismo , Mucina 5AC/genética , Mucina 5AC/metabolismo , Moco/metabolismo , Mucosa Nasal/metabolismo , Polimorfismo Genético , Mucosa Respiratoria/metabolismo
2.
J Pharmacol Sci ; 155(2): 21-28, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677782

RESUMEN

Goblet cell hyperplasia and increased mucus production are features of airway diseases, including asthma, and excess airway mucus often worsens these conditions. Even steroids are not uniformly effective in mucus production in severe asthma, and new therapeutic options are needed. Seihaito is a Japanese traditional medicine that is used clinically as an antitussive and expectorant. In the present study, we examined the effect of Seihaito on goblet cell differentiation and mucus production. In in vitro studies, using air-liquid interface culture of guinea-pig tracheal epithelial cells, Seihaito inhibited IL-13-induced proliferation of goblet cells and MUC5AC, a major component of mucus production. Seihaito suppressed goblet cell-specific gene expression, without changing ciliary cell-specific genes, suggesting that it inhibits goblet cell differentiation. In addition, Seihaito suppressed MUC5AC expression in cells transfected with SPDEF, a transcription factor activated by IL-13. Furthermore, Seihaito attenuated in vivo goblet cell proliferation and MUC5AC mRNA expression in IL-13-treated mouse lungs. Collectively, these findings demonstrated that Seihaito has an inhibitory effect on goblet cell differentiation and mucus production, which is at least partly due to the inhibition of SPDEF.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Caliciformes , Interleucina-13 , Medicina Kampo , Metaplasia , Mucina 5AC , Moco , Animales , Células Caliciformes/efectos de los fármacos , Células Caliciformes/patología , Células Caliciformes/metabolismo , Interleucina-13/metabolismo , Mucina 5AC/genética , Mucina 5AC/metabolismo , Moco/metabolismo , Diferenciación Celular/efectos de los fármacos , Cobayas , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Células Cultivadas , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Masculino , Expresión Génica/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Ratones , Tráquea/citología , Tráquea/efectos de los fármacos , Tráquea/patología , Tráquea/metabolismo
3.
Sci Rep ; 14(1): 1799, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245585

RESUMEN

Mucin overproduction is a common feature of chronic airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), and exacerbates their underlying respiratory condition. Surfactant protein D (SP-D) protects against airway diseases through modulation of immune reactions, but whether it also exerts direct effects on airway epithelial cells has remained unclear. Therefore, we sought to investigate the inhibitory role of SP-D on mucin production in airway epithelial cells. We prepared air-liquid interface (ALI) cultures of human primary bronchial epithelial cells (HBECs), which recapitulated a well-differentiated human airway epithelium. Benzo(a)pyrene (BaP), a key toxicant in cigarette smoke, induced mucin 5AC (MUC5AC) production in ALI-cultured HBECs, airway secretory cell lines, and airway epithelia of mice. Then, the protective effects of SP-D against the BaP-induced mucin overproduction were examined. BaP increased MUC5AC production in ALI cultures of HBECs, and this effect was attenuated by SP-D. SP-D also suppressed the BaP-induced phosphorylation of extracellular signal-regulated kinase (ERK) and MUC5AC expression in NCI-H292 goblet-like cells, but not in NCI-H441 club-like cells. Signal regulatory protein α (SIRPα) was found to be expressed in HBECs and NCI-H292 cells but absent in NCI-H441 cells. In NCI-H292 cells, SP-D activated SH2 domain-containing tyrosine phosphatase-1 (SHP-1), downstream of SIRPα, and knockdown of SIRPα abolished the suppressive effects of SP-D on BaP-induced ERK phosphorylation and MUC5AC production. Consistent with these in vitro findings, intratracheal instillation of SP-D prevented the BaP-induced phosphorylation of ERK and Muc5ac expression in airway epithelial cells in a mouse model. SP-D acts directly on airway epithelial cells to inhibit mucin secretion through ligation of SIRPα and SHP-1-mediated dephosphorylation of ERK. Targeting of SIRPα is therefore a potential new therapeutic approach to suppression of mucin hypersecretion in chronic airway diseases such as COPD and asthma.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Animales , Humanos , Ratones , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Caliciformes/metabolismo , Mucina 5AC/genética , Mucinas , Proteína D Asociada a Surfactante Pulmonar
4.
Am J Respir Crit Care Med ; 209(4): 374-389, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38016030

RESUMEN

Rationale: Non-cystic fibrosis bronchiectasis (NCFB) may originate in bronchiolar regions of the lung. Accordingly, there is a need to characterize the morphology and molecular characteristics of NCFB bronchioles. Objectives: Test the hypothesis that NCFB exhibits a major component of bronchiolar disease manifest by mucus plugging and ectasia. Methods: Morphologic criteria and region-specific epithelial gene expression, measured histologically and by RNA in situ hybridization and immunohistochemistry, identified proximal and distal bronchioles in excised NCFB lungs. RNA in situ hybridization and immunohistochemistry assessed bronchiolar mucus accumulation and mucin gene expression. CRISPR-Cas9-mediated IL-1R1 knockout in human bronchial epithelial cultures tested IL-1α and IL-1ß contributions to mucin production. Spatial transcriptional profiling characterized NCFB distal bronchiolar gene expression. Measurements and Main Results: Bronchiolar perimeters and lumen areas per section area were increased in proximal, but not distal, bronchioles in NCFB versus control lungs, suggesting proximal bronchiolectasis. In NCFB, mucus plugging was observed in ectatic proximal bronchioles and associated nonectatic distal bronchioles in sections with disease. MUC5AC and MUC5B mucins were upregulated in NCFB proximal bronchioles, whereas MUC5B was selectively upregulated in distal bronchioles. Bronchiolar mucus plugs were populated by IL-1ß-expressing macrophages. NCFB sterile sputum supernatants induced human bronchial epithelial MUC5B and MUC5AC expression that was >80% blocked by IL-1R1 ablation. Spatial transcriptional profiling identified upregulation of genes associated with secretory cells, hypoxia, interleukin pathways, and IL-1ß-producing macrophages in mucus plugs and downregulation of epithelial ciliogenesis genes. Conclusions: NCFB exhibits distinctive proximal and distal bronchiolar disease. Both bronchiolar regions exhibit bronchiolar secretory cell features and mucus plugging but differ in mucin gene regulation and ectasia.


Asunto(s)
Bronquiectasia , Fibrosis Quística , Humanos , Bronquiolos , Dilatación Patológica , Bronquiectasia/genética , Mucinas/metabolismo , Interleucina-1beta , Fibrosis , ARN , Mucina 5AC/genética
5.
Pulm Pharmacol Ther ; 83: 102262, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37879430

RESUMEN

PURPOSE: The expression of MUC5AC, a highly prevalent airway mucin, is regulated by stimulatory factors such as oxidative stress. Ganoderic acid D (GAD) activates mitochondrial deacetylase SIRT3. SIRT3 regulates mitochondrial function through deacetylation of mitochondrial proteins, thereby playing a significant role in alleviating oxidative stress-related diseases. Therefore, this study aimed to investigate the mechanisms and rationale underlying the regulation of MUC5AC expression by GAD. METHODS: Human airway epithelial cells (NCI-H292) were exposed to pyocyanin (PCN) to establish an in vitro cell model of airway mucus hypersecretion. The expression of SIRT3, MUC5AC, and NRF2 pathway proteins in cells was assessed. Cellular mitochondrial morphology and oxidative stress markers were analyzed. C57BL/6 mice were induced with Pseudomonas aeruginosa (PA) to establish an in vivo mouse model of airway mucus hypersecretion. The expression of SIRT3 and MUC5AC in the airways was examined. In addition, the differential expression of target genes in the airway epithelial tissues of patients with chronic obstructive pulmonary disease (COPD) was analyzed using publicly available databases. RESULTS: The results revealed a significant upregulation of MUC5AC expression and a significant downregulation of SIRT3 expression in relation to airway mucus hypersecretion. GAD inhibited the overexpression of MUC5AC in PCN-induced NCI-H292 cells and PA-induced mouse airways by upregulating SIRT3. GAD activated the NRF2/GPX4 pathway and inhibited PCN-induced oxidative stress and mitochondrial morphological changes in NCI-H292 cells. However, ML385 inhibited the regulatory effects of GAD on MUC5AC expression. CONCLUSION: The SIRT3 activator GAD downregulated MUC5AC expression, potentially through activation of the NRF2/GPX4 pathway. Accordingly, GAD may be a potential treatment approach for airway mucus hypersecretions.


Asunto(s)
Mucinas , Sirtuina 3 , Humanos , Ratones , Animales , Mucinas/genética , Mucinas/metabolismo , Sirtuina 3/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ratones Endogámicos C57BL , Moco/metabolismo , Mucina 5AC/genética , Mucina 5AC/metabolismo
6.
Int Arch Allergy Immunol ; 184(9): 893-902, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37552963

RESUMEN

INTRODUCTION: Eotaxin-2 and -3 of the C-C chemokine subfamily function as potent chemoattractant factors for eosinophil recruitment and various immune responses in allergic and inflammatory airway diseases. Mucin 5AC (MUC5AC), a major gel-forming secretory mucin, is overexpressed in airway inflammation. However, the association between mucin secretion and eotaxin-2/3 expression in the upper and lower airway epithelial cells has not been fully elucidated. Therefore, in this study, we investigated the effects of eotaxin-2/3 on MUC5AC expression and its potential signaling mediators. METHODS: We analyzed the effects of eotaxin-2 and -3 on NCI-H292 human airway epithelial cells and primary human nasal epithelial cells (HNEpCs) via reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting. Along with immunoblot analyses with specific inhibitors and small interfering RNA (siRNA), we explored the signaling pathway involved in MUC5AC expression following eotaxin-2/3 treatment. RESULTS: In HCI-H292 cells, eotaxin-2/3 activated the mRNA expression and protein production of MUC5AC. A specific inhibitor of C-C motif chemokine receptor 3 (CCR3), SB328437, suppressed eotaxin-2/3-induced MUC5AC expression at both the mRNA and protein levels. Eotaxin-2/3 induced the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 and p38, whereas pretreatment with a CCR3 inhibitor significantly attenuated this effect. Induction of MUC5AC expression with eotaxin-2/3 was decreased by U0126 and SB203580, specific inhibitors of ERK1/2 and p38 mitogen-activated protein kinase (MAPK), respectively. In addition, cell transfection with ERK1/2 and p38 siRNAs inhibited eotaxin-2/3-induced MUC5AC expression. Moreover, specific inhibitors (SB328437, U0126, and SB203580) attenuated eotaxin-2/3-induced MUC5AC expression in HNEpCs. CONCLUSION: Our results imply that CCR3-mediated ERK1/2 and p38 MAPK are involved in the signal transduction of eotaxin-2/3-induced MUC5AC overexpression.


Asunto(s)
Mucina 5AC , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Línea Celular , Mucina 5AC/genética , Mucina 5AC/metabolismo , Quimiocina CCL24/metabolismo , Quimiocina CCL24/farmacología , Quimiocina CCL26/metabolismo , Transducción de Señal , Células Epiteliales/metabolismo , Receptores de Quimiocina/metabolismo , ARN Mensajero/metabolismo
7.
Environ Toxicol ; 38(9): 2256-2270, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37334859

RESUMEN

PM2.5 can cause airway inflammation and promote the excessive secretion of mucin 5ac (Muc5ac), which can further induce many respiratory diseases. Antisense non-coding RNA in the INK4 locus (ANRIL) might regulate the inflammatory responses mediated by nuclear factor kappa-B (NF-κB) signaling pathway. Beas-2B cells were used to clarify the role of ANRIL in the secretion of Muc5ac induced by PM2.5 . The siRNA was used to silence ANRIL expression. Normal and gene silenced Beas-2B cells were respectively exposed to different doses of PM2.5 for 6, 12, and 24 h. The survival rate of Beas-2B cells was detected by methyl thiazolyl tetrazolium (MTT) assay. Tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and Muc5ac levels were determined by enzyme linked immunosorbent assay (ELISA). The expression levels of NF-κB family genes and ANRIL were detected by real time polymerase chain reaction (PCR). The levels of NF-κB family proteins and NF-κB family phosphorylated proteins were determined using Western blot. Immunofluorescence experiments were performed to observe the nuclear transposition of RelA. PM2.5 exposure increased the levels of Muc5ac, IL-1ß and TNF-α, and ANRIL gene expression (p < .05). With the dose and time of PM2.5 exposure increasing, the protein levels of inhibitory subunit of nuclear factor kappa-B alpha (IκB-α), RelA, and NF-κB1 decreased, the protein levels of phosphorylated RelA (p-RelA) and phosphorylated NF-κB1 (p-NF-κB1) increased, and RelA nuclear translocation increased, which indicated that the NF-κB signaling pathway was activated (p < .05). Silencing ANRIL could decrease the levels of Muc5ac, IL-1ß, TNF-α, decrease NF-κB family genes expression, inhibit the degradation of IκB-α and the activation of NF-κB pathway (p < .05). ANRIL played a regulatory role in the secretion of Muc5ac and the inflammation induced by atmospheric PM2.5 via NF-κB pathway in Beas-2B cells. ANRIL could be a target for prevention and treatment of the respiratory diseases caused by PM2.5 .


Asunto(s)
FN-kappa B , Factor de Necrosis Tumoral alfa , Humanos , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Mucina 5AC/genética , Mucina 5AC/metabolismo , Células Epiteliales/metabolismo , Material Particulado/toxicidad , Inflamación/metabolismo
8.
Respir Med ; 213: 107260, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37146737

RESUMEN

BACKGROUND: MUC5 dysregulation is a hallmark of severe neutrophilic asthmatic patients. This study investigates the expression of MUC5AC and MUC5B at mRNA levels on asthma severity and airway wall thickness in severe neutrophilic asthmatic patients. METHOD: In this case-control clinical trial, twenty-five severe neutrophilic asthmatic patients and ten control subjects were enrolled. Subjects underwent ACT, pulmonary functions tests, and fractional exhaled nitric oxide (FENO). Also, induced sputum has been obtained to assess the expression of MUC5AC and MUC5B by the real-time PCR. In addition, the thickness of the airway wall was assessed by high-resolution computed tomography (HRCT), and bioinformatic analysis was implemented to approve the selection of the appropriate genes and for further investigations. RESULT: A significant difference was observed between the asthmatic and control in MUC5AC and MUC5B mRNA expression. Meanwhile, the expression of MUC5AC increased remarkably by asthma severity; also, it is associated with airway wall thickness (WT) (both P-value <0.05). The expression of MUC5B in asthmatic patients was lower than in control. There is no significant correlation between MUC5B mRNA level and WT and asthma severity. Notably, MUC5AC transcription level was correlated to sputum neutrophil percentage, while MUC5B transcription level had a positive correlation with sputum macrophages and a negative one with sputum neutrophils. CONCLUSION: In severe neutrophilic asthma, airway wall thickness increases with MUC5AC mRNA overexpression, which is probably related to asthma severity and the formation of mucus plugs. However, the expression of MUC5B was decreased, resulting in poor mucociliary clearance in the airways. TRIAL REGISTRATION: IR.IAU.MSHD.REC.1400.124.


Asunto(s)
Asma , Mucina 5AC , Mucina 5B , Humanos , Asma/complicaciones , Pulmón/metabolismo , Mucina 5AC/genética , Mucina 5AC/metabolismo , Mucina 5B/genética , Mucina 5B/metabolismo , Depuración Mucociliar/fisiología , Fenómenos Fisiológicos Respiratorios , Esputo/metabolismo
9.
Int J Mol Sci ; 24(10)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37240002

RESUMEN

Colitis-associated colorectal carcinoma (CAC) occurs in inflammatory bowel disease (IBD) because of the "chronic inflammation-dysplasia-cancer" carcinogenesis pathway characterized by p53 alterations in the early stages. Recently, gastric metaplasia (GM) has been described as the initial event of the serrated colorectal cancer (CRC) process, resulting from chronic stress on the colon mucosa. The aim of the study is to characterize CAC analyzing p53 alterations and microsatellite instability (MSI) to explore their relationship with GM using a series of CRC and the adjacent intestinal mucosa. Immunohistochemistry was performed to assess p53 alterations, MSI and MUC5AC expression as a surrogate for GM. The p53 mut-pattern was found in more than half of the CAC, most frequently stable (MSS) and MUC5AC negative. Only six tumors were unstable (MSI-H), being with p53 wt-pattern (p = 0.010) and MUC5AC positive (p = 0.005). MUC5AC staining was more frequently observed in intestinal mucosa, inflamed or with chronic changes, than in CAC, especially in those with p53 wt-pattern and MSS. Based on our results, we conclude that, as in the serrated pathway of CRC, in IBD GM occurs in inflamed mucosa, persists in those with chronic changes and disappears with the acquisition of p53 mutations.


Asunto(s)
Neoplasias Colorrectales , Enfermedades Inflamatorias del Intestino , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Colorrectales/complicaciones , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Inestabilidad de Microsatélites , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Repeticiones de Microsatélite , Mucina 5AC/genética , Mucina 5AC/metabolismo
10.
J Asthma ; 60(10): 1824-1835, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36946148

RESUMEN

OBJECTIVE: Genome-wide association studies (GWASs) have identified single nucleotide polymorphisms (SNPs) in chr11p15.5 region associated with asthma and idiopathic interstitial pneumonias (IIPs). We sought to identify functional genes for asthma by combining SNPs and mRNA expression in bronchial epithelial cells (BEC) in the Severe Asthma Research Program (SARP). METHODS: Correlation analyses of mRNA expression of six candidate genes (AP2A2, MUC6, MUC2, MUC5AC, MUC5B, and TOLLIP) and asthma phenotypes were performed in the longitudinal cohort (n = 156) with RNAseq in BEC, and replicated in the cross-sectional cohort (n = 155). eQTL (n = 114) and genetic association analysis of asthma severity (426 severe vs. 531 non-severe asthma) were performed, and compared with previously published GWASs of IIPs and asthma. RESULTS: Higher expression of AP2A2 and MUC5AC and lower expression of MUC5B in BEC were correlated with asthma, asthma exacerbations, and T2 biomarkers (P < 0.01). SNPs associated with asthma and IIPs in previous GWASs were eQTL SNPs for MUC5AC, MUC5B, or TOLLIP, however, they were not in strong linkage disequilibrium. The risk alleles for asthma or protective alleles for IIPs were associated with higher expression of MUC5AC and lower expression of MUC5B. rs11603634, rs12788104, and rs28415845 associated with moderate-to-severe asthma or adult onset asthma in previous GWASs were not associated with asthma severity (P > 0.8). CONCLUSIONS: SNPs associated with asthma in chr11p15.5 region are not associated with asthma severity neither with IIPs. Higher expression of MUC5AC and lower expression of MUC5B are risk for asthma but protective for IIPs.


Asunto(s)
Asma , Humanos , Asma/genética , Estudio de Asociación del Genoma Completo , Estudios Transversales , Fenotipo , ARN Mensajero , Mucina 5B/genética , Mucina 5AC/genética
11.
J Infect Dis ; 228(3): 343-352, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-36823694

RESUMEN

BACKGROUND: The purpose of this study was to assess if single nucleotide polymorphisms (SNPs) in lung mucins MUC5B and MUC5AC are associated with Mycobacterium tuberculosis outcomes. METHODS: Independent SNPs in MUC5B and MUC5AC (genotyped by Illumina HumanOmniExpress array) were assessed for associations with tumor necrosis factor (TNF) concentrations (measured by immunoassay) in cerebral spinal fluid (CSF) from tuberculous meningitis (TBM) patients. SNPs associated with CSF TNF concentrations were carried forward for analyses of pulmonary and meningeal tuberculosis susceptibility and TBM mortality. RESULTS: MUC5AC SNP rs28737416 T allele was associated with lower CSF concentrations of TNF (P = 1.8 × 10-8) and IFN-γ (P = 2.3 × 10-6). In an additive genetic model, rs28737416 T/T genotype was associated with higher susceptibility to TBM (odds ratio [OR], 1.24; 95% confidence interval [CI], 1.03-1.49; P = .02), but not pulmonary tuberculosis (OR, 1.11, 95% CI, .98-1.25; P = .10). TBM mortality was higher among participants with the rs28737416 T/T and T/C genotypes (35/119, 30.4%) versus the C/C genotype (11/89, 12.4%; log-rank P = .005) in a Vietnam discovery cohort (n = 210), an independent Vietnam validation cohort (n = 87; 9/87, 19.1% vs 1/20, 2.5%; log-rank P = .02), and an Indonesia validation cohort (n = 468, 127/287, 44.3% vs 65/181, 35.9%; log-rank P = .06). CONCLUSIONS: MUC5AC variants may contribute to immune changes that influence TBM outcomes.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Meníngea , Humanos , Tuberculosis Meníngea/genética , Tuberculosis Meníngea/complicaciones , Citocinas/genética , Genotipo , Factor de Necrosis Tumoral alfa/genética , Polimorfismo de Nucleótido Simple , Mucina 5AC/genética
12.
Sheng Wu Gong Cheng Xue Bao ; 39(1): 248-261, 2023 Jan 25.
Artículo en Chino | MEDLINE | ID: mdl-36738214

RESUMEN

Mycoplasma pneumoniae is the most common pathogen of respiratory tract infection in children and adults. Clinical observation shows that M. pneumoniae infection can cause massive mucus secretion in the respiratory tract, which makes the breathing of patients difficult. Studies have shown that M. pneumoniae infection can cause massive secretion of mucin 5AC (MUC5AC). Adhesin P1 plays an important role in the pathogenesis of M. pneumoniae infection by mediating the adhesion of pathogens to host cells, and the C-terminal residues of P1 (P1-C) are immunogenic. This study investigated the molecular mechanism of Wnt/ß-catenin signaling pathway inhibitor Dickkopf-1 (DKK1) in the secretion of MUC5AC in mouse airway epithelial cells (MAECs) induced by P1-C. Scanning electron microscope and hematoxylin-eosin staining were used to observe the effect of P1-C on mucus secretion of MAECs. Protein chip was used to detect the secretion of cytokines and analyse the enrichment of related signaling pathways induced by P1-C in MAECs. Periodic acid schiff stain (PAS) staining, Tunel staining and Masson staining were used to detect the damage of the lungs of mouse exposed to P1-C. Immunohistochemistry was used to detect the secretion of MUC5AC expression, and Western blotting was used to reveal the molecular mechanism of DKK1-regulated secretion of MUC5AC induced by P1-C protein in MACES. The results showed that P1-C induced the massive secretion of mucus and inflammatory factors in MAECs. During P1-C infection, DKK1 down-regulated janus kinase 2 (JAK2), phosphorylation signaling and transcription activator 1 (p-STAT1) and phosphorylation signaling and activator of transcription 3 (p-STAT3) expression. Overexpression of DKK1 significantly up-regulated the expression of MUC5AC repressor transcription factor fork-head box protein A2 (FOXA2). At the same time, the expression of MUC5AC induced by P1-C was inhibited significantly. It is speculated that DKK1 can effectively reduce the secretion of MUC5AC in MAECs induced by P1-C by inhibiting the JAK/STAT1-STAT3 signaling pathway and up-regulating the expression of FOXA2.


Asunto(s)
Mucina 5AC , Mycoplasma pneumoniae , Animales , Ratones , Células Epiteliales , Pulmón , Mucina 5AC/genética , Mucina 5AC/metabolismo , Mycoplasma pneumoniae/metabolismo , Transducción de Señal
13.
PeerJ ; 11: e14695, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36684665

RESUMEN

Solithromycin is a novel fluoroketolide antibiotic belonging to the class of macrolide antibiotics. Activation of the interleukin (IL)-13 receptor leads to STAT6 activation and subsequent induction of SAM pointed domain containing ETS transcription factor (SPDEF), chloride channel accessory 1 (CLCA1), and anoctamin-1 (ANO1), all of which are associated with the induction of MUC5AC. We examined the effects of solithromycin on mucin production led by IL-13 signaling. Normal human bronchial epithelial cells were grown at the air-liquid interface with IL-13 with/without solithromycin for 14 days. Histochemical analysis was performed using hematoxylin and eosin staining and MUC5AC immunostaining. MUC5AC, SPDEF, CLCA1, and ANO1 mRNA expressions were examined using real-time polymerase chain reaction. Western blot analysis was performed to assess CLCA1 and ANO1 proteins, and phosphorylation of STAT6 and ERK. Solithromycin attenuated IL-13 induction of goblet cell hyperplasia and MUC5AC, CLCA1 and ANO1 mRNA and protein expression induced by IL-13, but had no effect on the phosphorylation of STAT6 and ERK. Our results indicate that solithromycin could attenuate goblet cell hyperplasia and MUC5AC induced by IL-13 through inhibition of CLCA1 and ANO1 mRNA and protein expression. However, much more information is required to clarify the molecular mechanisms underlying the inhibition of CLCA1 and ANO1 by solithromycin.


Asunto(s)
Células Caliciformes , Interleucina-13 , Macrólidos , Humanos , Anoctamina-1/genética , Canales de Cloruro/genética , Células Caliciformes/efectos de los fármacos , Células Caliciformes/patología , Hiperplasia , Interleucina-13/genética , Macrólidos/farmacología , Mucina 5AC/genética , Proteínas de Neoplasias/metabolismo , ARN Mensajero/genética
14.
Exp Lung Res ; 49(1): 12-26, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36656657

RESUMEN

PURPOSE: Chronic obstructive pulmonary disease (COPD) patients experience hypoxemia and lung tissue hypoxia, causing vasoconstriction, and at its most severe Cor pulmonale. However, minimal attention has been given to the effects of hypoxia at the cellular level. We hypothesize that a persistent progenitor cell population undergoes an aberrant differentiation process, influenced by changes in oxygen. METHODS: Distal lung progenitor cells from two emphysematous donors were cultured in 21% and 2% oxygen. Proliferation was determined on collagen-coated plastic and in 3T3-J2 co-culture. Epithelial (E-cadherin, pan-cytokeratin) and progenitor (TP63, cytokeratin 5) marker expressions were examined. Cells were differentiated at air-liquid interface, and ciliated, mucus-producing, and club cell populations identified by immunofluorescence. MUC5AC, MUC5B, CC10, and TP63 expression were determined using qRT-PCR, mucin5AC, and mucin5B protein levels by ELISA, and secreted mucin by periodic acid biotin hydrazide assay. RESULTS: Cells were positive for epithelial and progenitor markers at isolation and passage 5. Passage 5 cells in hypoxia increased the proportion of TP63 by 10% from 51.6 ± 1.2% to 62.6 ± 2.3% (p ≤ 0.01). Proliferative capacity was greater on 3T3J2 cells and in 2% oxygen, supporting the emergence of a proliferation unrestricted population with limited differentiation capacity. Differentiation resulted in ßIV tubulin positive-ciliated cells, mucin5AC, mucin5B, and CC10 positive secretory cells. Epithelial barrier formation was reduced (p ≤ 0.0001) in hypoxia-expanded cells. qRT-PCR showed higher mucin expression in 2% cells, significantly so with MUC5B (p ≤ 0.05). Although overall mucin5AC and mucin5B content was greater in 21% cells, normalization of secreted mucin to DNA showed a trend for increased mucin by low oxygen cells. CONCLUSIONS: These results demonstrate that hypoxia promotes a proliferative phenotype while affecting subsequent progenitor cell differentiation capacity. Furthermore, the retained differentiation potential becomes skewed to a more secretory phenotype, demonstrating that hypoxia may be contributing to disease symptoms and severity in COPD patients.


Asunto(s)
Pulmón , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Pulmón/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Células Epiteliales/metabolismo , Mucinas/genética , Mucinas/metabolismo , Fenotipo , Células Madre , Hipoxia/metabolismo , Oxígeno/metabolismo , Mucina 5AC/genética , Mucina 5AC/metabolismo
15.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36675209

RESUMEN

Flavorings enhance the palatability of e-cigarettes (e-cigs), with menthol remaining a popular choice among e-cig users. Menthol flavor remains one of the only flavors approved by the United States FDA for use in commercially available, pod-based e-cigs. However, the safety of inhaled menthol at the high concentrations used in e-cigs remains unclear. Here, we tested the effects of menthol on parameters of mucociliary clearance (MCC) in air-liquid interface (ALI) cultures of primary airway epithelial cells. ALI cultures treated with basolateral menthol (1 mM) showed a significant decrease in ciliary beat frequency (CBF) and airway surface liquid (ASL) volumes after 24 h. Menthol nebulized onto the surface of ALI cultures similarly reduced CBF and increased mucus concentrations, resulting in decreased rates of mucociliary transport. Nebulized menthol further increased the expression of mucin 5AC (MUC5AC) and mRNA expression of the inflammatory cytokines IL1B and TNFA. Menthol activated TRPM8, and the effects of menthol on MCC and inflammation could be blocked by a specific TRPM8 antagonist. These data provide further evidence that menthol at the concentrations used in e-cigs could cause harm to the airways.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Depuración Mucociliar , Mentol/farmacología , Mucina 5AC/genética , Mucina 5AC/metabolismo , Células Epiteliales/metabolismo
16.
Exp Lung Res ; 49(1): 49-62, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36719141

RESUMEN

Purpose: Endoplasmic reticulum (ER) stress regulates mucus hypersecretion, and may activate downstream factors via TBK1 signaling to induce gene expression. However, it remains unclear whether ER stress promotes airway mucus secretion through the TBK1 pathway. We aimed to investigate the role of the TBK1 pathway in the regulation of MUC5AC expression in a mouse model of house dust mite (HDM)-induced allergic asthma. Materials and Methods: Mice with HDM-induced asthma and human bronchial epithelial BEAS-2B cells were treated with amlexanox, an anti-allergy drug (25 µM), or 4-PBA (10 mM). Tissue and cell samples were collected. Tissue samples were stained with hematoxylin and eosin (H&E) or periodic acid Schiff (PAS) to evaluate pathology. Protein expression was analyzed by western blotting and immunofluorescence. Results: Mice exposed to HDM presented ER stress and hypersecretion of mucus Muc5ac from airway epithelial cells (p < 0.001). Similar results were observed in BEAS-2B cells following exposure to HDM. Both in vivo and in vitro studies revealed that HDM-induced ER stress induced MUC5AC overexpression via TBK1 signaling. Amlexanox and 4-PBA markedly reduced mucus production and weakened the TBK1 signal, which mediates MUC5AC hypersecretion. Conclusion: TBK1 plays a pivotal role in HDM-induced ER stress, leading to overproduction of MUC5AC in the asthmatic airway epithelium. The overproduction of MUC5AC can be significantly decreased by inhibiting TBK1 or ER stress using 4-PBA. These findings highlight potential target-specific therapies for patients with chronic allergic asthma.


Asunto(s)
Asma , Pyroglyphidae , Humanos , Ratones , Animales , Pyroglyphidae/metabolismo , Asma/metabolismo , Estrés del Retículo Endoplásmico , Epitelio/metabolismo , Proteínas Serina-Treonina Quinasas , Mucina 5AC/genética , Mucina 5AC/metabolismo
17.
Clin Exp Pharmacol Physiol ; 50(1): 28-38, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36059120

RESUMEN

The aberrant expression of secretory mucin MUC5AC has been documented during the tumourigenesis and progression of various cancers. However, little is currently known on the function of MUC5AC in lung adenocarcinoma. The present study focused on the tumour-promoting role of MUC5AC and its regulatory mechanisms in lung adenocarcinoma. Firstly, MUC5AC expression was evaluated in NSCLC tissue microarrays by immunohistochemistry. Kaplan-Meier analysis were used to clarify the prognostic value of MUC5AC. Subsequently, small interfering RNA and small hairpin RNA were used to knockdown MUC5AC in lung ADC cell lines to elucidate its role in tumorigenesis and progression of lung adenocarcinoma via in vitro functional assays and xenograft mouse models. Finally, the regulatory mechanisms underlying p53/Sp1/MUC5AC axis were identified through dual-luciferase report. We found that MUC5AC was upregulated in lung ADC tissues and cell lines, especially in KRAS-mutant cases and correlated with poor prognosis. MUC5AC gene silencing resulted in reduced cell proliferation, invasion and migration. Furthermore, knockdown of MUC5AC led to reversion of the epithelial-mesenchymal transition. Additionally, downregulation of MUC5AC reduced tumourigenesis in mouse models. Finally, we found an antagonistic role between Sp1 and p53 in the regulation of MUC5AC gene expression. Our findings suggest that high MUC5AC expression promotes tumourigenesis and progression of lung ADC. Both p53 gene inactivation and Sp1 overexpression in lung ADC may enhance MUC5AC expression, especially in KRAS-mutated cases. Given the paucity of efficient drug-targeted approaches of KRAS-driven lung ADCs, therapies directed at downstream effectors such as MUC5AC could have huge prospects.


Asunto(s)
Adenocarcinoma del Pulmón , Proteína p53 Supresora de Tumor , Humanos , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Adenocarcinoma del Pulmón/genética , Factor de Transcripción Sp1/genética , Mucina 5AC/genética
18.
Sci Adv ; 8(47): eabq5049, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36427316

RESUMEN

Secreted mucus is a frontline defense against respiratory infection, enabling the capture and swift removal of infectious or irritating agents from the lungs. Airway mucus is composed of two mucins: mucin 5B (MUC5B) and 5AC (MUC5AC). Together, they form a hydrogel that can be actively transported by cilia along the airway surface. In chronic respiratory diseases, abnormal expression of these mucins is directly implicated in dysfunctional mucus clearance. Yet, the role of each mucin in supporting normal mucus transport remains unclear. Here, we generate human airway epithelial tissue cultures deficient in either MUC5B or MUC5AC to understand their individual contributions to mucus transport. We find that MUC5B and MUC5AC deficiency results in impaired and discoordinated mucociliary transport, respectively, demonstrating the importance of each mucin to airway clearance.


Asunto(s)
Mucina 5B , Infecciones del Sistema Respiratorio , Humanos , Mucina 5B/genética , Depuración Mucociliar , Epitelio , Cilios , Mucina 5AC/genética
19.
Ecotoxicol Environ Saf ; 241: 113833, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36068759

RESUMEN

OBJECTS: Benzo(a)pyrene (BaP), an environmental pollutant, is present in high concentrations in urban smog and cigarette smoke and has been reported to promote high mucin 5AC (MUC5AC) expression. Epithelium-derived inflammatory cytokines are considered an important modulator of mucus oversecretion and MUC5AC overexpression. Here, we investigated whether the effect of BaP on MUC5AC overexpression was associated with cytokine autocrine activity in vivo and in vitro. METHODS: In vivo, BALB/c mice were treated with ovalbumin (OVA) in the presence or absence of BaP. Allergy-induced mucus production was assessed by Alcian Blue Periodic acid Schiff (AB-PAS) staining. The human airway epithelial cell line NCI-H292 was used in vitro. MUC5AC and transforming growth factor (TGF)-α mRNA levels were assessed with real-time quantitative PCR. The concentration of cytokines was measured by ELISA. The MUC5AC, p-ERK, ERK, p-EGFR and EGFR proteins were detected by Western blotting in cells or by immunohistochemistry in mouse lungs. Small-interfering RNAs were used for gene silencing. RESULTS: TGF-α was overproduced in the supernatant of NCI-H292 cells treated with BaP. Knockdown of TGF-α expression inhibited the BaP-induced increase in MUC5AC expression and subsequent activation of the EGFR-ERK signalling pathway. Knocking down aryl hydrocarbon receptor (AhR) expression or treatment with an ROS inhibitor (N-acetyl-L-cysteine) could relieve the TGF-α secretion induced by BaP in epithelial cells. In an animal study, coexposure to BaP with OVA increased mucus production, MUC5AC expression and ROS-EGFR-ERK activation in the lung as well as TGF-α levels in bronchoalveolar lavage fluid (BALF). Furthermore, the concentration of TGF-α in BALF was correlated with MUC5AC mRNA levels. Additionally, TGF-α expression was found to be positively correlated with MUC5AC expression in the airway epithelial cells of smokers. Compared with non-smoker asthma patients, TGF-α serum levels were also elevated in smoker asthma patients. CONCLUSION: Autocrine TGF-α was associated with BaP-induced MUC5AC expression in vitro and in vivo. BaP induced TGF-α secretion by activating AhR and producing ROS, which led to activation of the EGFR-ERK pathway.


Asunto(s)
Asma , Mucina 5AC , Animales , Asma/inducido químicamente , Asma/metabolismo , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidad , Citocinas/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Pulmón/metabolismo , Ratones , Ratones Endogámicos BALB C , Mucina 5AC/genética , Mucina 5AC/metabolismo , Moco/metabolismo , Ovalbúmina , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Crecimiento Transformador alfa/genética , Factor de Crecimiento Transformador alfa/metabolismo , Factor de Crecimiento Transformador alfa/toxicidad
20.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(8): 831-836, 2022 Aug.
Artículo en Chino | MEDLINE | ID: mdl-36177926

RESUMEN

OBJECTIVE: To observe the effects of Xiaoqinglong Decoction and Qingqi Huatan Pills on interleukin-1ß (IL-1ß)-induced mucushypersecretion model of human airway epithelial H292 cellsand related molecules of nuclear factor-κB/microRNA-494(NF-κB/miR-494) signaling pathway, and to explore the mechanism of the two medicines in improving pathological airway mucus. METHODS: Methyl thiazolyl tetrazolium (MTT) colorimetric method was used to detect the effects of different concentrations of Xiaoqinglong Decoction and Qingqi Huatan Pills on the activity of H292 cellsinduced by IL-1ß, and the appropriate concentration was selected for subsequent experiments. Cells were randomly divided into blank group, IL-1ß model group (5 µg/L IL-1ß), NF-κB inhibitor pyrrolidinedithiocarbamate (PDTC) group (5 µg/L IL-1ß+100 µmol/L PDTC), Xiaoqinglong Decoction (5 µg/L IL-1ß+1 000 mg/L Xiaoqinglong Decoction) and Qingqi Huatan Pill group (5 µg/L IL-1ß+1 000 mg/L Qingqi Huatan Pills). 5 µg/L IL-1ß was used to induce H292 cells for 24 hours to establish a model of airway epithelial mucus hypersecretion. Enzyme linked immunosorbent assay (ELISA) method was used to detect the levels of mucin 5AC (MUC5AC), tumor necrosis factor-α (TNF-α) and IL-8 and the synthesis of intracellular MUC5AC and cystic fibrosis transmembrane conductance regulator (CFTR). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression levels of MUC5AC mRNA, CFTR mRNA, miR-494. Western blotting was used to detect protein expression of key proteins (p65) and NF-κB inhibitors (IκB) in NF-κB signaling pathway. RESULTS: Xiaoqinglong Decoction and Qingqi Huatan Pills with the concentration of 1 000 mg/L were selected for the follow-up experiment. Compared with the blank group, the levels of MUC5AC, TNF-α and IL-8 were significantly increased in the model group, intracellular MUC5AC protein content and mRNA expression were also significantly increased, intracellular CFTR protein content and mRNA expression were significantly decreased, and intracellular p65 protein expression was significantly up-regulated, the expression of IκB protein was significantly down-regulated, and the expression of miR-494 was significantly increased. Compared with the model group, the levels of MUC5AC, TNF-α and IL-8 were significantly reduced in PDTC group, Xiaoqinglong Decoction group and Qingqi Huatan Pill group, intracellular MUC5AC protein content and mRNA expression were also significantly decreased, and intracellular p65 protein expression was significantly down-regulated, and IκB protein expression was significantly up-regulated, miR-494 expression was significantly reduced. Intracellular CFTR protein content and mRNA expression were significantly increased in both PDTC group and Qingqi Huatan Pill group. Compared with the PDTC group, the level of TNF-α in the Xiaoqinglong Decoction group was significantly increased (ng/L: 22.77±3.14 vs. 11.09±3.37, P < 0.05),the content and mRNA expression of CFTR and IκB protein expression was significantly decreased [CFTR protein (ng/L): 97.38±6.62 vs. 227.04±19.48, CFTR mRNA (2-ΔΔCt): 0.99±0.08 vs. 1.21±0.08, IκB/ß-actin: 1.69±0.11 vs. 2.00±0.18, all P < 0.05], the level of TNF-α in Qingqi Huatan Pill group was significantly higher (ng/L: 19.08±3.71 vs. 11.09±3.37, P < 0.05). Compared with Xiaoqinglong Decoction group, the protein content and mRNA expression of CFTR and IκB protein expression in Qingqi Huatan Pill group were significantly increased [CFTR protein (ng/L): 235.01±22.71 vs. 97.38±6.62, CFTR mRNA (2-ΔΔCt): 1.32±0.15 vs. 0.99±0.08, IκB/ß-actin: 1.94±0.16 vs. 1.69±0.11, all P < 0.05]. CONCLUSIONS: The effect of Xiaoqinglong Decoctionin improving the hypersecretion of mucus in the airway epithelium may be related to the inhibition of NF-κB/miR-494 inflammatory signal-mediated MUC5AC hypersecretion, while the effect of Qingqi Huatan Pills may be related to the inhibition of NF-κB/miR-494 inflammatory signal-mediated MUC5AC hypersecretion and CFTR dysfunction. Therefore, the difference in the mechanism of the two treatments of airway pathological mucus is mainly in the regulation of CFTR mRNA and protein.


Asunto(s)
MicroARNs , FN-kappa B , Actinas/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , MicroARNs/metabolismo , Mucina 5AC/genética , Mucina 5AC/metabolismo , Moco/metabolismo , FN-kappa B/metabolismo , Prolina/análogos & derivados , ARN Mensajero/metabolismo , Transducción de Señal , Tiocarbamatos , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...