Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.593
Filtrar
1.
PLoS One ; 19(8): e0308609, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39121037

RESUMEN

Current prophylactic and disease control measures in aquaculture highlight the need of alternative strategies to prevent disease and reduce antibiotic use. Mucus covered mucosal surfaces are the first barriers pathogens encounter. Mucus, which is mainly composed of highly glycosylated mucins, has the potential to contribute to disease prevention if we can strengthen this barrier. Therefore, aim of this study was to develop and characterize fish in vitro mucosal surface models based on commercially available cell lines that are functionally relevant for studies on mucin regulation and host-pathogen interactions. The rainbow trout (Oncorhynchus mykiss) gill epithelial cell line RTgill-W1 and the embryonic cell line from Chinook salmon (Oncorhynchus tshawytscha) CHSE-214 were grown on polycarbonate membrane inserts and chemically treated to differentiate the cells into mucus producing cells. RTGill-W1 and CHSE-214 formed an adherent layer at two weeks post-confluence, which further responded to treatment with the γ-secretase inhibitor DAPT and prolonged culture by increasing the mucin production. Mucins were metabolically labelled with N-azidoacetylgalactosamine 6 h post addition to the in vitro membranes. The level of incorporated label was relatively similar between membranes based on RTgill-W1, while larger interindividual variation was observed among the CHSE in vitro membranes. Furthermore, O-glycomics of RTgill-W1 cell lysates identified three sialylated O-glycans, namely Galß1-3(NeuAcα2-6)GalNAcol, NeuAcα-Galß1-3GalNAcol and NeuAcα-Galß1-3(NeuAcα2-6)GalNAcol, resembling the glycosylation present in rainbow trout gill mucin. These glycans were also present in CHSE-214. Additionally, we demonstrated binding of the fish pathogen A. salmonicida to RTgill-W1 and CHSE-214 cell lysates. Thus, these models have similarities to in vivo mucosal surfaces and can be used to investigate the effect of pathogens and modulatory components on mucin production.


Asunto(s)
Interacciones Huésped-Patógeno , Mucinas , Oncorhynchus mykiss , Animales , Mucinas/metabolismo , Oncorhynchus mykiss/metabolismo , Línea Celular , Membrana Mucosa/metabolismo , Salmón/metabolismo , Branquias/metabolismo , Células Epiteliales/metabolismo , Moco/metabolismo
2.
J Ovarian Res ; 17(1): 161, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118097

RESUMEN

Ovarian cancer stands as the deadliest gynecologic malignancy, responsible for nearly 65% of all gynecologic cancer-related deaths. The challenges in early detection and diagnosis, coupled with the widespread intraperitoneal spread of cancer cells and resistance to chemotherapy, contribute significantly to the high mortality rate of this disease. Due to the absence of specific symptoms and the lack of effective screening methods, most ovarian cancer cases are diagnosed at advanced stages. While chemotherapy is a common treatment, it often leads to tumor recurrence, necessitating further interventions. In recent years, antibody-drug conjugates (ADCs) have emerged as a valuable tool in targeted cancer therapy. These complex biotherapeutics combine an antibody that specifically targets tumor specific/associated antigen(s) with a high potency anti-cancer drug through a linker, offering a promising approach for ovarian cancer treatment. The identification of molecular targets in various human tumors has paved the way for the development of targeted therapies, with ADCs being at the forefront of this innovation. By delivering cytotoxic agents directly to tumors and metastatic lesions, ADCs show potential in managing chemo-resistant ovarian cancers. Mucins such as MUC16, MUC13, and MUC1 have shown significantly higher expression in ovarian tumors as compared to normal and/or benign samples, thus have become promising targets for ADC generation. While traditional markers are limited by their elevated levels in non-cancerous conditions, mucins offer a new possibility for targeted treatment in ovarian cancer. This review comprehensively described the potential of mucins for the generation of ADC therapy, highlighting their importance in the quest to improve the outcome of ovarian cancer patients.


Asunto(s)
Inmunoconjugados , Mucinas , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Mucinas/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales
3.
Gut Microbes ; 16(1): 2377576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39068517

RESUMEN

The global incidence and prevalence of inflammatory bowel disease (IBD) are gradually increasing. A high-fat diet (HFD) is known to disrupt intestinal homeostasis and aggravate IBD, yet the underlying mechanisms remain largely undefined. Here, a positive correlation between dietary fat intake and disease severity in both IBD patients and murine colitis models is observed. A HFD induces a significant decrease in indole-3-acetic acid (IAA) and leads to intestinal barrier damage. Furthermore, IAA supplementation enhances intestinal mucin sulfation and effectively alleviates colitis. Mechanistically, IAA upregulates key molecules involved in mucin sulfation, including 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (Papss2) and solute carrier family 35 member B3 (Slc35b3), the synthesis enzyme and the transferase of 3'-phosphoadenosine-5'-phosphosulfate (PAPS), via the aryl hydrocarbon receptor (AHR). More importantly, AHR can directly bind to the transcription start site of Papss2. Oral administration of Lactobacillus reuteri, which can produce IAA, contributes to protecting against colitis and promoting mucin sulfation, while the modified L. reuteri strain lacking the iaaM gene (LactobacillusΔiaaM) and the ability to produce IAA fail to exhibit such effects. Overall, IAA enhances intestinal mucin sulfation through the AHR-Papss2-Slc35b3 pathway, contributing to the protection of intestinal homfeostasis.


A HFD can lead to the development of colitis by disrupting tryptophan metabolism in the gut microbiome and lowering levels of IAA. Supplementation with IAA has been shown to alleviate colitis in mice and improve intestinal barrier function. It is believed that IAA may activate the AHR to upregulate the expression of Papss2 and Slc35b3, promoting sulfation modification of mucins and protecting the intestinal barrier. HFD, high-fat diet; AHR, aryl hydrocarbon receptor; IAA, indole-3-acetic acid; Papss2, 3'-phosphoadenosine 5'-phosphosulfate synthase 2; Slc35b3, solute carrier family 35 member B3.


Asunto(s)
Microbioma Gastrointestinal , Homeostasis , Ácidos Indolacéticos , Mucosa Intestinal , Mucinas , Animales , Humanos , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Mucinas/metabolismo , Ácidos Indolacéticos/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Ratones Endogámicos C57BL , Colitis/microbiología , Colitis/metabolismo , Colitis/inducido químicamente , Limosilactobacillus reuteri/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Masculino , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Modelos Animales de Enfermedad
4.
J Med Life ; 17(3): 326-333, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39044931

RESUMEN

Intestinal homeostasis involves the collaboration of gut barrier components, such as goblet cells and IgA-microbiota complexes, that are under the control of stress that promotes inflammatory responses addressed primarily in the colon. The aim of this study was to evaluate the effect of stress on mucins, goblet cells, and proinflammatory parameters in the proximal and distal regions of the small intestine. A group (n = 6) of female 8-week-old BALB/c mice underwent board immobilization stress (2 h per day for 4 days) and were sacrificed with isoflurane. Samples from proximal and distal small segments were collected to analyze the following: 1) goblet cells stained with periodic acid-Schiff (PAS) and with alcian blue (AB) to visualize histologically neutral and acidic mucins, respectively; 2) IgA-microbiota complexes identified by flow cytometry in intestinal lavages; and 3) MUC2, MUC5AC, and IL-18 mRNA levels in whole mucosal scrapings by reverse transcription-qPCR. Regarding the unstressed group, in the proximal region of small intestine both PAS+ and AB+ goblet cells were unchanged; however, MUC5AC and IL-18 mRNA levels were increased, and the percentage of IgA-microbiota complexes was reduced. In the distal segment, the number of PAS+ goblet cells was increased, whereas the number of AB+ goblet cells was reduced and did not affect the remaining parameters. The data suggest that stress induces inflammation in the proximal small intestine; these findings may provide an experimental reference for human diseases that may affect the proximal small intestine, such as Crohn's disease, in which stress contributes to the progression of intestinal inflammation or relapse.


Asunto(s)
Células Caliciformes , Intestino Delgado , Ratones Endogámicos BALB C , Mucinas , Animales , Intestino Delgado/metabolismo , Intestino Delgado/microbiología , Intestino Delgado/patología , Femenino , Ratones , Células Caliciformes/metabolismo , Células Caliciformes/patología , Mucinas/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/inmunología , Interleucina-18/metabolismo , Mucina 5AC/metabolismo , Estrés Fisiológico , Inmunoglobulina A/metabolismo , Mucina 2/metabolismo , Mucina 2/genética
5.
J Cancer Res Ther ; 20(3): 840-843, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-39023592

RESUMEN

BACKGROUND: Low-grade appendiceal mucinous neoplasms (LAMNs) are benign non-invasive epithelial proliferations of the appendix. These usually present clinically as mucoceles and these rarely exceed 2 cm in diameter. Lesions confined to the lumen are labelled as LAMN; however those in which mucin spreads outside the peritoneum are labeled as pseudomyxoma peritonei (PMP). AIMS AND OBJECTIVE: A retrospective study was conducted over a period of three years and all cases of appendectomies were studied. Twelve cases of LAMN were identified, which is a diagnostic dilemma for the pathologists and clinicians. RESULTS: LAMN was identified based on the histopathological features. Out of the 12 cases, 9 were classified as LAMN and 3 as appendiceal neoplasm with PMP. There was villous or flat proliferation of epithelial lining, loss lymphoid aggregates, and dissecting mucin within muscularis. CONCLUSION: LAMNs are rare neoplasms of the appendix, with clinical presentation similar to acute appendicitis. Mucinous collections within the appendiceal wall should be extensively searched for mucosal changes and, if found, should prompt a careful search for pushing invasion of LAMNs. A thorough and vigilant gross examination can be of great help. Appendicectomy is the treatment of benign and grossly intact mucinous neoplasm.


Asunto(s)
Adenocarcinoma Mucinoso , Apendicectomía , Neoplasias del Apéndice , Clasificación del Tumor , Seudomixoma Peritoneal , Centros de Atención Terciaria , Humanos , Neoplasias del Apéndice/patología , Neoplasias del Apéndice/cirugía , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Adenocarcinoma Mucinoso/patología , Adenocarcinoma Mucinoso/cirugía , Adenocarcinoma Mucinoso/diagnóstico , Adulto , Seudomixoma Peritoneal/patología , Seudomixoma Peritoneal/cirugía , Seudomixoma Peritoneal/diagnóstico , Anciano , Apéndice/patología , Apéndice/cirugía , Mucinas/metabolismo
6.
Curr Protoc ; 4(7): e1100, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38984456

RESUMEN

Mucin-domain glycoproteins are characterized by their high density of glycosylated serine and threonine residues, which complicates their analysis by mass spectrometry. The dense glycosylation renders the protein backbone inaccessible to workhorse proteases like trypsin, the vast heterogeneity of glycosylation often results in ion suppression from unmodified peptides, and search algorithms struggle to confidently analyze and site-localize O-glycosites. We have made a number of advances to address these challenges, rendering mucinomics possible for the first time. Here, we summarize these contributions and provide a detailed protocol for mass spectrometric analysis of mucin-domain glycoproteins. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Enrichment of mucin-domain glycoproteins Basic Protocol 2: Enzymatic digestion of mucin-domain glycoprotein(s) Basic Protocol 3: Mass spectrometry data collection for O-glycopeptides Basic Protocol 4: Mass spectrometry data analysis of O-glycopeptides.


Asunto(s)
Glicoproteínas , Espectrometría de Masas , Mucinas , Espectrometría de Masas/métodos , Mucinas/química , Mucinas/metabolismo , Mucinas/análisis , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicoproteínas/análisis , Glicosilación , Humanos , Glicopéptidos/análisis , Glicopéptidos/química , Glicopéptidos/metabolismo
7.
Sci Rep ; 14(1): 16568, 2024 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019950

RESUMEN

Mucus stasis is a pathologic hallmark of muco-obstructive diseases, including cystic fibrosis (CF). Mucins, the principal component of mucus, are extensively modified with hydroxyl (O)-linked glycans, which are largely terminated by sialic acid. Sialic acid is a negatively charged monosaccharide and contributes to the biochemical/biophysical properties of mucins. Reports suggest that mucin sialylation may be altered in CF; however, the consequences of reduced sialylation on mucus clearance have not been fully determined. Here, we investigated the consequences of reduced sialylation on the charge state and conformation of the most prominent airway mucin, MUC5B, and defined the functional consequences of reduced sialylation on mucociliary transport (MCT). Reduced sialylation contributed to a lower charged MUC5B form and decreased polymer expansion. The inhibition of total mucin sialylation de novo impaired MCT in primary human bronchial epithelial cells and rat airways, and specific α-2,3 sialylation blockade was sufficient to recapitulate these findings. Finally, we show that ST3 beta-galactoside alpha-2,3-sialyltransferase (ST3Gal1) expression is downregulated in CF and partially restored by correcting CFTR via Elexacaftor/Tezacaftor/Ivacaftor treatment. Overall, this study demonstrates the importance of mucin sialylation in mucus clearance and identifies decreased sialylation by ST3Gal1 as a possible therapeutic target in CF and potentially other muco-obstructive diseases.


Asunto(s)
Mucina 5B , Moco , Humanos , Animales , Mucina 5B/metabolismo , Ratas , Moco/metabolismo , Sialiltransferasas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Depuración Mucociliar , Mucosa Respiratoria/metabolismo , Fibrosis Quística/metabolismo , Mucinas/metabolismo , Células Epiteliales/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Bronquios/metabolismo
8.
Micron ; 185: 103691, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39032209

RESUMEN

We describe the histological organisation and mucin content in the digestive tract of the stream catfish Pseudecheneis sulcatus. The aim is to find the modifications of the digestive tract in relation to food resources of its habitat. The oesophageal mucosa consists of stratified squamous epithelium with many mucous-secreting cells. The thick muscularis contains an inner longitudinal and outer circular, striated muscle cells. The stomach is J-shaped and shows 6-7 thick mucosal folds that are separated from the submucosa by an organised muscularis mucosae. The mucosa consists of superficial cells with mucin granules, and deeper simple tubular gastric glands in cardia and fundus, but absent in pyloric region. The glandular epithelium shows oxynticopeptic cells containing zymogen granules and abundant tubulo-vesicular bodies. We provide evidence that the latter arise by budding from smooth endoplasmic reticulum and reach the apical cytoplasm. The anterior intestine shows longer mucosal folds with goblet cells (GC). GC are more in the posterior intestine and highest in the rectum. Myenteric neurons with myelinated and non-myelinated axons innervate the intrinsic musculature from stomach to rectum. Many stem cells are evident in the basal intestinal epithelium. They show darker nuclei and undifferentiated organelles. Mucin histochemistry reveals the predominance of neutral mucin (PAS+ positive) from oesophagus to rectum, and neutral and acidic mucin (alcian blue+, pH 2.5) in the posterior intestine to the rectum, with few GC colocalizing both. Ultrastructural features suggest that the species is adapted to omnivory and this is reflected in the predominance of neutral mucin in the digestive tract.


Asunto(s)
Bagres , Tracto Gastrointestinal , Mucinas , Animales , Bagres/anatomía & histología , Tracto Gastrointestinal/anatomía & histología , Tracto Gastrointestinal/citología , Mucinas/metabolismo , Mucosa Gástrica/ultraestructura , Mucosa Gástrica/citología , Mucosa Gástrica/anatomía & histología , Histocitoquímica
9.
Int J Biol Macromol ; 275(Pt 1): 133564, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955298

RESUMEN

Influenza viruses contribute significantly to the global health burden, necessitating the development of strategies against transmission as well as effective antiviral treatments. The present study reports a biomimetic strategy inspired by the natural antiviral properties of mucins. A bovine serum albumin (BSA) conjugate decorated with the multivalent neuraminidase inhibitor Zanamivir (ZA-BSA) was synthesized using copper-free click chemistry. This synthetic pseudo-mucin exhibited potent neuraminidase inhibitory activity against several influenza strains. Virus capture and growth inhibition assays demonstrated its effective absorption of virion particles and ability to prevent viral infection in nanomolar concentrations. Investigation of the underlying antiviral mechanism of ZA-BSA revealed a dual mode of action, involving disruption of the initial stages of host-cell binding and fusion by inducing viral aggregation, followed by blocking the release of newly assembled virions by targeting neuraminidase activity. Notably, the conjugate also exhibited potent inhibitory activity against Oseltamivir-resistant neuraminidase variant comparable to the monomeric Zanamivir. These findings highlight the application of multivalent drug presentation on protein scaffold to mimic mucin adsorption of viruses, together with counteracting drug resistance. This innovative approach has potential for the creation of antiviral agents against influenza and other viral infections.


Asunto(s)
Antivirales , Mucinas , Neuraminidasa , Virión , Zanamivir , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/metabolismo , Zanamivir/farmacología , Zanamivir/química , Antivirales/farmacología , Antivirales/química , Mucinas/metabolismo , Mucinas/química , Humanos , Virión/efectos de los fármacos , Animales , Albúmina Sérica Bovina/química , Perros , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Células de Riñón Canino Madin Darby , Orthomyxoviridae/efectos de los fármacos , Orthomyxoviridae/enzimología
10.
mBio ; 15(8): e0156224, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38953351

RESUMEN

Nasopharyngeal carriage of staphylococci spreads potentially pathogenic strains into (peri)oral regions and increases the chance of cross-infections. Some laboratory strains can also move rapidly on hydrated agar surfaces, but the biological relevance of these observations is not clear. Using soft-agar [0.3% (wt/vol)] plate assays, we demonstrate the rapid surface dispersal of (peri)oral isolates of Staphylococcus aureus and Staphylococcus epidermidis and closely related laboratory strains in the presence of mucin glycoproteins. Mucin-induced dispersal was a stepwise process initiated by the passive spreading of the growing colonies followed by their rapid branching (dendrites) from the colony edge. Although most spreading strains used mucin as a growth substrate, dispersal was primarily dependent on the lubricating and hydrating properties of the mucins. Using S. aureus JE2 as a genetically tractable representative, we demonstrate that mucin-induced dendritic dispersal, but not colony spreading, is facilitated by the secretion of surfactant-active phenol-soluble modulins (PSMs) in a process regulated by the agr quorum-sensing system. Furthermore, the dendritic dispersal of S. aureus JE2 colonies was further stimulated in the presence of surfactant-active supernatants recovered from the most robust (peri)oral spreaders of S. aureus and S. epidermidis. These findings suggest complementary roles for lubricating mucins and staphylococcal PSMs in the active dispersal of potentially pathogenic strains from perioral to respiratory mucosae, where gel-forming, hydrating mucins abound. They also highlight the impact that interspecies interactions have on the co-dispersal of S. aureus with other perioral bacteria, heightening the risk of polymicrobial infections and the severity of the clinical outcomes. IMPORTANCE: Despite lacking classical motility machinery, nasopharyngeal staphylococci spread rapidly in (peri)oral and respiratory mucosa and cause cross-infections. We describe laboratory conditions for the reproducible study of staphylococcal dispersal on mucosa-like surfaces and the identification of two dispersal stages (colony spreading and dendritic expansion) stimulated by mucin glycoproteins. The mucin type mattered as dispersal required the surfactant activity and hydration provided by some mucin glycoproteins. While colony spreading was a passive mode of dispersal lubricated by the mucins, the more rapid and invasive form of dendritic expansion of Staphylococcus aureus and Staphylococcus epidermidis required additional lubrication by surfactant-active peptides (phenol-soluble modulins) secreted at high cell densities through quorum sensing. These results highlight a hitherto unknown role for gel-forming mucins in the dispersal of staphylococcal strains associated with cross-infections and point at perioral regions as overlooked sources of carriage and infection by staphylococci.


Asunto(s)
Mucinas , Percepción de Quorum , Staphylococcus aureus , Staphylococcus epidermidis , Staphylococcus epidermidis/fisiología , Mucinas/metabolismo , Staphylococcus aureus/fisiología , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Humanos , Infecciones Estafilocócicas/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Toxinas Bacterianas/metabolismo
11.
mBio ; 15(8): e0003924, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38975756

RESUMEN

Symbiotic interactions between humans and our communities of resident gut microbes (microbiota) play many roles in health and disease. Some gut bacteria utilize mucus as a nutrient source and can under certain conditions damage the protective barrier it forms, increasing disease susceptibility. We investigated how Ruminococcus torques-a known mucin degrader that has been implicated in inflammatory bowel diseases (IBDs)-degrades mucin glycoproteins or their component O-linked glycans to understand its effects on the availability of mucin-derived nutrients for other bacteria. We found that R. torques utilizes both mucin glycoproteins and released oligosaccharides from gastric and colonic mucins, degrading these substrates with a panoply of mostly constitutively expressed, secreted enzymes. Investigation of mucin oligosaccharide degradation by R. torques revealed strong α-L-fucosidase, sialidase and ß1,4-galactosidase activities. There was a lack of detectable sulfatase and weak ß1,3-galactosidase degradation, resulting in accumulation of glycans containing these structures on mucin polypeptides. While the Gram-negative symbiont, Bacteroides thetaiotaomicron grows poorly on mucin glycoproteins, we demonstrate a clear ability of R. torques to liberate products from mucins, making them accessible to B. thetaiotaomicron. This work underscores the diversity of mucin-degrading mechanisms in different bacterial species and the probability that some species are contingent on others for the ability to more fully access mucin-derived nutrients. The ability of R. torques to directly degrade a variety of mucin and mucin glycan structures and unlock released glycans for other species suggests that it is a keystone mucin degrader, which might contribute to its association with IBD.IMPORTANCEAn important facet of maintaining healthy symbiosis between host and intestinal microbes is the mucus layer, the first defense protecting the epithelium from lumenal bacteria. Some gut bacteria degrade the various components of intestinal mucins, but detailed mechanisms used by different species are still emerging. It is imperative to understand these mechanisms as they likely dictate interspecies interactions and may illuminate species associated with bacterial mucus damage and subsequent disease susceptibility. Ruminococcus torques is positively associated with IBD in multiple studies. We identified mucin glycan-degrading enzymes in R. torques and found that it shares mucin degradation products with another species of gut bacteria, Bacteroides thetaiotaomicron. Our findings underscore the importance of understanding mucin degradation mechanisms in different gut bacteria and their consequences on interspecies interactions, which may identify keystone bacteria that disproportionately affect mucus damage and could therefore be key players in effects that result from reductions in mucus integrity.


Asunto(s)
Bacteroides thetaiotaomicron , Microbioma Gastrointestinal , Mucinas , Oligosacáridos , Ruminococcus , Oligosacáridos/metabolismo , Mucinas/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Ruminococcus/metabolismo , Humanos , Glicoproteínas/metabolismo , Simbiosis
12.
Gene ; 927: 148747, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972557

RESUMEN

The gold inner shell of Turbo argyrostomus is an important morphological classification characteristic in Gastropoda. However, the gene sets responsible for shell formation in gastropods remain poorly explored. In this study, we investigated the microstructure using scanning electron microscopy (SEM), hematoxylin-eosin (HE) and Alcian blue staining-periodic acid-Schiff (AB-PAS) staining. The SEM results illustrated that the T. argyrostomus shell exhibited a special "sandwich" microstructure. The results of histological observation demonstrated two major cell types: adipocytes and mucin cells. A total of 318 differentially expressed genes were identified between edge mantle and central mantle, among which whey acidic protein, N66, and nacre-like proteins, and Lam G and EGF domains may be related to shell microstructure. 22.39% - 25.20% of the mucin genes had biomineralization related domains, which supported for the relationship between mucins and shell formation. Moreover, this study revealed energy distribution differences between the edge mantle and central mantle. These results provide insights for further understanding of the biomineralization mechanism in Gastropoda.


Asunto(s)
Exoesqueleto , Gastrópodos , Perfilación de la Expresión Génica , Transcriptoma , Animales , Exoesqueleto/ultraestructura , Exoesqueleto/metabolismo , Gastrópodos/genética , Gastrópodos/metabolismo , Gastrópodos/ultraestructura , Perfilación de la Expresión Génica/métodos , Mucinas/genética , Mucinas/metabolismo , Biomineralización/genética , Microscopía Electrónica de Rastreo
13.
ACS Appl Bio Mater ; 7(8): 5411-5422, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38996006

RESUMEN

3D printing can revolutionize personalized medicine by allowing cost-effective, customized tissue-engineering constructs. However, the limited availability and diversity of biopolymeric hydrogels restrict the variety and applications of bioinks. In this study, we introduce a composite bioink for 3D bioprinting, combining a photo-cross-linkable derivative of Mucin (Mu) called Methacrylated Mucin (MuMA) and Hyaluronic acid (HA). The less explored Mucin is responsible for the hydrogel nature of mucus and holds the potential to be used as a bioink material because of its plethora of features. HA, a crucial extracellular matrix component, is mucoadhesive and enhances ink viscosity and printability. Photo-cross-linking with 405 nm light stabilizes the printed scaffolds without damaging cells. Rheological tests reveal shear-thinning behavior, aiding cell protection during printing and improved MuMA bioink viscosity by adding HA. The printed structures exhibited porous behavior conducive to nutrient transport and cell migration. After 4 weeks in phosphate-buffered saline, the scaffolds retain 70% of their mass, highlighting stability. Biocompatibility tests with lung epithelial cells (L-132) confirm cell attachment and growth, suggesting suitability for lung tissue engineering. It is envisioned that the versatility of bioink could lead to significant advancements in lung tissue engineering and various other biomedical applications.


Asunto(s)
Materiales Biocompatibles , Bioimpresión , Ácido Hialurónico , Ensayo de Materiales , Mucinas , Impresión Tridimensional , Ingeniería de Tejidos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Humanos , Mucinas/química , Mucinas/metabolismo , Tinta , Luz , Pulmón/citología , Tamaño de la Partícula , Andamios del Tejido/química , Hidrogeles/química , Hidrogeles/farmacología
14.
J Microbiol Methods ; 223: 106975, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889842

RESUMEN

The mucin-degrading gut commensal Akkermansia muciniphila (A. muciniphila) negatively correlates with various diseases, including metabolic disorders, neurodegenerative disorders, and cancers, through interacting with host receptors by diverse molecules. Still, their exact metabolic capability within the nutrient-rich environment (such as in the human gut) is not fully characterized. Therefore, in the present study, we investigated the comprehensive metabolome and lipidome of A. muciniphila after supplementation of four major gut microbial nutrients: mucin, inorganic salts, bile salts, and short-chain fatty acids (SCFAs). Our results showed that mucin is the predominant driver of the different lipidomic and metabolomic profiles of A. muciniphila, and it promotes the overall growth of this bacteria. While the addition of inorganic salts, bile salts, and SCFAs was found to inhibit the growth of A. muciniphila. Interestingly, inorganic salts affected the purine metabolism in A. muciniphila cultures, while adding bile salts significantly increased the production of other bile acids and N-acyl amides. Lastly, SCFAs were identified to alter the A. muciniphila energy utilization of triglycerides, fatty acyls, and phosphatidylethanolamines. To our knowledge, this is the first study to examine the comprehensive lipidome and metabolome of A. muciniphila, which highlights the importance of nutritional impacts on the lipidome and metabolome of A. muciniphila and hence providing foundational knowledge to unveil the potential effects of A. muciniphila on host health.


Asunto(s)
Akkermansia , Ácidos y Sales Biliares , Microbioma Gastrointestinal , Lipidómica , Metabolómica , Probióticos , Akkermansia/metabolismo , Akkermansia/crecimiento & desarrollo , Metabolómica/métodos , Ácidos y Sales Biliares/metabolismo , Lipidómica/métodos , Probióticos/metabolismo , Microbioma Gastrointestinal/fisiología , Humanos , Cromatografía Liquida/métodos , Metaboloma , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/análisis , Mucinas/metabolismo , Espectrometría de Masas/métodos
15.
J Agric Food Chem ; 72(27): 15345-15356, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38932522

RESUMEN

The human intestinal mucus layer protects against pathogenic microorganisms and harmful substances, whereas it also provides an important colonization niche for mutualistic microbes. The main functional components of mucus are heavily glycosylated proteins, called mucins. Mucins can be cleaved and utilized by intestinal microbes. The mechanisms between intestinal microbes and the regulation of mucin glycosylation are still poorly understood. In this study, in vitro mucus was produced by HT29-MTX-E12 cells under Semi-Wet interface with Mechanical Stimulation. Cells were exposed to pasteurized nonpathogenic bacteria Akkermansia muciniphila, Ruminococcus gnavus, and Bacteroides fragilis to evaluate influence on glycosylation patterns. Following an optimized protocol, O- and N-glycans were efficiently and reproducibly released, identified, and semiquantified using MALDI-TOF-MS and PGC-LC-MS/MS. Exposure of cells to bacteria demonstrated increased diversity of sialylated O-glycans and increased abundance of high mannose N-glycans in in vitro produced mucus. Furthermore, changes in glycan ratios were observed. It is speculated that bacterial components interact with the enzymatic processes in glycan production and that pasteurized bacteria influence glycosyltransferases or genes involved. These results highlight the influence of pasteurized bacteria on glycosylation patterns, stress the intrinsic relationship between glycosylation and microbiota, and show the potential of using in vitro produced mucus to study glycosylation behavior.


Asunto(s)
Microbioma Gastrointestinal , Moco , Polisacáridos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Glicosilación , Humanos , Espectrometría de Masas en Tándem/métodos , Moco/microbiología , Moco/metabolismo , Moco/química , Polisacáridos/metabolismo , Polisacáridos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Mucinas/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Células HT29 , Cromatografía Liquida/métodos , Bacteroides fragilis/metabolismo , Bacteroides fragilis/química , Bacteroides fragilis/fisiología , Pasteurización , Akkermansia/metabolismo , Cromatografía Líquida con Espectrometría de Masas
16.
Invest Ophthalmol Vis Sci ; 65(6): 39, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38935032

RESUMEN

Purpose: This study aimed to explore protective effects and potential mechanism of ectoine, a natural osmoprotectant, on ocular surface mucin production in dry eye disease. Methods: A dry eye model was established in C57BL/6 mice exposed to desiccating stress (DS) with untreated (UT) mice as controls. DS mice were topically treated with 2.0% ectoine or PBS vehicle. Corneal epithelial defects were assessed by Oregon Green Dextran (OGD) fluorescent staining. Conjunctival goblet cells, ocular mucins, and T help (Th) cytokines were evaluated by immunofluorescent staining or ELISA, and RT-qPCR. Results: Compared with UT mice, corneal epithelial defects were detected as strong punctate OGD fluorescent staining in DS mice with vehicle, whereas ectoine treatment largely reduced OGD staining to near-normal levels. Conjunctival goblet cell density and cell size decreased markedly in DS mice, but was significantly recovered by ectoine treatment. The protein production and mRNA expression of two gel-forming secreted MUC5AC and MUC2, and 4 transmembrane mucins, MUC1, MUC4, MUC16, and MUC15, largely decreased in DS mice, but was restored by ectoine. Furthermore, Th2 cytokine IL-13 was inhibited, whereas Th1 cytokine IFN-γ was stimulated at protein and mRNA levels in conjunctiva and draining cervical lymph nodes (CLNs) of DS mice, leading to decreased IL-13/IFN-γ ratio. Interestingly, 2.0% ectoine reversed their alternations and restored IL-13/IFN-γ balance. Conclusions: Our findings demonstrate that topical ectoine significantly reduces corneal damage, and enhances goblet cell density and mucin production through restoring imbalanced IL-13/IFN-γ signaling in murine dry eye model. This suggests therapeutic potential of natural osmoprotectant ectoine for dry eye disease.


Asunto(s)
Modelos Animales de Enfermedad , Síndromes de Ojo Seco , Células Caliciformes , Interferón gamma , Interleucina-13 , Ratones Endogámicos C57BL , Mucinas , Animales , Síndromes de Ojo Seco/metabolismo , Síndromes de Ojo Seco/tratamiento farmacológico , Ratones , Células Caliciformes/metabolismo , Células Caliciformes/efectos de los fármacos , Células Caliciformes/patología , Interferón gamma/metabolismo , Mucinas/metabolismo , Mucinas/biosíntesis , Mucinas/genética , Interleucina-13/metabolismo , Conjuntiva/metabolismo , Conjuntiva/efectos de los fármacos , Conjuntiva/patología , Ensayo de Inmunoadsorción Enzimática , Femenino , Epitelio Corneal/metabolismo , Epitelio Corneal/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/metabolismo , Aminoácidos Diaminos
17.
J Control Release ; 372: 31-42, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38866241

RESUMEN

Asthma is a chronic and heterogeneous disease affecting the lungs and respiratory tract. In particular, the neutrophil subtype of asthma was described as persistent, more severe, and corticosteroid-resistant. Growing evidence suggested that nontypeable Haemophilus influenzae (NTHi) infection contributes to the development of neutrophilic asthma, exacerbating clinical symptoms and increasing the associated medical burden. In this work, arginine-grafted chitosan (CS-Arg) was ionically cross-linked with tris(2-carboxyethyl) phosphine (TCEP), and a highly-efficient antimicrobial agent, poly-ε-L-Lysine (ε-PLL), was incorporated to prepare ε-PLL/CS-Arg/TCEP (ECAT) composite nanogels. The results showed that ECAT nanogels exhibited highly effective inhibition against the proliferation of NTHi, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). In addition, ECAT nanogels could effectively inhibit the formation of mucins aggregates in vitro, suggesting that the nanogel might have the potential to destroy mucin in respiratory disease. Furthermore, in the ovalbumin (OVA)/NTHi-induced Balb/c mice model of neutrophilic asthma, the number of neutrophils in the alveolar lavage fluid and the percentage of inflammatory cells in the blood were effectively reduced by exposure to tower nebulized administration of ECAT nanogels, and reversing airway hyperresponsiveness (AHR) and reducing inflammation in neutrophilic asthma mice. In conclusion, the construction of ECAT nanogels was a feasible anti-infective and anti-inflammatory therapeutic strategy, which demonstrated strong potential in the clinical treatment of neutrophilic asthma.


Asunto(s)
Antibacterianos , Asma , Quitosano , Escherichia coli , Ratones Endogámicos BALB C , Neutrófilos , Staphylococcus aureus , Animales , Staphylococcus aureus/efectos de los fármacos , Asma/tratamiento farmacológico , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Neutrófilos/efectos de los fármacos , Quitosano/administración & dosificación , Quitosano/química , Escherichia coli/efectos de los fármacos , Femenino , Haemophilus influenzae/efectos de los fármacos , Nanogeles/química , Ovalbúmina/administración & dosificación , Mucinas , Polilisina/química , Polilisina/administración & dosificación , Infecciones por Haemophilus/tratamiento farmacológico , Ratones , Polietileneimina/química , Polietileneimina/administración & dosificación , Geles
18.
Biomed Pharmacother ; 177: 116998, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901197

RESUMEN

Inflammatory skin disorders are the fourth leading cause of chronic non-fatal conditions, which have a serious impact on the patient quality of life. Due to their treatment with conventional corticosteroids, which often result in poor therapeutic efficacy, relapses and systemic side effects from prolonged therapy, these diseases represent a global burden that negatively impacts the global economy. To avoid these problems and optimize corticosteroid benefits, beclomethasone was loaded into liposome formulations specifically tailored for skin delivery. These formulations were enhanced with mucin (0.1 and 0.5 % w/v) to further ensure prolonged formulation permanence at the site of application. The addition of 0.5 % w/v mucin resulted in the formation of small unilamellar vesicles and multicompartment vesicles. Liposomes and 1mucin-liposomes were smaller (∼48 and ∼61 nm, respectively) and more monodispersed (PI ∼ 0.14 and ∼ 0.17, respectively) than 5mucin-liposomes, which were larger (∼137 nm), slightly polydispersed (PI ∼ 0.23), and less stable during storage (4 months in the dark at 25 °C). Liposomes were negatively charged (∼ -79 mV) irrespective of their composition, and capable of incorporating high amount of beclomethasone (∼ 80 %). In vitro studies on skin fibroblasts and keratinocytes confirmed the high biocompatibility of all formulations (viability ≥ 95 %). However, the use of mucin-liposomes resulted in higher efficacy against nitric oxide production and free radical damage. Finally, topical applications using 12-O-tetradecanoylphorbol-13-acetate-injured skin in vivo experiments showed that only the mucin-enriched formulations could restore healthy conditions within 4 days, underscoring promise as a treatment for skin disorders.


Asunto(s)
Beclometasona , Liposomas , Mucinas , Enfermedades de la Piel , Beclometasona/administración & dosificación , Beclometasona/farmacología , Beclometasona/química , Mucinas/metabolismo , Humanos , Animales , Enfermedades de la Piel/tratamiento farmacológico , Piel/efectos de los fármacos , Piel/metabolismo , Ratones , Administración Cutánea
19.
Biomacromolecules ; 25(7): 4014-4029, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38832927

RESUMEN

This study presents a comprehensive characterization of the viscoelastic and structural properties of bovine submaxillary mucin (BSM), which is widely used as a commercial source to conduct mucus-related research. We conducted concentration studies of BSM and examined the effects of various additives, NaCl, CaCl2, MgCl2, lysozyme, and DNA, on its rheological behavior. A notable connection between BSM concentration and viscoelastic properties was observed, particularly under varying ionic conditions. The rheological spectra could be well described by a fractional Kelvin-Voigt model with a minimum of model parameters. A detailed proteomics analysis provided insight into the protein, especially mucin composition within BSM, showing MUC19 as the main component. Cryo-scanning electron microscopy enabled the visualization of the porous BSM network structure. These investigations give us a more profound comprehension of the BSM properties, especially those pertaining to viscoelasticity, and how they are influenced by concentration and environmental conditions, aspects relevant to the field of mucus research.


Asunto(s)
Hidrogeles , Mucinas , Animales , Bovinos , Mucinas/química , Hidrogeles/química , Viscosidad , Elasticidad , Reología , Glándula Submandibular/química , Glándula Submandibular/metabolismo
20.
Syst Appl Microbiol ; 47(4): 126523, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38897058

RESUMEN

Nine novel strains were obtained from various algal and seagrass samples. The analysis of the 16S rRNA gene-based phylogenetic tree revealed monophyletic placement of all novel strains within the Rhodopirellula genus. The type strain was identified as JC737T, which shared 99.1 % 16S rRNA gene sequence identity with Rhodopirellula baltica SH1T, while strain JC740 was designated as an additional strain. The genome sizes of strains JC737T and JC740 were 6.6 and 6.7 Mb, respectively, and the G + C content was 56.2 %. The strains cladded distinctly in the phylogenomic tree, and the ANI and dDDH values of the strain JC737T were 75.8-76.1 % and 20.8-21.3 %, respectively, in comparison to other Rhodopirellula members. The strain demonstrated a versatile degradation capability, exhibiting a diverse array of complex polysaccharides, including mucin which had not been previously identified within the members of the phylum Planctomycetota. The phylogenomic, pan-genomic, morphological, physiological, and genomic characterization of the strain lead to the proposal to describe the strain as Rhodopirellula halodulae sp. nov.


Asunto(s)
Composición de Base , ADN Bacteriano , Mucinas , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Mucinas/metabolismo , ADN Bacteriano/genética , Genoma Bacteriano/genética , Técnicas de Tipificación Bacteriana , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA