Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
1.
Glycobiology ; 34(6)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38760939

RESUMEN

Genetic deficiency of alpha-L-iduronidase causes mucopolysaccharidosis type I (MPS-I) disease, due to accumulation of glycosaminoglycans (GAGs) including chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) in cells. Currently, patients are treated by infusion of recombinant iduronidase or by hematopoietic stem cell transplantation. An alternative approach is to reduce the L-iduronidase substrate, through limiting the biosynthesis of iduronic acid. Our earlier study demonstrated that ebselen attenuated GAGs accumulation in MPS-I cells, through inhibiting iduronic acid producing enzymes. However, ebselen has multiple pharmacological effects, which prevents its application for MPS-I. Thus, we continued the study by looking for novel inhibitors of dermatan sulfate epimerase 1 (DS-epi1), the main responsible enzyme for production of iduronic acid in CS/DS chains. Based on virtual screening of chemicals towards chondroitinase AC, we constructed a library with 1,064 compounds that were tested for DS-epi1 inhibition. Seventeen compounds were identified to be able to inhibit 27%-86% of DS-epi1 activity at 10 µM. Two compounds were selected for further investigation based on the structure properties. The results show that both inhibitors had a comparable level in inhibition of DS-epi1while they had negligible effect on HS epimerase. The two inhibitors were able to reduce iduronic acid biosynthesis in CS/DS and GAG accumulation in WT and MPS-I fibroblasts. Docking of the inhibitors into DS-epi1 structure shows high affinity binding of both compounds to the active site. The collected data indicate that these hit compounds may be further elaborated to a potential lead drug used for attenuation of GAGs accumulation in MPS-I patients.


Asunto(s)
Inhibidores Enzimáticos , Fibroblastos , Glicosaminoglicanos , Mucopolisacaridosis I , Mucopolisacaridosis I/tratamiento farmacológico , Mucopolisacaridosis I/metabolismo , Mucopolisacaridosis I/patología , Humanos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Glicosaminoglicanos/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/antagonistas & inhibidores , Carbohidrato Epimerasas/genética , Simulación del Acoplamiento Molecular , Antígenos de Neoplasias , Proteínas de Unión al ADN , Proteínas de Neoplasias
2.
Sci Transl Med ; 16(745): eadi8214, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38691622

RESUMEN

Mucopolysaccharidosis type I Hurler (MPSIH) is characterized by severe and progressive skeletal dysplasia that is not fully addressed by allogeneic hematopoietic stem cell transplantation (HSCT). Autologous hematopoietic stem progenitor cell-gene therapy (HSPC-GT) provides superior metabolic correction in patients with MPSIH compared with HSCT; however, its ability to affect skeletal manifestations is unknown. Eight patients with MPSIH (mean age at treatment: 1.9 years) received lentiviral-based HSPC-GT in a phase 1/2 clinical trial (NCT03488394). Clinical (growth, measures of kyphosis and genu velgum), functional (motor function, joint range of motion), and radiological [acetabular index (AI), migration percentage (MP) in hip x-rays and MRIs and spine MRI score] parameters of skeletal dysplasia were evaluated at baseline and multiple time points up to 4 years after treatment. Specific skeletal measures were retrospectively compared with an external cohort of HSCT-treated patients. At a median follow-up of 3.78 years after HSPC-GT, all patients treated with HSPC-GT exhibited longitudinal growth within WHO reference ranges and a median height gain greater than that observed in patients treated with HSCT after 3-year follow-up. Patients receiving HSPC-GT experienced complete and earlier normalization of joint mobility compared with patients treated with HSCT. Mean AI and MP showed progressive decreases after HSPC-GT, suggesting a reduction in acetabular dysplasia. Typical spine alterations measured through a spine MRI score stabilized after HSPC-GT. Clinical, functional, and radiological measures suggested an early beneficial effect of HSPC-GT on MPSIH-typical skeletal features. Longer follow-up is needed to draw definitive conclusions on HSPC-GT's impact on MPSIH skeletal dysplasia.


Asunto(s)
Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Mucopolisacaridosis I , Humanos , Mucopolisacaridosis I/terapia , Mucopolisacaridosis I/patología , Mucopolisacaridosis I/genética , Masculino , Femenino , Preescolar , Lactante , Resultado del Tratamiento , Células Madre Hematopoyéticas/metabolismo , Niño , Huesos/patología , Imagen por Resonancia Magnética
3.
J Neurosurg Pediatr ; 33(6): 574-582, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489810

RESUMEN

OBJECTIVE: Craniovertebral junction (CVJ) abnormalities are common and well documented in mucopolysaccharidosis type I-Hurler syndrome (MPS IH), often causing severe spinal canal narrowing. However, the requirement for surgical decompression and/or fusion is uncommon. Although hematopoietic cell transplant (HCT) has been shown to prolong the lives of patients with MPS IH, its effect in halting or reversing musculoskeletal abnormalities is less clear. Unfortunately, there are currently no universal guidelines for imaging or indication for surgical interventions in these patients. The goal of this study was to track the progression of the CVJ anatomy in patients with MPS IH following HCT, and to examine radiographic features in patients who needed surgical intervention. METHODS: Patients with MPS IH treated at the University of Minnesota with allogeneic HCT between 2008 and 2020 were retrospectively reviewed. Patients who underwent CVJ surgery were identified with chart review. All MPS IH cervical scans were examined, and the odontoid retroflexion angle, clivoaxial angle (CXA), canal width, and Grabb-Oakes distance (pB-C2) were measured yearly for up to 7 years after HCT. Longitudinal models based on the measurements were made. An intraclass correlation coefficient was used to measure interrater reliability. Nine children without MPS IH were examined for control CVJ measurements. RESULTS: A total of 253 cervical spine MRI scans were reviewed in 54 patients with MPS IH. Only 4 (7.4%) patients in the study cohort required surgery. Three of them had posterior fossa and C1 decompression, and 1 had a C1-2 fusion. There was no statistically significant difference in the spinal parameters that were examined between surgery and nonsurgery groups. Among the measurements, canal width and CXA varied drastically in patients with different neck positions. Odontoid retroflexion angle and CXA tended to decrease with age. Canal width and pB-C2 tended to increase with age. CONCLUSIONS: Based on the data, the authors observed an increase in canal width and pB-C2, whereas the CXA and odontoid retroflexion angle became more acute as the patients aged after HCT. The longitudinal models derived from these data mirrored the development in children without MPS IH. Spinal measurements obtained on MR images alone are not sufficient in identifying patients who require surgical intervention. Symptom monitoring and clinical examination, as well as pathological spinal cord changes on MRI, are more crucial in assessing the need for surgery than is obtaining serial imaging.


Asunto(s)
Mucopolisacaridosis I , Humanos , Masculino , Femenino , Mucopolisacaridosis I/complicaciones , Mucopolisacaridosis I/cirugía , Mucopolisacaridosis I/diagnóstico por imagen , Mucopolisacaridosis I/patología , Preescolar , Niño , Estudios Retrospectivos , Adolescente , Lactante , Trasplante de Células Madre Hematopoyéticas , Descompresión Quirúrgica/métodos , Progresión de la Enfermedad , Vértebras Cervicales/cirugía , Vértebras Cervicales/diagnóstico por imagen , Adulto Joven
4.
JCI Insight ; 9(5)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456506

RESUMEN

Dysostosis multiplex is a major cause of morbidity in Hurler syndrome (mucopolysaccharidosis type IH [MPS IH], OMIM #607014) because currently available therapies have limited success in its prevention and reversion. Unfortunately, the elucidation of skeletal pathogenesis in MPS IH is limited by difficulties in obtaining bone specimens from pediatric patients and poor reproducibility in animal models. Thus, the application of experimental systems that can be used to dissect cellular and molecular mechanisms underlying the skeletal phenotype of MPS IH patients and to identify effective therapies is highly needed. Here, we adopted in vitro/in vivo systems based on patient-derived bone marrow stromal cells to generate cartilaginous pellets and bone rudiments. Interestingly, we observed that heparan sulphate accumulation compromised the remodeling of MPS IH cartilage into other skeletal tissues and other critical aspects of the endochondral ossification process. We also noticed that MPS IH hypertrophic cartilage was characterized by dysregulation of signaling pathways controlling cartilage hypertrophy and fate, extracellular matrix organization, and glycosaminoglycan metabolism. Our study demonstrates that the cartilaginous pellet-based system is a valuable tool to study MPS IH dysostosis and to develop new therapeutic approaches for this hard-to-treat aspect of the disease. Finally, our approach may be applied for modeling other genetic skeletal disorders.


Asunto(s)
Disostosis , Mucopolisacaridosis I , Animales , Humanos , Niño , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/patología , Mucopolisacaridosis I/terapia , Iduronidasa/genética , Iduronidasa/metabolismo , Médula Ósea/patología , Reproducibilidad de los Resultados
5.
J Orthop Res ; 42(7): 1409-1419, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38368531

RESUMEN

Mucopolysaccharidosis (MPS) I is a lysosomal storage disorder characterized by deficient alpha-l-iduronidase activity, leading to abnormal accumulation of glycosaminoglycans (GAGs) in cells and tissues. Synovial joint disease is prevalent and significantly reduces patient quality of life. There is a strong clinical need for improved treatment approaches that specifically target joint tissues; however, their development is hampered by poor understanding of underlying disease pathophysiology, including how pathological changes to component tissues contribute to overall joint dysfunction. Ligaments and tendons, in particular, have received very little attention, despite the critical roles of these tissues in joint stability and biomechanical function. The goal of this study was to leverage the naturally canine model to undertake functional and structural assessments of the anterior (cranial) cruciate ligament (CCL) and Achilles tendon in MPS I. Tissues were obtained postmortem from 12-month-old MPS I and control dogs and tested to failure in uniaxial tension. Both CCLs and Achilles tendons from MPS I animals exhibited significantly lower stiffness and failure properties compared to those from healthy controls. Histological examination revealed multiple pathological abnormalities, including collagen fiber disorganization, increased cellularity and vascularity, and elevated GAG content in both tissues. Clinically, animals exhibited mobility deficits, including abnormal gait, which was associated with hyperextensibility of the stifle and hock joints. These findings demonstrate that pathological changes to both ligaments and tendons contribute to abnormal joint function in MPS I, and suggest that effective clinical management of joint disease in patients should incorporate treatments targeting these tissues.


Asunto(s)
Tendón Calcáneo , Modelos Animales de Enfermedad , Mucopolisacaridosis I , Animales , Perros , Mucopolisacaridosis I/patología , Mucopolisacaridosis I/fisiopatología , Tendón Calcáneo/patología , Tendón Calcáneo/fisiopatología , Fenómenos Biomecánicos , Ligamento Cruzado Anterior/patología , Masculino , Femenino
6.
Ann N Y Acad Sci ; 1526(1): 114-125, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37347427

RESUMEN

Mucopolysaccharidoses (MPS) are a group of rare congenital metabolic disorders caused by the deficiency or low activity of enzymes required for glycosaminoglycans degradation. Mutations in the α-l-iduronidase gene (IDUA) are associated with mucopolysaccharidosis type I (MPS I). Our study here aims to identify an MPS-related gene mutation in a typical patient with MPS and to further explore the possible pathogenic mechanism. We identified a homozygous c. 2T>C (p.M1T) change in IDUA as the pathogenic mutation in this individual (both parents were identified as carriers of the mutation), with IDUA enzyme activity significantly decreased. We further established an MPS I-related zebrafish model using IDUA-specific morpholino (MO) to suppress gene expression, and found that IDUA-MO zebrafish exhibited characteristic disease phenotypes with deficiency of IDUA. Transcriptome profiling of zebrafish larvae revealed 487 genes that were significantly altered when IDUA was depleted. TP53 signaling and LC3/GABARAP family protein-mediated autophagy were significantly upregulated in IDUA-MO zebrafish larvae. Moreover, leukotriene A4 hydrolase-mediated arachidonic acid metabolism was also upregulated. Introduction of wild-type human IDUA mRNA rescued developmental defects and aberrant signaling in IDUA-MO zebrafish larvae. In conclusion, our study provides potential therapeutic targets for the treatment of MPS I.


Asunto(s)
Mucopolisacaridosis I , Animales , Humanos , Mucopolisacaridosis I/genética , Mucopolisacaridosis I/patología , Iduronidasa/genética , Iduronidasa/metabolismo , Pez Cebra/genética , Pueblos del Este de Asia , Mutación
7.
Mol Genet Metab ; 138(2): 107371, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36709534

RESUMEN

Mucopolysaccharidosis I is a lysosomal storage disorder characterized by deficient alpha-L-iduronidase activity, leading to abnormal accumulation of glycosaminoglycans in cells and tissues. Synovial joint disease is prevalent and significantly reduces patient quality of life. There is a critical need for improved understanding of joint disease pathophysiology in MPS I, including specific biomarkers to predict and monitor joint disease progression, and response to treatment. The objective of this study was to leverage the naturally-occurring MPS I canine model and undertake an unbiased proteomic screen to identify systemic biomarkers predictive of local joint disease in MPS I. Synovial fluid and serum samples were collected from MPS I and healthy dogs at 12 months-of-age, and protein abundance characterized using liquid chromatography tandem mass spectrometry. Stifle joints were evaluated postmortem using magnetic resonance imaging (MRI) and histology. Proteomics identified 40 proteins for which abundance was significantly correlated between serum and synovial fluid, including markers of inflammatory joint disease and lysosomal dysfunction. Elevated expression of three biomarker candidates, matrix metalloproteinase 19, inter-alpha-trypsin inhibitor heavy-chain 3 and alpha-1-microglobulin, was confirmed in MPS I cartilage, and serum abundance of these molecules was found to correlate with MRI and histological degenerative grades. The candidate biomarkers identified have the potential to improve patient care by facilitating minimally-invasive, specific assessment of joint disease progression and response to therapeutic intervention.


Asunto(s)
Artropatías , Mucopolisacaridosis I , Perros , Animales , Mucopolisacaridosis I/patología , Proteómica , Calidad de Vida , Artropatías/metabolismo , Líquido Sinovial/metabolismo , Biomarcadores/metabolismo , Progresión de la Enfermedad
8.
Mol Genet Metab ; 135(2): 122-132, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35012890

RESUMEN

OBJECTIVE: To assess our hypothesis that brain macrostructure is different in individuals with mucopolysaccharidosis type I (MPS I) and healthy controls (HC), we conducted a comprehensive multicenter study using a uniform quantitative magnetic resonance imaging (qMRI) protocol, with analyses that account for the effects of disease phenotype, age, and cognition. METHODS: Brain MRIs in 23 individuals with attenuated (MPS IA) and 38 with severe MPS I (MPS IH), aged 4-25 years, enrolled under the study protocol NCT01870375, were compared to 98 healthy controls. RESULTS: Cortical and subcortical gray matter, white matter, corpus callosum, ventricular and choroid plexus volumes in MPS I significantly differed from HC. Thicker cortex, lower white matter and corpus callosum volumes were already present at the youngest MPS I participants aged 4-5 years. Age-related differences were observed in both MPS I groups, but most markedly in MPS IH, particularly in cortical gray matter metrics. IQ scores were inversely associated with ventricular volume in both MPS I groups and were positively associated with cortical thickness only in MPS IA. CONCLUSIONS: Quantitatively-derived MRI measures distinguished MPS I participants from HC as well as severe from attenuated forms. Age-related neurodevelopmental trajectories in both MPS I forms differed from HC. The extent to which brain structure is altered by disease, potentially spared by treatment, and how it relates to neurocognitive dysfunction needs further exploration.


Asunto(s)
Mucopolisacaridosis I , Sustancia Blanca , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Mucopolisacaridosis I/patología , Neuroimagen , Sustancia Blanca/patología
9.
Bone ; 154: 116237, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34695616

RESUMEN

Mucopolysaccharidosis (MPS) I is a lysosomal storage disease characterized by deficient activity of the enzyme alpha-L-iduronidase, leading to abnormal accumulation of heparan and dermatan sulfate glycosaminoglycans in cells and tissues. Patients commonly exhibit progressive skeletal abnormalities, in part due to failures of endochondral ossification during postnatal growth. Previously, using the naturally-occurring canine model, we showed that bone and cartilage cells in MPS I exhibit elevated lysosomal storage from an early age and that animals subsequently exhibit significantly diminished vertebral trabecular bone formation. Wnts are critical regulators of endochondral ossification that depend on glycosaminoglycans for signaling. The objective of this study was to examine whether lithium, a glycogen synthase kinase-3 inhibitor and stimulator of Wnt/beta-catenin signaling, administered during postnatal growth could attenuate progression of vertebral trabecular bone disease in MPS I. MPS I dogs were treated orally with therapeutic levels of lithium carbonate from 14 days to 6 months-of-age. Untreated heterozygous and MPS I dogs served as controls. Serum was collected at 3 and 6 months for assessment of bone turnover markers. At the study end point, thoracic vertebrae were excised and assessed using microcomputed tomography and histology. Lithium-treated animals exhibited significantly improved trabecular spacing, number and connectivity density, and serum bone-specific alkaline phosphatase levels compared to untreated animals. Growth plates from lithium-treated animals exhibited increased numbers of hypertrophic chondrocytes relative to both untreated MPS I and heterozygous animals. These findings suggest that bone and cartilage cells in MPS I are still capable of responding to exogenous osteogenic signals even in the presence of significant lysosomal storage, and that targeted osteogenic therapies may represent a promising approach for attenuating bone disease progression in MPS I.


Asunto(s)
Enfermedades Óseas , Mucopolisacaridosis I , Animales , Enfermedades Óseas/terapia , Modelos Animales de Enfermedad , Perros , Humanos , Litio/uso terapéutico , Mucopolisacaridosis I/tratamiento farmacológico , Mucopolisacaridosis I/patología , Vértebras Torácicas/patología , Microtomografía por Rayos X
12.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360653

RESUMEN

Mucopolysaccharidosis (MPS) type I and II are two closely related lysosomal storage diseases associated with disrupted glycosaminoglycan catabolism. In MPS II, the first step of degradation of heparan sulfate (HS) and dermatan sulfate (DS) is blocked by a deficiency in the lysosomal enzyme iduronate 2-sulfatase (IDS), while, in MPS I, blockage of the second step is caused by a deficiency in iduronidase (IDUA). The subsequent accumulation of HS and DS causes lysosomal hypertrophy and an increase in the number of lysosomes in cells, and impacts cellular functions, like cell adhesion, endocytosis, intracellular trafficking of different molecules, intracellular ionic balance, and inflammation. Characteristic phenotypical manifestations of both MPS I and II include skeletal disease, reflected in short stature, inguinal and umbilical hernias, hydrocephalus, hearing loss, coarse facial features, protruded abdomen with hepatosplenomegaly, and neurological involvement with varying functional concerns. However, a few manifestations are disease-specific, including corneal clouding in MPS I, epidermal manifestations in MPS II, and differences in the severity and nature of behavioral concerns. These phenotypic differences appear to be related to different ratios between DS and HS, and their sulfation levels. MPS I is characterized by higher DS/HS levels and lower sulfation levels, while HS levels dominate over DS levels in MPS II and sulfation levels are higher. The high presence of DS in the cornea and its involvement in the arrangement of collagen fibrils potentially causes corneal clouding to be prevalent in MPS I, but not in MPS II. The differences in neurological involvement may be due to the increased HS levels in MPS II, because of the involvement of HS in neuronal development. Current treatment options for patients with MPS II are often restricted to enzyme replacement therapy (ERT). While ERT has beneficial effects on respiratory and cardiopulmonary function and extends the lifespan of the patients, it does not significantly affect CNS manifestations, probably because the enzyme cannot pass the blood-brain barrier at sufficient levels. Many experimental therapies, therefore, aim at delivery of IDS to the CNS in an attempt to prevent neurocognitive decline in the patients.


Asunto(s)
Enfermedades de la Córnea/complicaciones , Células Epidérmicas/patología , Mucopolisacaridosis II/patología , Mucopolisacaridosis I/patología , Enfermedades del Sistema Nervioso/complicaciones , Animales , Humanos , Mucopolisacaridosis I/etiología , Mucopolisacaridosis II/etiología
13.
Mol Genet Metab ; 133(3): 289-296, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34090760

RESUMEN

INTRODUCTION: Musculoskeletal findings in MPS can progress after enzyme replacement. Our aim was to examine synovial recesses, tendons, retinacula and pulleys using ultrasonography for structural and inflammatory changes. MATERIAL AND METHODS: The wrist, metacarpophalangeal (MCP), proximal and distal interphalangeal (PIP and DIP) joints, the finger flexor tendons and the knee including entheses of quadriceps and patella tendons were assessed clinically. Ultrasonography of the various synovial recesses of the wrist as well as the extensor retinaculum, carpal tunnel, MCP, PIP and DIP joints of the second finger, extensor and flexor tendons, A1-5 pulleys and the knee joint including relevant entheses followed. Significance of differences between patient values and available normative data were assessed using t-tests. RESULTS: Ultrasonography showed significant abnormal intraarticular material in the wrist without a clear distribution to synovial recesses and without effusions. Doppler signals were found in a perisynovial distribution and not intrasynovial as expected in in inflammatory arthritis. Findings were similar in the knee but not the fingers. Flexor and extensor tendons were also mostly normal in their structure but significant thickening of retinaculae and the flexor tendon pulleys was seen (p<0.0001 compared to normal). CONCLUSION: MPS I patients showed intraarticular deposition of abnormal material in the wrist and knee but not in the finger joints where significant thickening of retinaculae/pulleys controlling tendon position was dominant. No ultrasound findings of inflammatory pathology were demonstrated but rather a secondary reaction to abnormal deposition and direct damage of GAG.


Asunto(s)
Dedos/diagnóstico por imagen , Articulación de la Rodilla/diagnóstico por imagen , Mucopolisacaridosis I/diagnóstico por imagen , Ultrasonografía/métodos , Muñeca/diagnóstico por imagen , Adolescente , Niño , Preescolar , Articulaciones de los Dedos/diagnóstico por imagen , Dedos/patología , Humanos , Inflamación , Articulación de la Rodilla/patología , Mucopolisacaridosis I/patología , Datos Preliminares , Tendones/diagnóstico por imagen , Muñeca/patología , Adulto Joven
14.
Glycobiology ; 31(10): 1319-1329, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34192316

RESUMEN

Mucopolysaccharidosis type I (MPS-I) is a rare lysosomal storage disorder caused by deficiency of the enzyme alpha-L-iduronidase, which removes iduronic acid in both chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) and thereby contributes to the catabolism of glycosaminoglycans (GAGs). To ameliorate this genetic defect, the patients are currently treated by enzyme replacement and bone marrow transplantation, which have a number of drawbacks. This study was designed to develop an alternative treatment by inhibition of iduronic acid formation. By screening the Prestwick drug library, we identified ebselen as a potent inhibitor of enzymes that produce iduronic acid in CS/DS and HS. Ebselen efficiently inhibited iduronic acid formation during CS/DS synthesis in cultured fibroblasts. Treatment of MPS-I fibroblasts with ebselen not only reduced accumulation of CS/DS but also promoted GAG degradation. In early Xenopus embryos, this drug phenocopied the effect of downregulation of DS-epimerase 1, the main enzyme responsible for iduronic production in CS/DS, suggesting that ebselen inhibits iduronic acid production in vivo. However, ebselen failed to ameliorate the CS/DS and GAG burden in MPS-I mice. Nevertheless, the results propose a potential of iduronic acid substrate reduction therapy for MPS-I patients.


Asunto(s)
Fibroblastos/efectos de los fármacos , Glicosaminoglicanos/antagonistas & inhibidores , Ácido Idurónico/antagonistas & inhibidores , Isoindoles/farmacología , Mucopolisacaridosis I/tratamiento farmacológico , Compuestos de Organoselenio/farmacología , Relación Dosis-Respuesta a Droga , Fibroblastos/metabolismo , Fibroblastos/patología , Glicosaminoglicanos/metabolismo , Células HEK293 , Humanos , Ácido Idurónico/metabolismo , Isoindoles/química , Estructura Molecular , Mucopolisacaridosis I/metabolismo , Mucopolisacaridosis I/patología , Compuestos de Organoselenio/química , Relación Estructura-Actividad
15.
J Inherit Metab Dis ; 44(5): 1088-1098, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34189746

RESUMEN

Mucopolysaccharidoses type I (MPS I) is an inherited metabolic disease characterized by a malfunction of the α-l-iduronidase (IDUA) enzyme leading to the storage of glycosaminoglycans in the lysosomes. This disease has longtime been studied as a therapeutic target for those studying gene therapy and many studies have been done using various vectors to deliver the IDUA gene for corrective treatment. Many vectors have difficulties with efficacy and insertional mutagenesis concerns including adeno-associated viral (AAV) vectors. Studies of AAV vectors treating MPS I have seemed promising, but recent deaths in gene therapy clinical trials for other inherited diseases using AAV vectors have left questions about their safety. Additionally, the recent modifications to adenoviral vectors leading them to target the vascular endothelium minimizing the risk of hepatotoxicity could lead to them being a viable option for MPS I gene therapy when coupled with gene editing technologies like CRISPR/Cas9.


Asunto(s)
Edición Génica/métodos , Terapia Genética/métodos , Iduronidasa/genética , Mucopolisacaridosis I/terapia , Animales , Sistemas CRISPR-Cas , Dependovirus/genética , Modelos Animales de Enfermedad , Expresión Génica , Vectores Genéticos/genética , Glicosaminoglicanos/orina , Humanos , Iduronidasa/análisis , Iduronidasa/metabolismo , Mucopolisacaridosis I/patología
16.
Rev. Asoc. Odontol. Argent ; 109(1): 34-40, ene.-abr. 2021. ilus, tab
Artículo en Español | LILACS | ID: biblio-1281050

RESUMEN

Objetivo: Describir las características bucales prevalentes de pacientes argentinos con mucopolisacaridosis (MPS) atendidos en el Servicio de Odontología del Hospital Nacional "Prof. Alejandro Posadas". Materiales y métodos: Se consideraron las historias clínicas de 19 pacientes con diagnóstico de MPS. Se registraron la edad, el sexo, el lugar de residencia, el tipo de MPS y la presencia de retraso madurativo. La muestra estuvo constituida por 13 niños (6,7±3 años) y 6 adultos (26±9 años): 2 eran mujeres (1 con MPS tipo I; 1 con MPS tipo IV A) y 17 eran hombres (15 con MPS tipo 2; 1 con MPS tipo 1; 1 con MPS tipo III); 13 de los pacientes presentaban discapacidad intelectual. Se evaluaron: tipo de dentición, oclusión, macroglosia, hipoplasias del esmalte, tipo de respiración predominante, clase molar y tratamiento realizado. Resultados: Ambos casos con MPS I presentaban mordida abierta anterior y giroversión dental, y solo uno de estos, diastemas, microdoncia, hipoplasias del esmalte, macroglosia y respiración bucal. De los 15 pacientes con MPS II, 11 presentaban mordida abierta anterior (73%), 3 mordida cruzada posterior (20%), 5 giroversión dental (33%), 11 diastemas (73%), 3 retraso en la erupción (20%), 4 hiperplasia gingival (26%), 13 macroglosia (87%), 7 hipoplasias del esmalte (47%), 2 microdoncia (13%), 9 respiración bucal (60%). Se registraron 5 pacientes con clase molar I (33%), 3 con clase molar II (20%), 3 con clase molar III (20%) y en 3 casos no se pudo evaluar (20%). En el paciente con MPS tipo III se halló mordida abierta anterior, diastemas, retraso en la erupción, macroglosia, respiración bucal y clase molar II; y en el caso de MPS tipo IV A, mordida abierta anterior, diastemas, hiperplasia gingival, macroglosia y clase molar II. El 90% de los pacientes requirió tratamiento odontológico (AU)


Aim: To identify the most prevalent oral manifestations of 19 Argentine patients with mucopolysaccharidos (MPS) attending the Dentistry Service of the National Posadas Hospital. Materials and methods: The medical records of 19 patients diagnosed with MPS were considered. Age, sex, place of residence, type of MPS, and presence of maturational delay were recorded. The sample consisted of 13 children (6.7 ± 3 years) and 6 adults (26 ± 9 years): 2 were women (1 with MPS type I; 1 with MPS type IV A) and 17 were men (15 with MPS type 2; 1 with MPS type 1; 1 with MPS type III); 13 of the patients had intellectual disabilities. The following were evaluated: type of dentition, occlusion, macroglossia, enamel hypoplasia, predominant type of respiration, molar class and treatment performed Results: Both cases with MPS I presented anterior open bite and dental gyroversion, and only one of these, diastemas, microdontia, enamel hypoplasia, macroglossia and mouth respiration. Of the 15 patients with MPS II, 11 presented anterior open bite (73%), 3 posterior crossbite (20%), 5 dental gyroversion (33%), 11 diastemas (73%), 3 delayed eruption (20%), 4 gingival hyperplasia (26%), 13 macroglossia (87%), 7 enamel hypoplasia (47%), 2 microdontia (13%), 9 mouth breathing (60%). 5 patients with molar class I (33%), 3 with molar class II (20%), 3 with molar class III (20%) and in 3 cases it could not be evaluated (20%). In the patient with type III MPS, anterior open bite, diastemas, delayed eruption, macroglossia, mouth breathing and molar class II were found; and in the case of type IV A MPS, anterior open bite, diastemas, gingival hyperplasia, macroglossia and molar class II. 90% of the patients required dental treatment. Conclusion: The most observed oral manifestations were macroglossia (84.2%) and anterior open bite (73%) (AU)


Asunto(s)
Humanos , Masculino , Femenino , Niño , Adolescente , Adulto , Manifestaciones Bucales , Mucopolisacaridosis II/patología , Mucopolisacaridosis I/patología , Mucopolisacaridosis III/patología , Argentina , Epidemiología Descriptiva , Estudios Transversales , Mordida Abierta/epidemiología , Servicio Odontológico Hospitalario/estadística & datos numéricos , Distribución por Edad y Sexo , Macroglosia/epidemiología , Maloclusión/epidemiología
17.
Mol Genet Metab ; 133(1): 8-34, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33741271

RESUMEN

MPS disorders are associated with a wide spectrum of neurocognitive effects, from mild problems with attention and executive functions to progressive and degenerative neuronopathic disease. Studies of the natural history of neurocognition are necessary to determine the profile of abnormality and the rates of change, which are crucial to select endpoints for clinical trials of brain treatments and to make clinical recommendations for interventions to improve patients' quality of life. The goal of this paper is to review neurocognitive natural history studies to determine the current state of knowledge and assist in directing future research in all MPS disorders. There are seven different types of MPS diseases, each resulting from a specific enzyme deficiency and each having a separate natural history. MPS IX, will not be discussed as there are only 4 cases reported in the literature without cognitive abnormality. For MPS IH, hematopoietic cell transplant (HCT) is standard of care and many studies have documented the relationship between age at treatment and neurocognitive outcome, and to a lesser extent, neurocognitive status at baseline. However, the mortality and morbidity associated with the transplant process and residual long-term problems after transplant, have led to renewed efforts to find better treatments. Rather than natural history, new trials will likely need to use the developmental trajectories of the patients with HCT as a comparators. The literature has extensive data regarding developmental trajectories post-HCT. For attenuated MPS I, significant neurocognitive deficits have been documented, but more longitudinal data are needed in order to support a treatment directed at their attention and executive function abnormalities. The neuronopathic form of MPS II has been a challenge due to the variability of the trajectory of the disease with differences in timing of slowing of development and decline. Finding predictors of the course of the disease has only been partially successful, using mutation type and family history. Because of lack of systematic data and clinical trials that precede a thorough understanding of the disease, there is need for a major effort to gather natural history data on the entire spectrum of MPS II. Even in the attenuated disease, attention and executive function abnormalities need documentation. Lengthy detailed longitudinal studies are needed to encompass the wide variability in MPS II. In MPS IIIA, the existence of three good natural history studies allowed a quasi-meta-analysis. In patients with a rapid form of the disease, neurocognitive development slowed up until 42 to 47 months, halted up to about 54 months, then declined rapidly thereafter, with a leveling off at an extremely low age equivalent score below 22 months starting at about chronological age of 6. Those with slower or attenuated forms have been more variable and difficult to characterize. Because of the plethora of studies in IIIA, it has been recommended that data be combined from natural history studies to minimize the burden on parents and patients. Sufficient data exists to understand the natural history of cognition in MPS IIIA. MPS IIIB is quite similar to IIIA, but more attenuated patients in that phenotype have been reported. MPS IIIC and D, because they are so rare, have little documentation of natural history despite the prospects of treatments. MPS IV and VI are the least well documented of the MPS disorders with respect to their neurocognitive natural history. Because, like attenuated MPS I and II, they do not show progression of neurocognitive abnormality and most patients function in the range of normality, their behavioral, attentional, and executive function abnormalities have been ignored to the detriment of their quality of life. A peripheral treatment for MPS VII, extremely rare even among MPS types, has recently been approved with a post-approval monitoring system to provide neurocognitive natural history data in the future. More natural history studies in the MPS forms with milder cognitive deficits (MPS I, II, IV, and VI) are recommended with the goal of improving these patients' quality of life with and without new brain treatments, beyond the benefits of available peripheral enzyme replacement therapy. Recommendations are offered at-a-glance with respect to what areas most urgently need attention to clarify neurocognitive function in all MPS types.


Asunto(s)
Mucopolisacaridosis III/genética , Mucopolisacaridosis II/genética , Mucopolisacaridosis I/genética , Trastornos Neurocognitivos/genética , Encéfalo/metabolismo , Encéfalo/patología , Cognición/fisiología , Terapia de Reemplazo Enzimático , Trasplante de Células Madre Hematopoyéticas , Humanos , Mucopolisacaridosis I/patología , Mucopolisacaridosis I/terapia , Mucopolisacaridosis II/patología , Mucopolisacaridosis II/terapia , Mucopolisacaridosis III/patología , Mucopolisacaridosis III/terapia , Trastornos Neurocognitivos/patología , Trastornos Neurocognitivos/terapia , Calidad de Vida
18.
Acta Histochem ; 123(2): 151678, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33434858

RESUMEN

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder characterized by alpha-L-iduronidase (IDUA) deficiency, an enzyme responsible for glycosaminoglycan degradation. Musculoskeletal impairment is an important component of the morbidity related to the disease, as it has a major impact on patients' quality of life. To understand how this disease affects bone structure, morphological, biomechanical and histological analyses of femurs from 3- and 6-month-old wild type (Idua +/+) and MPS I knockout mice (Idua -/-) were performed. Femurs from 3-month-old Idua -/- mice were found to be smaller and less resistant to fracture when compared to their age matched controls. In addition, at this age, the femurs presented important alterations in articular cartilage, trabecular bone architecture, and deposition of type I and III collagen. At 6 months of age, femurs from Idua -/- mice were more resistant to fracture than those from Idua +/+. Our results suggest that the abnormalities observed in bone matrix and articular cartilage in 3-month-old Idua -/- animals caused bone tissue to be less flexible and more likely to fracture, whereas in 6-month-old Idua -/- group the ability to withstand more load before fracturing than wild type animals is possibly due to changes in the bone matrix.


Asunto(s)
Iduronidasa/metabolismo , Mucopolisacaridosis I/metabolismo , Mucopolisacaridosis I/patología , Animales , Fenómenos Biomecánicos/fisiología , Colágeno/metabolismo , Modelos Animales de Enfermedad , Femenino , Fémur/enzimología , Fémur/metabolismo , Fémur/patología , Iduronidasa/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucopolisacaridosis I/enzimología
19.
Protein J ; 40(1): 68-77, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33389473

RESUMEN

Mucopolysaccharidosis type I is a rare autosomal recessive genetic disease caused by deficient activity of α-L-iduronidase. As a consequence of low or absent activity of this enzyme, glycosaminoglycans accumulate in the lysosomal compartments of multiple cell types throughout the body. Mucopolysaccharidosis type I has been classified into 3 clinical subtypes, ranging from a severe Hurler form to the more attenuated Hurler-Scheie and Scheie phenotypes. Over 200 gene variants causing the various forms of mucopolysaccharidosis type I have been reported. DNA isolated from dried blood spot was used to sequencing of all exons of the IDUA gene from a patient with a clinical phenotype of severe mucopolysaccharidosis type I syndrome. Enzyme activity of α-L-iduronidase was quantified by fluorimetric assay. Additionally, a molecular dynamics simulation approach was used to determine the effect of the Ser633Trp mutation on the structure and dynamics of the α-L-iduronidase. The DNA sequencing analysis and enzymatic activity shows a c.1898C>G mutation associated a patient with a homozygous state and α-L-iduronidase activity of 0.24 µmol/L/h, respectively. The molecular dynamics simulation analysis shows that the p.Ser633Trp mutation on the α-L-iduronidase affect significant the temporal and spatial properties of the different structural loops, the N-glycan attached to Asn372 and amino acid residues around the catalytic site of this enzyme. Low enzymatic activity observed for p.Ser633Trp variant of the α-L-iduronidase seems to lead to severe mucopolysaccharidosis type I phenotype, possibly associated with a perturbation of the structural dynamics in regions of the enzyme close to the active site.


Asunto(s)
Anomalías Múltiples/genética , Dermatán Sulfato/química , Heparitina Sulfato/química , Iduronidasa/química , Mucopolisacaridosis I/genética , Mutación Puntual , Anomalías Múltiples/enzimología , Anomalías Múltiples/patología , Anomalías Múltiples/terapia , Dominio Catalítico , Cristalografía por Rayos X , Dermatán Sulfato/metabolismo , Terapia de Reemplazo Enzimático/métodos , Expresión Génica , Heparitina Sulfato/metabolismo , Humanos , Iduronidasa/genética , Iduronidasa/metabolismo , Lactante , Masculino , Simulación de Dinámica Molecular , Mucopolisacaridosis I/enzimología , Mucopolisacaridosis I/patología , Mucopolisacaridosis I/terapia , Análisis de Componente Principal , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Especificidad por Sustrato
20.
Mol Biol Rep ; 48(1): 363-370, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33319323

RESUMEN

Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease caused by a mutation in the IDUA gene, which codes α-L-iduronidase (IDUA), a lysosomal hydrolase that degrades two glycosaminoglycans (GAGs): heparan sulfate (HS) and dermatan sulfate (DS). GAGs are macromolecules found mainly in the extracellular matrix and have important signaling and structural roles which are essential to the maintenance of cell and tissue physiology. Nondegraded GAGs accumulate in various cell types, which characterizes MPS I as a multisystemic progressive disease. Many tissues and vital organs have been described in MPS I models, but there is a lack of studies focused on their effects on the reproductive tract. Our previous studies indicated lower sperm production and morphological damage in the epididymis and accessory glands in male MPS I mice, despite their ability to copulate and to impregnate females. Our aim was to improve the testicular characterization of the MPS I model, with a specific focus on ultrastructural observation of the different cell types that compose the seminiferous tubules and interstitium. We investigated the testicular morphology of 6-month-old male C57BL/6 wild-type (Idua+/+) and MPS I (Idua-/-) mice. We found vacuolated cells widely present in the interstitium and important signs of damage in myoid, Sertoli and Leydig cells. In the cytoplasmic region of Sertoli cells, we found an increased number of vesicles with substrates under digestion and a decreased number of electron-dense vesicles similar to lysosomes, suggesting an impaired flux of substrate degradation. Conclusions: Idua exerts an important role in the morphological maintenance of the seminiferous tubules and the testicular interstitium, which may influence the quality of spermatogenesis, having a greater effect with the progression of the disease.


Asunto(s)
Glicosaminoglicanos/genética , Enfermedades por Almacenamiento Lisosomal/genética , Mucopolisacaridosis I/genética , Células de Sertoli/patología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Células Intersticiales de Cajal/metabolismo , Células Intersticiales de Cajal/patología , Células Intersticiales del Testículo/metabolismo , Células Intersticiales del Testículo/patología , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Masculino , Ratones , Mucopolisacaridosis I/metabolismo , Mucopolisacaridosis I/patología , Mutación/genética , Células de Sertoli/metabolismo , Espermatozoides/metabolismo , Espermatozoides/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...