Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Dev Cell ; 59(10): 1269-1283.e6, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38565145

RESUMEN

Progenitor cells adapt their behavior in response to tissue demands. However, the molecular mechanisms controlling esophageal progenitor decisions remain largely unknown. Here, we demonstrate the presence of a Troy (Tnfrsf19)-expressing progenitor subpopulation localized to defined regions along the mouse esophageal axis. Lineage tracing and mathematical modeling demonstrate that Troy-positive progenitor cells are prone to undergoing symmetrical fate choices and contribute to esophageal tissue homeostasis long term. Functionally, TROY inhibits progenitor proliferation and enables commitment to differentiation without affecting fate symmetry. Whereas Troy expression is stable during esophageal homeostasis, progenitor cells downregulate Troy in response to tissue stress, enabling proliferative expansion of basal cells refractory to differentiation and reestablishment of tissue homeostasis. Our results demonstrate functional, spatially restricted progenitor heterogeneity in the esophageal epithelium and identify how dynamic regulation of Troy coordinates tissue generation.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Esófago , Células Madre , Animales , Ratones , Células Madre/metabolismo , Células Madre/citología , Esófago/citología , Esófago/metabolismo , Mucosa Esofágica/metabolismo , Mucosa Esofágica/citología , Linaje de la Célula , Epitelio/metabolismo , Homeostasis , Proteínas de Homeodominio
2.
Cell Mol Gastroenterol Hepatol ; 17(6): 923-937, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38340809

RESUMEN

BACKGROUND & AIMS: Epithelial disruption in eosinophilic esophagitis (EoE) encompasses both impaired differentiation and diminished barrier integrity. We have shown that lysyl oxidase (LOX), a collagen cross-linking enzyme, is up-regulated in the esophageal epithelium in EoE. However, the functional roles of LOX in the esophageal epithelium remains unknown. METHODS: We investigated roles for LOX in the human esophageal epithelium using 3-dimensional organoid and air-liquid interface cultures stimulated with interleukin (IL)13 to recapitulate the EoE inflammatory milieu, followed by single-cell RNA sequencing, quantitative reverse-transcription polymerase chain reaction, Western blot, histology, and functional analyses of barrier integrity. RESULTS: Single-cell RNA sequencing analysis on patient-derived organoids revealed that LOX was induced by IL13 in differentiated cells. LOX-overexpressing organoids showed suppressed basal and up-regulated differentiation markers. In addition, LOX overexpression enhanced junctional protein genes and transepithelial electrical resistance. LOX overexpression restored the impaired differentiation and barrier function, including in the setting of IL13 stimulation. Transcriptome analyses on LOX-overexpressing organoids identified an enriched bone morphogenetic protein (BMP) signaling pathway compared with wild-type organoids. In particular, LOX overexpression increased BMP2 and decreased the BMP antagonist follistatin. Finally, we found that BMP2 treatment restored the balance of basal and differentiated cells. CONCLUSIONS: Our data support a model whereby LOX exhibits noncanonical roles as a signaling molecule important for epithelial homeostasis in the setting of inflammation via activation of the BMP pathway in the esophagus. The LOX/BMP axis may be integral in esophageal epithelial differentiation and a promising target for future therapies.


Asunto(s)
Diferenciación Celular , Esofagitis Eosinofílica , Organoides , Proteína-Lisina 6-Oxidasa , Humanos , Esofagitis Eosinofílica/patología , Esofagitis Eosinofílica/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Organoides/metabolismo , Organoides/patología , Interleucina-13/metabolismo , Interleucina-13/farmacología , Mucosa Esofágica/patología , Mucosa Esofágica/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Esófago/patología , Transducción de Señal , Análisis de la Célula Individual , Proteínas Morfogenéticas Óseas/metabolismo
3.
Allergy ; 78(10): 2732-2744, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37287363

RESUMEN

BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic non-IgE-mediated allergic disease of the esophagus. An unbiased proteomics approach was performed to investigate pathophysiological changes in esophageal epithelium. Additionally, an RNAseq-based transcriptomic analysis in paired samples was also carried out. METHODS: Total proteins were purified from esophageal endoscopic biopsies in a cohort of adult EoE patients (n = 25) and healthy esophagus controls (n = 10). Differentially accumulated (DA) proteins in EoE patients compared to control tissues were characterized to identify altered biological processes and signaling pathways. Results were also compared with a quantitative proteome dataset of the human esophageal mucosa. Next, results were contrasted with those obtained after RNAseq analysis in paired samples. Finally, we matched up protein expression with two EoE-specific mRNA panels (EDP and Eso-EoE panel). RESULTS: A total of 1667 proteins were identified, of which 363 were DA in EoE. RNA sequencing in paired samples identified 1993 differentially expressed (DE) genes. Total RNA and protein levels positively correlated, especially in DE mRNA-proteins pairs. Pathway analysis of these proteins in EoE showed alterations in immune and inflammatory responses for the upregulated proteins, and in epithelial differentiation, cornification and keratinization in those downregulated. Interestingly, a set of DA proteins, including eosinophil-related and secreted proteins, were not detected at the mRNA level. Protein expression positively correlated with EDP and Eso-EoE, and corresponded with the most abundant proteins of the human esophageal proteome. CONCLUSIONS: We unraveled for the first time key proteomic features involved in EoE pathogenesis. An integrative analysis of transcriptomic and proteomic datasets provides a deeper insight than transcriptomic alone into understanding complex disease mechanisms.


Asunto(s)
Esofagitis Eosinofílica , Adulto , Humanos , Esofagitis Eosinofílica/patología , Mucosa Esofágica/metabolismo , Proteoma , Proteómica , ARN Mensajero/genética , Epitelio/patología
4.
Clin Exp Immunol ; 212(2): 147-155, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36808213

RESUMEN

Eosinophilic esophagitis is a T-cell-driven allergic condition hallmarked by eosinophil infiltration of the esophagus. Eosinophils exposed to proliferating T cells release galectin-10 and have T-cell suppressive function in vitro. The aims of this study were to evaluate if eosinophils co-localize with T cells and release galectin-10 in the esophagus of patients with eosinophilic esophagitis. Esophageal biopsies from 20 patients with eosinophilic esophagitis were stained for major basic protein, galectin-10, CD4, CD8, CD16, and CD81 and analyzed by immunofluorescence confocal microscopy before and after topical corticosteroid treatment. CD4+ T-cell numbers decreased in the esophageal mucosa of responders to treatment but not in the non-responders. Suppressive (CD16+) eosinophils were present in the esophageal mucosa of patients with active disease and decreased after successful treatment. Unexpectedly, eosinophils and T cells were not in direct contact with each other. Instead, the esophageal eosinophils released large amounts of galectin-10-containing extracellular vesicles and featured cytoplasmic projections that contained galectin-10, both of which disappeared from the esophagus of the responders but remained in the non-responders. To conclude, the presence of CD16+ eosinophils together with the massive release of galectin-10-containing extracellular vesicles in the esophageal mucosa might indicate that eosinophils exert T-cell suppression in eosinophilic esophagitis.


Asunto(s)
Esofagitis Eosinofílica , Humanos , Esofagitis Eosinofílica/metabolismo , Esofagitis Eosinofílica/patología , Mucosa Esofágica/metabolismo , Mucosa Esofágica/patología , Eosinófilos/metabolismo , Galectinas
5.
Tohoku J Exp Med ; 258(3): 195-206, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36070895

RESUMEN

Patients with esophageal squamous cell carcinoma (ESCC) might have a specific mechanism for the carcinogenesis by alcohol consumption in the background esophageal mucosa, and nuclear factor erythroid 2-related factor 2 (NRF2), which plays a protective role against esophageal carcinogenesis, and barrier dysfunction might be associated with this phenomenon. This study aimed to confirm this hypothesis. Twenty patients with superficial ESCCs (ESCC patients) and 20 age- and sex-matched patients without ESCC (non-ESCC patients) were enrolled. Biopsy samples were obtained from non-neoplastic esophageal mucosa: one for histological evaluation, one for quantitative real-time polymerase chain reaction (PCR), and two for the mini-Ussing chamber system to measure transepithelial electrical resistance (TEER) and, thereafter, for PCR. The TEER after acetaldehyde or both acetaldehyde and ethanol exposure did not differ significantly between ESCC and non-ESCC patients. Unlike non-ESCC patients, mRNA levels of NRF2 target genes and claudin4 in ESCC patients tended to decrease after the exposure, with a significant difference between no exposure and both acetaldehyde and ethanol exposure in NRF2 target genes (p < 0.05). Furthermore, in ESCC patients, the decreased tendency of mRNA levels of NRF2 target genes after the exposure was more pronounced in high-risk states, such as aldehyde dehydrogenase 2 (ALDH2) Lys alleles (Glu/Lys + Lys/Lys), Lugol-voiding lesion grade C, and drinking history. In conclusion, the protective role of NRF2 against carcinogenesis from alcohol exposure might be disrupted in the background esophageal mucosa of ESCC patients, which might lead to a high incidence of metachronous ESCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Mucosa Esofágica/metabolismo , Mucosa Esofágica/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Aldehído Deshidrogenasa Mitocondrial/genética , Carcinoma de Células Escamosas/patología , Factor 2 Relacionado con NF-E2/genética , Claudina-4 , Factores de Riesgo , Etanol , Acetaldehído/metabolismo , Carcinogénesis , ARN Mensajero
6.
Artículo en Inglés | MEDLINE | ID: mdl-35564692

RESUMEN

BACKGROUND: Gastroesophageal reflux disease (GERD) may present as nonerosive reflux disease (NERD), erosive esophagitis (EE), or be complicated by Barrett's esophagus (BE). The explanation as to what determines the phenotype of GERD is awaited. Therefore, we assessed the correlation between the growth factors expression and endoscopic as histologic findings in GERD patients. METHODS: The squamous esophageal epithelium of 50 patients (20-NERD, 7-EE, 15-BE, 8 controls) was examined by: (1) magnification endoscopy with evaluation of minimal GERD changes such as: microerosions, white spots, palisade blood vessels visibility, and intrapapillary capillary loops (IPCLs) appearance, (2) histology, (3) immunohistochemistry with evaluation of the expression of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and their receptors (VEGFR and EGFR). RESULTS: The expression of VEGF, but not VEGFR, EGF, and EGFR, was significantly increased in EE patients compared to NERD patients and controls. VEGF levels correlated significantly with the presence of white spots, but not with other minimal endoscopic and histologic features. The EGFR expression correlated positively with basal cell hyperplasia and enlarged IPCLs. CONCLUSIONS: Our findings suggest a correlation between growth factors expression and findings in conventional endoscopy, formation of endoscopic minimal changes, and histologic lesions.


Asunto(s)
Esófago de Barrett , Carcinoma de Células Escamosas , Reflujo Gastroesofágico , Esófago de Barrett/patología , Endoscopía Gastrointestinal , Factor de Crecimiento Epidérmico , Receptores ErbB , Mucosa Esofágica/metabolismo , Mucosa Esofágica/patología , Humanos , Fenotipo , Factor A de Crecimiento Endotelial Vascular
7.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562940

RESUMEN

Transient receptor potential vanilloid 4 (TRPV4) is a non-selective cation channel that is broadly expressed in different human tissues, including the digestive system, where it acts as a molecular sensor and a transducer that regulates a variety of functional activities. Despite the extensive research to determine the role of this channel in the physiology and pathophysiology of different organs, the unique morphological and functional features of TRPV4 in the esophagus remain largely unknown. Ten years ago, TRPV4 was shown to be highly expressed in esophageal epithelial cells where its activation induces Ca2+-dependent ATP release, which, in turn, mediates several functions, ranging from mechanosensation to wound healing. This review summarizes the research progress on TRPV4, and focuses on the functional expression of TRPV4 in esophageal epithelium and its possible role in different esophageal diseases that would support TRPV4 as a candidate target for future therapeutic approaches to treat patients with these conditions.


Asunto(s)
Esófago , Canales Catiónicos TRPV , Células Epiteliales/metabolismo , Mucosa Esofágica/metabolismo , Esófago/metabolismo , Humanos , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
8.
Neurogastroenterol Motil ; 34(6): e14360, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35352852

RESUMEN

BACKGROUND: Mental stress is an important risk factor for gastroesophageal reflux disease (GERD), which interacts with acid reflux and affects the efficacy of single acid suppression treatment. However, the specific mechanism remains elusive, and there is a lack of available models for further support. METHODS: This study established a new compound model combining acid reflux and chronic unpredictable mild stress (CUMS) to observe potential peripheral and central pathophysiological changes. KEY RESULTS: Rats in the compound model suffered from significant weight loss and manifested depression-like behaviours. In addition, the acid reflux was not aggravated despite the presence of mental stress, along with dilated intercellular space (DIS), increased expression of desmoglein-1 (DSG1) mRNA, and injury of the lower oesophageal mucosa. The balance between pro-inflammatory and anti-inflammatory factors was disrupted. In the hypothalamus of rats in the compound model, the expression of corticosterone-releasing factor (CRF) and its receptors, protein kinase A (PKA), and γ-aminobutyric acid (GABA) receptors were decreased. This might be related to the "escape" of stress, which weakened the suppressive effect on excitatory transmission to cope with the damage of pressure to the body. CONCLUSIONS & INFERENCES: Mental stress and acid reflux affect GERD through peripheral and central aspects, which can result in the poor efficacy of acid inhibitors. This may provide a new direction for the treatment of GERD.


Asunto(s)
Esofagitis Péptica , Reflujo Gastroesofágico , Animales , Mucosa Esofágica/metabolismo , Reflujo Gastroesofágico/complicaciones , Pirosis , Ratas
9.
Gastroenterology ; 162(2): 521-534.e8, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34627858

RESUMEN

BACKGROUND & AIMS: Microbiota composition and mechanisms of host-microbiota interactions in the esophagus are unclear. We aimed to uncover fundamental information about the esophageal microbiome and its potential significance to eosinophilic esophagitis (EoE). METHODS: Microbiota composition, transplantation potential, and antibiotic responsiveness in the esophagus were established via 16S ribosomal RNA sequencing. Functional outcomes of microbiota colonization were assessed by RNA sequencing analysis of mouse esophageal epithelium and compared with the human EoE transcriptome. The impact of dysbiosis was assessed using a preclinical model of EoE. RESULTS: We found that the murine esophagus is colonized with diverse microbial communities within the first month of life. The esophageal microbiota is distinct, dominated by Lactobacillales, and demonstrates spatial heterogeneity as the proximal and distal esophagus are enriched in Bifidobacteriales and Lactobacillales, respectively. Fecal matter transplantation restores the esophageal microbiota, demonstrating that the local environment drives diversity. Microbiota colonization modifies esophageal tissue morphology and gene expression that is enriched in pathways associated with epithelial barrier function and overlapping with genes involved in EoE, including POSTN, KLK5, and HIF1A. Finally, neonatal antibiotic treatment reduces the abundance of Lactobacillales and exaggerates type 2 inflammation in the esophagus. Clinical data substantiated loss of esophageal Lactobacillales in EoE compared with controls. CONCLUSIONS: The esophagus has a unique microbiome with notable differences between its proximal and distal regions. Fecal matter transplantation restores the esophageal microbiome. Antibiotic-induced dysbiosis exacerbates disease in a murine model of EoE. Collectively, these data establish the composition, transplantation potential, antibiotic responsiveness, and host-microbiota interaction in the esophagus and have implications for gastrointestinal health and disease.


Asunto(s)
Disbiosis/microbiología , Esofagitis Eosinofílica/microbiología , Esófago/microbiología , Interacciones Microbiota-Huesped/fisiología , Animales , Bifidobacterium/genética , Moléculas de Adhesión Celular/genética , Disbiosis/genética , Disbiosis/metabolismo , Disbiosis/patología , Esofagitis Eosinofílica/genética , Esofagitis Eosinofílica/metabolismo , Esofagitis Eosinofílica/patología , Mucosa Esofágica/metabolismo , Mucosa Esofágica/microbiología , Mucosa Esofágica/patología , Esófago/metabolismo , Esófago/patología , Firmicutes/genética , Expresión Génica , Perfilación de la Expresión Génica , Homeostasis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Calicreínas/genética , Lactobacillales/genética , Ratones , ARN Ribosómico 16S/genética , RNA-Seq
10.
J Immunol Methods ; 497: 113107, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34352237

RESUMEN

Understanding the interplay between immune and structural cells is important for studying fibrosis and inflammation; however, primary immune cell isolation from organs that are typically enriched in stromal cells, like the lung, esophagus, or gut, proves to be an ongoing challenge. In fibrotic conditions, this challenge becomes even greater as infiltrating cells become trapped in the robust extracellular matrix (ECM). This protocol details a method to isolate cells at high yield from stroma-rich organs that can be used for further analyses via flow cytometry, stimulation, or culturing. Validation of this method is confirmed by flow cytometry data assessing immune cell populations of interest. This protocol can be completed in approximately 5-6 h.


Asunto(s)
Separación Celular , Mucosa Esofágica/citología , Citometría de Flujo , Mucosa Intestinal/citología , Piel/patología , Animales , Biomarcadores/metabolismo , Supervivencia Celular , Células Cultivadas , Colagenasas/metabolismo , Endopeptidasas/metabolismo , Mucosa Esofágica/inmunología , Mucosa Esofágica/metabolismo , Fibrosis , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Ratones Endogámicos C57BL , Piel/inmunología , Piel/metabolismo , Factores de Tiempo , Tripsina/metabolismo , Flujo de Trabajo
11.
Am J Physiol Gastrointest Liver Physiol ; 321(3): G335-G343, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34405732

RESUMEN

Obesity is associated with gastroesophageal reflux disease (GERD) and its complications including reflux esophagitis, Barrett's esophagus, and esophageal adenocarcinoma. Traditionally, these associations have been attributed to the mechanical effect of abdominal fat in increasing intra-abdominal pressure, thereby promoting gastroesophageal reflux and causing disruption of antireflux mechanisms at the esophagogastric junction. However, recent studies suggest that visceral adipose tissue (VAT) produces numerous cytokines that can cause esophageal inflammation and impair esophageal mucosal barrier integrity through reflux-independent mechanisms that render the esophageal mucosa especially susceptible to GERD-induced injury. In this report, we review mechanisms of esophageal mucosal defense, the genesis and remodeling of visceral adipose tissue during obesity, and the potential role of substances produced by VAT, especially the VAT that encircles the esophagogastric junction, in the impairment of esophageal mucosal barrier integrity that leads to the development of GERD complications.


Asunto(s)
Esófago de Barrett/patología , Mucosa Esofágica/metabolismo , Reflujo Gastroesofágico/patología , Obesidad/patología , Esófago de Barrett/metabolismo , Mucosa Esofágica/patología , Esofagitis Péptica/metabolismo , Esofagitis Péptica/patología , Esófago/patología , Reflujo Gastroesofágico/metabolismo , Humanos , Obesidad/metabolismo
12.
Am J Gastroenterol ; 116(7): 1537-1541, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33955725

RESUMEN

INTRODUCTION: We assessed if obesity perturbs the esophageal epithelial barrier function independent of promotion of gastroesophageal reflux (GER). METHODS: Thirty-eight participants were divided into 4 groups: Obesity-/GER-, Obesity+/GER-, Obesity-/GER+, and Obesity+/GER+. Esophageal intercellular space and desmosome density (structural integrity) and fluorescein leak (functional integrity) were measured. RESULTS: The Obesity+/GER- group demonstrated increased intercellular space, reduced desmosome density, and increased fluorescein leak compared with control subjects. These changes were similar but not additive to findings seen in Obesity-/GER + and Obesity+/GER+ patients. DISCUSSION: Central obesity impairs structural and functional integrity of the esophageal barrier independent of GER, likely predisposing to esophageal injury.


Asunto(s)
Mucosa Esofágica/metabolismo , Espacio Extracelular , Reflujo Gastroesofágico/metabolismo , Obesidad Abdominal/metabolismo , Permeabilidad , Adulto , Anciano , Desmosomas/ultraestructura , Mucosa Esofágica/patología , Mucosa Esofágica/ultraestructura , Femenino , Reflujo Gastroesofágico/complicaciones , Reflujo Gastroesofágico/patología , Humanos , Masculino , Persona de Mediana Edad , Obesidad Abdominal/complicaciones , Obesidad Abdominal/patología
13.
Mucosal Immunol ; 14(5): 1133-1143, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33972688

RESUMEN

Eosinophils accumulate adjacent to epithelial cells in the mucosa of patients with eosinophilic esophagitis (EoE), yet the bidirectional communication between these cells is not well understood. Herein, we investigated the crosstalk between human eosinophils and esophageal epithelial cells. We report that blood-derived eosinophils have prolonged survival when cocultured with epithelial cells; 96 ± 1% and 30 ± 6% viability was observed after 7 and 14 days of coculture, respectively, compared with 1 ± 0% and 0 ± 0% of monoculture. In the presence of IL-13 and epithelial cells, eosinophils had greater survival (68 ± 1%) at 14 days compared with cocultures lacking IL-13. Prolonged eosinophil viability did not require cellular contact and was observed when eosinophils were cultured in conditioned media from esophageal epithelial cells; neutralizing GM-CSF attenuated eosinophil survival. The majority of eosinophil transcripts (58%) were dysregulated in cocultured eosinophils compared with freshly isolated cells. Analysis of epithelial cell transcripts indicated that exposure to eosinophils induced differential expression of a subset of genes that were part of the EoE esophageal transcriptome. Collectively, these results uncover a network of crosstalk between eosinophils and esophageal epithelial cells involving epithelial mediated eosinophil survival and reciprocal changes in cellular transcripts, events likely to occur in EoE.


Asunto(s)
Comunicación Celular , Eosinófilos/fisiología , Células Epiteliales/fisiología , Mucosa Esofágica/inmunología , Mucosa Esofágica/metabolismo , Esofagitis/etiología , Esofagitis/metabolismo , Biomarcadores , Supervivencia Celular , Técnicas de Cocultivo , Citocinas/biosíntesis , Susceptibilidad a Enfermedades , Mucosa Esofágica/patología , Esofagitis/patología , Citometría de Flujo , Expresión Génica , Mediadores de Inflamación/metabolismo , Transcriptoma
14.
Nat Cell Biol ; 23(5): 511-525, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33972733

RESUMEN

Epithelial cells rapidly adapt their behaviour in response to increasing tissue demands. However, the processes that finely control these cell decisions remain largely unknown. The postnatal period covering the transition between early tissue expansion and the establishment of adult homeostasis provides a convenient model with which to explore this question. Here, we demonstrate that the onset of homeostasis in the epithelium of the mouse oesophagus is guided by the progressive build-up of mechanical strain at the organ level. Single-cell RNA sequencing and whole-organ stretching experiments revealed that the mechanical stress experienced by the growing oesophagus triggers the emergence of a bright Krüppel-like factor 4 (KLF4) committed basal population, which balances cell proliferation and marks the transition towards homeostasis in a yes-associated protein (YAP)-dependent manner. Our results point to a simple mechanism whereby mechanical changes experienced at the whole-tissue level are integrated with those sensed at the cellular level to control epithelial cell fate.


Asunto(s)
Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Epiteliales/metabolismo , Homeostasis/fisiología , Animales , Epitelio/metabolismo , Mucosa Esofágica/metabolismo , Humanos , Factor 4 Similar a Kruppel , Ratones , Células Madre/metabolismo
15.
PLoS One ; 16(4): e0250503, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33930060

RESUMEN

BACKGROUND AND AIM: Achalasia represents a chronic motility disorder of the esophagus featuring an impaired lower esophageal sphincter relaxation and loss of esophageal peristalsis. By causing dysphagia, regurgitation, aspiration and chest pain, achalasia might tremendously affect life quality of patients. However, the impact of achalasia on the development of mood disorders including depression has largely remained unclear. The aim of this study was to evaluate the incidence of depression in achalasia patients. METHODS: We analyzed a large primary care cohort database in Germany capturing data from 7.49 million patients. RESULTS: A total of n = 1,057 patients with achalasia diagnosed between January 2005 and December 2018 were matched to a cohort of n = 3,171 patients without achalasia controlling for age, sex, physician, index year, and the Charlson comorbidity index. Interestingly, while the frequency of depression prior to the diagnosis of achalasia was comparable in both groups, new diagnoses of depression were significantly higher within one year after the diagnosis of achalasia compared to the control group, suggesting a direct and previously unrecognized association between achalasia and depression. CONCLUSION: Our data suggest that the clinical management of patients with achalasia should include a careful and structured work-up for mood disorders in order to improve long-term quality of life in these patients.


Asunto(s)
Trastornos de Deglución/epidemiología , Depresión/epidemiología , Acalasia del Esófago/epidemiología , Adulto , Estudios de Cohortes , Trastornos de Deglución/diagnóstico , Trastornos de Deglución/patología , Depresión/complicaciones , Depresión/patología , Acalasia del Esófago/complicaciones , Acalasia del Esófago/patología , Mucosa Esofágica/metabolismo , Mucosa Esofágica/patología , Esfínter Esofágico Inferior/diagnóstico por imagen , Esfínter Esofágico Inferior/patología , Femenino , Alemania/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Pacientes Ambulatorios , Calidad de Vida
16.
Am J Physiol Gastrointest Liver Physiol ; 320(5): G804-G815, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33655767

RESUMEN

The underlying causes of heartburn, characteristic symptom of gastroesophageal reflux disease (GERD), remain incompletely understood. Superficial afferent innervation of the esophageal mucosa in nonerosive reflux disease (NERD) may drive nociceptive reflux perception, but its acid-sensing role has not yet been established. Transient receptor potential vanilloid subfamily member-1 (TRPV1), transient receptor potential melastatin 8 (TRPM8), and acid-sensing ion channel 3 (ASIC3) are regulators of sensory nerve activity and could be important reflux-sensing receptors within the esophageal mucosa. We characterized TRPV1, TRPM8, and ASIC3 expression in esophageal mucosa of patients with GERD. We studied 10 patients with NERD, 10 with erosive reflux disease (ERD), 7 with functional heartburn (FH), and 8 with Barrett's esophagus (BE). Biopsies obtained from the distal esophageal mucosa were costained with TRPV1, TRPM8, or ASIC3, and CGRP, CD45, or E-cadherin. RNA expression of TRPV1, TRPM8, and ASIC3 was assessed using qPCR. Patients with NERD had significantly increased expression of TRPV1 on superficial sensory nerves compared with ERD (P = 0.028) or BE (P = 0.017). Deep intrapapillary nerve endings did not express TRPV1 in all phenotypes studied. ASIC3 was exclusively expressed on epithelial cells most significantly in patients with NERD and ERD (P ≤0.0001). TRPM8 was expressed on submucosal CD45+ leukocytes. Superficial localization of TRPV1-immunoreactive nerves in NERD, and increased ASIC3 coexpression on epithelial cells in NERD and ERD, suggests a mechanism for heartburn sensation. Esophageal epithelial cells may play a sensory role in acid reflux perception and act interdependently with TRPV1-expressing mucosal nerves to augment hypersensitivity in patients with NERD, raising the enticing possibility of topical antagonists for these ion channels as a therapeutic option.NEW & NOTEWORTHY We demonstrate for the first time that increased pain perception in patients with nonerosive reflux disease likely results from expression of acid-sensitive channels on superficial mucosal afferents and esophageal epithelial cells, raising the potential for topical therapy.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Mucosa Esofágica/fisiopatología , Reflujo Gastroesofágico/fisiopatología , Pirosis/fisiopatología , Canales Catiónicos TRPV/metabolismo , Adulto , Anciano , Células Epiteliales/metabolismo , Mucosa Esofágica/metabolismo , Esófago/metabolismo , Esófago/fisiopatología , Femenino , Reflujo Gastroesofágico/metabolismo , Pirosis/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Sensación/fisiología , Adulto Joven
17.
Gastroenterology ; 160(6): 2072-2088.e6, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33581123

RESUMEN

BACKGROUND & AIMS: In upper airway cells, T helper 2 cytokines that signal through interleukin-4 (IL-4) receptor-α have been shown to stimulate eotaxin-3 secretion via a nongastric proton pump (ngH+,K+ATPase). To seek novel targets for eosinophilic esophagitis (EoE) treatments, we evaluated ngH+,K+ATPase expression in EoE squamous cells, and explored molecular pathways involved in eotaxin-3 secretion by IL-4 receptor-α signaling. METHODS: ngH+,K+ATPase expression in EoE cells was evaluated by quantitative real-time polymerase chain reaction and Western blotting. IL-4-stimulated eotaxin-3 secretion was measured by enzyme-linked immunosorbent assay after treatment with omeprazole, SCH 28080 (potassium-competitive acid blocker), ethylene glycol-bis(ß-aminoethyl)-N,N,N',N'-tetraacetoxymethyl ester (calcium chelator), 2-aminoethoxydiphenyl borate (inhibitor of endoplasmic reticulum calcium release), verapamil, and diltiazem (L-type calcium channel inhibitors). Intracellular calcium transients were measured by Fluo-4 fluorescence. Key experiments were confirmed in EoE primary cells and in RNA sequencing datasets from mucosal biopsies of patients with EoE and controls. RESULTS: EoE cells expressed ngH+,K+ATPase messenger RNA and protein. Omeprazole and SCH 28080 decreased IL-4-stimulated eotaxin-3 secretion. IL-4 increased intracellular calcium transients, and IL-4-stimulated eotaxin-3 secretion was blocked by ethylene glycol-bis(ß-aminoethyl)-N,N,N',N'-tetraacetoxymethyl ester, 2-aminoethoxydiphenyl borate, verapamil, and diltiazem. The combination of omeprazole and verapamil suppressed IL-4-stimulated eotaxin-3 secretion more than either agent alone. EoE biopsies expressed higher ngH+,K+ATPase and exhibited more calcium signaling than controls. CONCLUSIONS: EoE cells express a nongastric proton pump that mediates T helper 2 cytokine-stimulated eotaxin-3 secretion. IL-4 induces calcium release from the endoplasmic reticulum and calcium entry via L-type calcium channels, increasing intracellular calcium that contributes to eotaxin-3 secretion by EoE cells. L-type calcium channel inhibitors block T helper 2 cytokine-stimulated eotaxin-3 secretion, suggesting a potential role for these agents in EoE treatment.


Asunto(s)
Quimiocina CCL26/metabolismo , Esofagitis Eosinofílica/metabolismo , Esofagitis Eosinofílica/patología , Células Epiteliales/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Transporte Biológico/efectos de los fármacos , Compuestos de Boro/farmacología , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Línea Celular , Diltiazem/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Mucosa Esofágica/metabolismo , Mucosa Esofágica/patología , Famotidina/farmacología , Femenino , Antagonistas de los Receptores H2 de la Histamina/farmacología , Humanos , Subunidad alfa del Receptor de Interleucina-4/metabolismo , Masculino , Omeprazol/farmacología , Cultivo Primario de Células , Inhibidores de la Bomba de Protones/farmacología , Bombas de Protones/efectos de los fármacos , Bombas de Protones/metabolismo , ARN Mensajero/metabolismo , Ranitidina/farmacología , Transducción de Señal/efectos de los fármacos , Células Th2/metabolismo , Verapamilo/farmacología
18.
Dig Dis Sci ; 66(12): 4263-4273, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33469811

RESUMEN

BACKGROUND: The cellular origin and molecular mechanisms of Barrett's esophagus (BE) are still controversial. Trans-differentiation is a mechanism characterized by activation of the intestinal differentiation program and inactivation of the squamous differentiation program. AIMS: Renal capsule grafting (RCG) was used to elucidate whether CDX2 overexpression on the basis of P63 deficiency in the esophageal epithelium may generate intestinal metaplasia. METHODS: P63-/-;Villin-Cdx2 embryos were generated by crossing P63+/- mice with Villin-Cdx2 mice. E18.5 esophagus was xenografted in a renal capsule grafting (RCG) model. At 1, 2, or 4 weeks after RCG, the mouse esophagus was immunostained for a proliferation marker (BrdU), squamous transcription factors (SOX2, PAX9), squamous differentiation markers (CK5, CK4, and CK1), intestinal transcription factors (CDX1, HNF1α, HNF4α, GATA4, and GATA6), intestinal columnar epithelial cell markers (A33, CK8), goblet cell marker (MUC2, TFF3), Paneth cell markers (LYZ and SOX9), enteroendocrine cell marker (CHA), and Tuft cell marker (DCAMKL1). RESULTS: The P63-/-;Villin-Cdx2 RCG esophagus was lined with proliferating PAS/AB+ cuboidal cells and formed an intestinal crypt-like structure. The goblet cell markers (TFF3 and MUC2) and intestinal transcription factors (CDX1, HNF1α, HNF4α, GATA4, and GATA6) were expressed although no typical morphology of goblet cells was observed. Other intestinal cell markers including enteroendocrine cell marker (CHA), Paneth cell markers (LYZ and Sox9), and intestinal secretory cell marker (UEA/WGA) were also expressed in the P63-/-;Villin-Cdx2 RCG esophagus. Squamous cell markers (PAX9 and SOX2) were also expressed, suggesting a transitional phenotype. CONCLUSION: CDX2 overexpression on the basis of P63 deficiency in esophageal epithelial cells induces Barrett's-like metaplasia in vivo. Additional factors may be needed to drive this transitional phenotype into full-blown BE.


Asunto(s)
Esófago de Barrett/metabolismo , Factor de Transcripción CDX2/biosíntesis , Células Epiteliales/metabolismo , Mucosa Esofágica/metabolismo , Transactivadores/deficiencia , Esófago de Barrett/genética , Esófago de Barrett/patología , Factor de Transcripción CDX2/genética , Proliferación Celular , Células Epiteliales/patología , Mucosa Esofágica/patología , Predisposición Genética a la Enfermedad , Metaplasia , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Fenotipo , Transactivadores/genética
19.
Congenit Anom (Kyoto) ; 61(1): 14-24, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32776381

RESUMEN

The apico-basal (AB) polarity of epithelial cells is maintained by organized arrays of the cytoskeleton and adhesion apparatus. We previously reported that mouse embryonic esophageal epithelium exhibits interkinetic nuclear migration (INM), an AB-polarity-based regulatory mechanism of stem-cell proliferation, and suggested that the pseudostratified single columnar epithelium, a hallmark of INM, is converted to stratified squamous epithelium via rearrangement of the cytoskeleton and cell-adhesion apparatus. Here, we chronologically examined morphological changes in the cytoskeleton and adhesion apparatus in the mouse esophageal epithelium at embryonic day (E) 11.5, E13.5, E14.5, and E15.5, during which epithelial conversion has been suggested to occur. We used phalloidin to examine the apical terminal web (ATW), immunofluorescent anti-zonula occludens protein (ZO-1) antibody to reveal ZO-1, and anti-gamma tubulin antibody to detect primary cilia (PC). At E11.5, a thick ATW, apically oriented ZO-1 and apical PC were observed, indicating a pseudostratified single columnar structure. At E13.5 and E14.5, the phalloidin-staining, ZO-1, and PC distribution patterns were not apically localized, and the epithelial cells appeared to have lost the AB polarity, suggesting conversion of the epithelial structure and cessation of INM. At E15.5, light and transmission electron microscope observations revealed the ATW, ZO-1, PC, and tight junction which were localized into two-1ayers: the apical and subapical layers of the epithelium. These findings suggest that dynamic remodeling of the cytoskeleton and adhesion apparatus is involved in the conversion from pseudostratified single columnar to stratified squamous morphology and is closely related with temporal perturbation of the AB-polarity and cessation of INM.


Asunto(s)
Adhesión Celular , Citoesqueleto/metabolismo , Mucosa Esofágica/citología , Mucosa Esofágica/metabolismo , Esófago/embriología , Organogénesis , Animales , Biomarcadores , Citoesqueleto/ultraestructura , Mucosa Esofágica/ultraestructura , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...