Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.418
Filtrar
1.
Sci Signal ; 17(831): eadh1922, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38593154

RESUMEN

Androgen deprivation therapy (ADT) is the primary treatment for prostate cancer; however, resistance to ADT invariably develops, leading to castration-resistant prostate cancer (CRPC). Prostate cancer progression is marked by increased de novo synthesis of fatty acids due to overexpression of fatty acid synthase (FASN), making this enzyme a therapeutic target for prostate cancer. Inhibition of FASN results in increased intracellular amounts of ceramides and sphingomyelin, leading to DNA damage through the formation of DNA double-strand breaks and cell death. We found that combining a FASNi with the poly-ADP ribose polymerase (PARP) inhibitor olaparib, which induces cell death by blocking DNA damage repair, resulted in a more pronounced reduction in cell growth than that caused by either drug alone. Human CRPC organoids treated with a combination of PARP and FASNi were smaller, had decreased cell proliferation, and showed increased apoptosis and necrosis. Together, these data indicate that targeting FASN increases the therapeutic efficacy of PARP inhibitors by impairing DNA damage repair, suggesting that combination therapies should be explored for CRPC.


Asunto(s)
Inhibidores de Poli(ADP-Ribosa) Polimerasas , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Antagonistas de Andrógenos , Muerte Celular/genética , Línea Celular Tumoral , Daño del ADN , Lípidos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo
2.
Cell Death Dis ; 15(4): 251, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589365

RESUMEN

Cell death mediated by genetically defined signaling pathways influences the health and dynamics of all tissues, however the tissue specificity of cell death pathways and the relationships between these pathways and human disease are not well understood. We analyzed the expression profiles of an array of 44 cell death genes involved in apoptosis, necroptosis, and pyroptosis cell death pathways across 49 human tissues from GTEx, to elucidate the landscape of cell death gene expression across human tissues, and the relationship between tissue-specific genetically determined expression and the human phenome. We uncovered unique cell death gene expression profiles across tissue types, suggesting there are physiologically distinct cell death programs in different tissues. Using summary statistics-based transcriptome wide association studies (TWAS) on human traits in the UK Biobank (n ~ 500,000), we evaluated 513 traits encompassing ICD-10 defined diagnoses and laboratory-derived traits. Our analysis revealed hundreds of significant (FDR < 0.05) associations between genetically regulated cell death gene expression and an array of human phenotypes encompassing both clinical diagnoses and hematologic parameters, which were independently validated in another large-scale DNA biobank (BioVU) at Vanderbilt University Medical Center (n = 94,474) with matching phenotypes. Cell death genes were highly enriched for significant associations with blood traits versus non-cell-death genes, with apoptosis-associated genes enriched for leukocyte and platelet traits. Our findings are also concordant with independently published studies (e.g. associations between BCL2L11/BIM expression and platelet & lymphocyte counts). Overall, these results suggest that cell death genes play distinct roles in their contribution to human phenotypes, and that cell death genes influence a diverse array of human traits.


Asunto(s)
Estudio de Asociación del Genoma Completo , Transcriptoma , Humanos , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Muerte Celular/genética , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad
3.
Curr Protoc ; 4(4): e1023, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606936

RESUMEN

Necroptosis is a form of inflammatory lytic cell death involving active cytokine production and plasma membrane rupture. Progression of necroptosis is tightly regulated in time and space, and its signaling outcomes can shape the local inflammatory environment of cells and tissues. Pharmacological induction of necroptosis is well established, but the diffusive nature of chemical death inducers makes it challenging to study cell-cell communication precisely during necroptosis. Receptor-interacting protein kinase 3, or RIPK3, is a crucial signaling component of necroptosis, acting as a crucial signaling node for both canonical and non-canonical necroptosis. RIPK3 oligomerization is crucial to the formation of the necrosome, which regulates plasma membrane rupture and cytokine production. Commonly used necroptosis inducers can activate multiple downstream signaling pathways, confounding the signaling outcomes of RIPK3-mediated necroptosis. Opsin-free optogenetic techniques may provide an alternative strategy to address this issue. Optogenetics uses light-sensitive protein-protein interaction to modulate cell signaling. Compared to chemical-based approaches, optogenetic strategies allow for spatiotemporal modulation of signal transduction in live cells and animals. We developed an optogenetic system that allows for ligand-free optical control of RIPK3 oligomerization and necroptosis. This article describes the sample preparation, experimental setup, and optimization required to achieve robust optogenetic induction of RIPK3-mediated necroptosis in colorectal HT-29 cells. We expect that this optogenetic system could provide valuable insights into the dynamic nature of lytic cell death. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of lentivirus encoding the optogenetic RIPK3 system Support Protocol: Quantification of the titer of lentivirus Basic Protocol 2: Culturing, chemical transfection, and lentivirus transduction of HT-29 cells Basic Protocol 3: Optimization of optogenetic stimulation conditions Basic Protocol 4: Time-stamped live-cell imaging of HT-29 lytic cell death Basic Protocol 5: Quantification of HT-29 lytic cell death.


Asunto(s)
Optogenética , Transducción de Señal , Humanos , Animales , Muerte Celular/genética , Células HT29 , Citocinas
4.
BMC Musculoskelet Disord ; 25(1): 235, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528539

RESUMEN

BACKGROUND: This study aimed to identify potential biomarkers for the diagnosis and treatment of osteoporosis (OP). METHODS: Data sets were downloaded from the Gene Expression Omnibus database, and differentially programmed cell death-related genes were screened. Functional analyses were performed to predict the biological processes associated with these genes. Least absolute shrinkage and selection operator (LASSO), support vector machine (SVM), and random forest (RF) machine learning algorithms were used to screen for characteristic genes, and receiver operating characteristics were used to evaluate the diagnosis of disease characteristic gene values. Gene set enrichment analysis (GSEA) and single-sample GSEA were conducted to analyze the correlation between characteristic genes and immune infiltrates. Cytoscape and the Drug Gene Interaction Database (DGIdb) were used to construct the mitochondrial RNA-mRNA-transcription factor network and explore small-molecule drugs. Reverse transcription real-time quantitative PCR (RT-qPCR) analysis was performed to evaluate the expression of biomarker genes in clinical samples. RESULTS: In total, 25 differential cell death genes were identified. Among these, two genes were screened using the LASSO, SVM, and RF algorithms as characteristic genes, including BRSK2 and VPS35. In GSE56815, the area under the receiver operating characteristic curve of BRSK2 was 0.761 and that of VPS35 was 0.789. In addition, immune cell infiltration analysis showed that BRSK2 positively correlated with CD56dim natural killer cells and negatively correlated with central memory CD4 + T cells. Based on the data from DGIdb, hesperadin was associated with BRSK2, and melagatran was associated with VPS35. BRSK2 and VPS35 were expectably upregulated in OP group compared with controls (all p < 0.05). CONCLUSIONS: BRSK2 and VPS35 may be important diagnostic biomarkers of OP.


Asunto(s)
Apoptosis , Aprendizaje Automático , Humanos , Muerte Celular/genética , Biomarcadores , Bases de Datos Factuales
5.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38542395

RESUMEN

Mitochondria are involved in multiple aspects of neurodevelopmental processes and play a major role in the pathogenetic mechanisms leading to neuro-degenerative diseases. Fragile-X-related disorders (FXDs) are genetic conditions that occur due to the dynamic expansion of CGG repeats of the FMR1 gene encoding for the RNA-binding protein FMRP, particularly expressed in the brain. This gene expansion can lead to premutation (PM, 56-200 CGGs), full mutation (FM, >200 CGGs), or unmethylated FM (UFM), resulting in neurodegeneration, neurodevelopmental disorders, or no apparent intellectual disability, respectively. To investigate the mitochondrial mechanisms that are involved in the FXD patients, we analyzed mitochondrial morphology and bioenergetics in fibroblasts derived from patients. Donut-shaped mitochondrial morphology and excessive synthesis of critical mitochondrial proteins were detected in FM, PM, and UFM cells. Analysis of mitochondrial oxidative phosphorylation in situ reveals lower respiration in PM fibroblasts. Importantly, mitochondrial permeability transition-dependent apoptosis is sensitized to reactive oxygen species in FM, PM, and UFM models. This study elucidated the mitochondrial mechanisms that are involved in the FXD phenotypes, and indicated altered mitochondrial function and morphology. Importantly, a sensitization to permeability transition and apoptosis was revealed in FXD cells. Overall, our data suggest that mitochondria are novel drug targets to relieve the FXD symptoms.


Asunto(s)
Síndrome del Cromosoma X Frágil , Discapacidad Intelectual , Enfermedades Mitocondriales , Humanos , Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Discapacidad Intelectual/genética , Muerte Celular/genética , Enfermedades Mitocondriales/genética , Mutación , Expansión de Repetición de Trinucleótido
6.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542169

RESUMEN

LESION-SIMULATING DISEASE1 (LSD1) is one of the well-known cell death regulatory proteins in Arabidopsis thaliana. The lsd1 mutant exhibits runaway cell death (RCD) in response to various biotic and abiotic stresses. The phenotype of the lsd1 mutant strongly depends on two other proteins, ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN-DEFICIENT 4 (PAD4) as well as on the synthesis/metabolism/signaling of salicylic acid (SA) and reactive oxygen species (ROS). However, the most interesting aspect of the lsd1 mutant is its conditional-dependent RCD phenotype, and thus, the defined role and function of LSD1 in the suppression of EDS1 and PAD4 in controlled laboratory conditions is different in comparison to a multivariable field environment. Analysis of the lsd1 mutant transcriptome in ambient laboratory and field conditions indicated that there were some candidate genes and proteins that might be involved in the regulation of the lsd1 conditional-dependent RCD phenotype. One of them is METACASPASE 8 (AT1G16420). This type II metacaspase was described as a cell death-positive regulator induced by UV-C irradiation and ROS accumulation. In the double mc8/lsd1 mutant, we discovered reversion of the lsd1 RCD phenotype in response to UV radiation applied in controlled laboratory conditions. This cell death deregulation observed in the lsd1 mutant was reverted like in double mutants of lsd1/eds1 and lsd1/pad4. To summarize, in this work, we demonstrated that MC8 is positively involved in EDS1 and PAD4 conditional-dependent regulation of cell death when LSD1 function is suppressed in Arabidopsis thaliana. Thus, we identified a new protein compound of the conditional LSD1-EDS1-PAD4 regulatory hub. We proposed a working model of MC8 involvement in the regulation of cell death and we postulated that MC8 is a crucial protein in this regulatory pathway.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Muerte Celular/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo
7.
Life Sci ; 344: 122562, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492921

RESUMEN

Polyglutamine/poly(Q) diseases are a group nine hereditary neurodegenerative disorders caused due to abnormally expanded stretches of CAG trinucleotide in functionally distinct genes. All human poly(Q) diseases are characterized by the formation of microscopically discernable poly(Q) positive aggregates, the inclusion bodies. These toxic inclusion bodies are responsible for the impairment of several cellular pathways such as autophagy, transcription, cell death, etc., that culminate in disease manifestation. Although, these diseases remain largely without treatment, extensive research has generated mounting evidences that various events of poly(Q) pathogenesis can be developed as potential drug targets. The present review article briefly discusses the key events of disease pathogenesis, model system-based investigations that support the development of effective therapeutic interventions against pathogenesis of human poly(Q) disorders, and a comprehensive list of pharmacological and bioactive compounds that have been experimentally shown to alleviate poly(Q)-mediated neurotoxicity. Interestingly, due to the common cause of pathogenesis, all poly(Q) diseases share etiology, thus, findings from one disease can be potentially extrapolated to other poly(Q) diseases as well.


Asunto(s)
Síndromes de Neurotoxicidad , Péptidos , Humanos , Muerte Celular/genética , Síndromes de Neurotoxicidad/metabolismo
8.
Cell Death Dis ; 15(3): 182, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429264

RESUMEN

Caspase-2, one of the most evolutionarily conserved members of the caspase family, is an important regulator of the cellular response to oxidative stress. Given that ferroptosis is suppressed by antioxidant defense pathways, such as that involving selenoenzyme glutathione peroxidase 4 (GPX4), we hypothesized that caspase-2 may play a role in regulating ferroptosis. This study provides the first demonstration of an important and unprecedented function of caspase-2 in protecting cancer cells from undergoing ferroptotic cell death. Specifically, we show that depletion of caspase-2 leads to the downregulation of stress response genes including SESN2, HMOX1, SLC7A11, and sensitizes mutant-p53 cancer cells to cell death induced by various ferroptosis-inducing compounds. Importantly, the canonical catalytic activity of caspase-2 is not required for its role and suggests that caspase-2 regulates ferroptosis via non-proteolytic interaction with other proteins. Using an unbiased BioID proteomics screen, we identified novel caspase-2 interacting proteins (including heat shock proteins and co-chaperones) that regulate cellular responses to stress. Finally, we demonstrate that caspase-2 limits chaperone-mediated autophagic degradation of GPX4 to promote the survival of mutant-p53 cancer cells. In conclusion, we document a novel role for caspase-2 as a negative regulator of ferroptosis in cells with mutant p53. Our results provide evidence for a novel function of caspase-2 in cell death regulation and open potential new avenues to exploit ferroptosis in cancer therapy.


Asunto(s)
Caspasa 2 , Ferroptosis , Caspasa 2/genética , Muerte Celular/genética , Chaperonas Moleculares , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Proteína p53 Supresora de Tumor/genética , Ferroptosis/genética
9.
J Cell Biochem ; 125(4): e30542, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38362828

RESUMEN

Ferroptosis is a form of regulated cell death that is induced by inhibiting glutathione peroxidase 4 (GPX4), which eliminates lipid peroxidation. Ferroptosis induction is influenced by the cell environment. However, the cellular states altering ferroptosis susceptibility remain largely unknown. We found that melanoma cell lines became resistant to ferroptosis as cell density increased. Comparative transcriptome and metabolome analyses revealed that cell density-dependent ferroptosis resistance was coupled with a shift toward a lipogenic phenotype accompanied by strong induction of stearoyl-CoA desaturase (SCD). Database analysis of gene dependency across hundreds of cancer cell lines uncovered a negative correlation between GPX4 and SCD dependency. Importantly, SCD inhibition, either pharmacologically or through genetic knockout, sensitized melanoma cells to GPX4 inhibition, thereby attenuating ferroptosis resistance in cells at high density. Our findings indicate that transition to an SCD-inducing, lipogenic cell state produces density-dependent resistance to ferroptosis, which may provide a therapeutic strategy against melanoma.


Asunto(s)
Ferroptosis , Melanoma , Estearoil-CoA Desaturasa , Humanos , Recuento de Células , Muerte Celular/genética , Melanoma/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Estearoil-CoA Desaturasa/genética
10.
Gene ; 906: 148256, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38341003

RESUMEN

Nucleotide-binding sites and leucine-rich repeat proteins (NLRs) act as critical intracellular immune receptors. Previous studies reported an Arabidopsis-resistant gene L3 (AT1G15890), which encoded a coiled-coil (CC) NLR that conferred cell death in bacteria; however, its function in planta remains unclear. This study describes a comprehensive structure-function analysis of L3 in Nicotiana benthamiana. The results of the transient assay showed that the L3 CC domain is sufficient for cell-death induction. The first 140 amino acid segment constituted the minimal function region that could cause cell death. The YFP-labeled L3 CC domain was localized to the plasma membrane, which was considered crucial for the function and self-interaction of the L3 CC domain. The results of point mutations analysis showed that L3 CC domain function is affected by mutations in some specific residues, and loss-of-function mutations in the CC domain affected the function of full-length L3. These study results offered considerable evidence to understand the activation mechanism of L3.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Nicotiana/genética , Secuencia de Aminoácidos , Expresión Génica Ectópica , Proteínas Portadoras/genética , Proteínas de Arabidopsis/metabolismo , Muerte Celular/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo
11.
Cancer Lett ; 584: 216623, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38246223

RESUMEN

Modifications of epigenetic factors affect our lives and can give important information regarding one's state of health. In cancer, epigenetic modifications play a crucial role, as they influence various programmed cell death types. The purpose of this review is to investigate how epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNAs, influence various cell death processes in suppressing or promoting cancer development. Autophagy and apoptosis are the most investigated programmed cell death modes, as based on the tumor stage these cell death types can either promote or prevent cancer evolution. Therefore, our discussion focuses on how epigenetic modifications affect autophagy and apoptosis, as well as their diagnostic and therapeutical potential in combination with available chemotherapeutics. Additionally, we summarize the available data regarding the role of epigenetic modifications on other programmed cell death modes, such as ferroptosis, necroptosis, and parthanatos in cancer and discuss current advancements.


Asunto(s)
Apoptosis , Neoplasias , Humanos , Apoptosis/genética , Epigénesis Genética , Muerte Celular/genética , Neoplasias/patología , Metilación de ADN
12.
Adv Biol (Weinh) ; 8(3): e2300334, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38213020

RESUMEN

Repeat dipeptides such as poly(proline-arginine) (polyPR) are generated from the hexanucleotide GGGGCC repeat expansions in the C9orf72 gene. These dipeptides are often considered as the genetic cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In the study, fluorescein isothiocyanate (FITC) labeled PR20 is used to investigate PR20-induced cell death. The findings reveal that the cell death induced by PR20 is dependent on its nuclear distribution and can be blocked by a nuclear import inhibitor called importazole. Further investigation reveals that BRD4 inhibitors, such as JQ-1 and I-BET762, restrict cytoplasmic localization of PR20, thereby reducing its cytotoxic effect. Mechanistically, the inhibition of BRD4 leads to an increase in the expression of numerous histones, resulting in the accumulation of histones in the cytoplasm. These cytoplasmic histones associate with PR20 and limit its distribution within the nucleus. Notably, the ectopic expression of histones alone is enough to confer protection to cells treated with PR20. In addition, phenylephrine (PE) induces cellular hypertrophy and cytoplasmic distribution of histone, which also helps protect cells from PR20-induced cell death. The research suggests that temporarily inducing the presence of cytoplasmic histones may alleviate the neurotoxic effects of dipeptide repeat proteins.


Asunto(s)
Histonas , Proteínas Nucleares , Histonas/genética , Histonas/metabolismo , Histonas/farmacología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteína C9orf72/farmacología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/farmacología , Expansión de las Repeticiones de ADN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/farmacología , Dipéptidos/genética , Dipéptidos/metabolismo , Dipéptidos/farmacología , Muerte Celular/genética
13.
Genes (Basel) ; 15(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38255003

RESUMEN

Programmed cell death (PCD) is a critical process in plant immunity, enabling the targeted elimination of infected cells to prevent the spread of pathogens. The tight regulation of PCD within plant cells is well-documented; however, specific mechanisms remain elusive or controversial. Heterotrimeric G proteins are multifunctional signaling elements consisting of three distinct subunits, Gα, Gß, and Gγ. In Arabidopsis, the Gßγ dimer serves as a positive regulator of plant defense. Conversely, in species such as rice, maize, cotton, and tomato, mutants deficient in Gß exhibit constitutively active defense responses, suggesting a contrasting negative role for Gß in defense mechanisms within these plants. Using a transient overexpression approach in addition to knockout mutants, we observed that Gßγ enhanced cell death progression and elevated the accumulation of reactive oxygen species in a similar manner across Arabidopsis, tomato, and Nicotiana benthamiana, suggesting a conserved G protein role in PCD regulation among diverse plant species. The enhancement of PCD progression was cooperatively regulated by Gßγ and one Gα, XLG2. We hypothesize that G proteins participate in two distinct mechanisms regulating the initiation and progression of PCD in plants. We speculate that G proteins may act as guardees, the absence of which triggers PCD. However, in Arabidopsis, this G protein guarding mechanism appears to have been lost in the course of evolution.


Asunto(s)
Arabidopsis , Proteínas de Unión al GTP Heterotriméricas , Solanum lycopersicum , Arabidopsis/genética , Muerte Celular/genética , Proteínas de Unión al GTP Heterotriméricas/genética , Apoptosis/genética , Nicotiana , Solanum lycopersicum/genética
14.
Mol Plant Pathol ; 25(1): e13416, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38279850

RESUMEN

Phytophthora infestans is a destructive oomycete that causes the late blight of potato and tomato worldwide. It secretes numerous small proteins called effectors in order to manipulate host cell components and suppress plant immunity. Identifying the targets of these effectors is crucial for understanding P. infestans pathogenesis and host plant immunity. In this study, we show that the virulence RXLR effector Pi23014 of P. infestans targets the host nucleus and chloroplasts. By using a liquid chromatogrpahy-tandem mass spectrometry assay and co-immunoprecipitation assasys, we show that it interacts with NbRBP3a, a putative glycine-rich RNA-binding protein. We confirmed the co-localization of Pi23014 and NbRBP3a within the nucleus, by using bimolecular fluorescence complementation. Reverse transcription-quantitative PCR assays showed that the expression of NbRBP3a was induced in Nicotiana benthamiana during P. infestans infection and the expression of marker genes for multiple defence pathways were significantly down-regulated in NbRBP3-silenced plants compared with GFP-silenced plants. Agrobacterium tumefaciens-mediated transient overexpression of NbRBP3a significantly enhanced plant resistance to P. infestans. Mutations in the N-terminus RNA recognition motif (RRM) of NbRBP3a abolished its interaction with Pi23014 and eliminated its capability to enhance plant resistance to leaf colonization by P. infestans. We further showed that silencing NbRBP3 reduced photosystem II activity, reduced host photosynthetic efficiency, attenuated Pi23014-mediated suppression of cell death triggered by P. infestans pathogen-associated molecular pattern elicitor INF1, and suppressed plant immunity.


Asunto(s)
Phytophthora infestans , Muerte Celular/genética , Plantas , Inmunidad de la Planta , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Enfermedades de las Plantas/microbiología
15.
Nat Commun ; 15(1): 499, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216551

RESUMEN

Mutant KRAS (KRASMUT) is often exploited by cancers to shape tumor immunity, but the underlying mechanisms are not fully understood. Here we report that tumor-specific cytotoxic T lymphocytes (CTLs) from KRASMUT cancers are sensitive to activation-induced cell death (AICD). circATXN7, an NF-κB-interacting circular RNA, governs T cell sensitivity to AICD by inactivating NF-κB. Mechanistically, histone lactylation derived from KRASMUT tumor cell-produced lactic acid directly activates transcription of circATXN7, which binds to NF-κB p65 subunit and masks the p65 nuclear localization signal motif, thereby sequestering it in the cytoplasm. Clinically, circATXN7 upregulation in tumor-specific CTLs correlates with adverse clinical outcomes and immunotherapeutic resistance. Genetic ablation of circAtxn7 in CD8+ T cells leads to mutant-selective tumor inhibition, while also increases anti-PD1 efficacy in multiple tumor models in female mice. Furthermore, targeting circATXN7 in adoptively transferred tumor-reactive CTLs improves their antitumor activities. These findings provide insight into how lymphocyte-expressed circRNAs contribute to T-cell fate decisions and anticancer immunotherapies.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , ARN Circular , Escape del Tumor , Animales , Femenino , Ratones , Linfocitos T CD8-positivos , Muerte Celular/genética , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ARN Circular/genética , Escape del Tumor/genética , Humanos
16.
J Gene Med ; 26(1): e3613, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37861176

RESUMEN

BACKGROUND: Programmed cell death (PCD) is a natural process in which cells undergo controlled self-destruction, which plays a crucial role in maintaining tissue homeostasis and eliminating damaged or unnecessary cells. The connection between PCD and osteosarcoma was explored in the present study. METHODS: Twelve types of PCD were collected for developing a prognostic signature in osteosarcoma using machine learning algorithms. The prognostic value, pathway annotation and drug prediction of the signature were explored. RESULTS: Telomerase reverse transcriptase (TERT) was found to be a potent hazardous marker in osteosarcoma and could facilitate the proliferation and migration of osteosarcoma. CONCLUSIONS: In summary, the present study has developed a prognostic signature for osteosarcoma and identifies TERT as a potent hazardous gene. The study suggests that further research is needed to address the underlying mechanism of how TERT affects the immune response in osteosarcoma.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Muerte Celular/genética , Apoptosis , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Algoritmos , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética
17.
Plant Physiol ; 194(4): 2648-2662, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37971939

RESUMEN

Among the crucial processes that preside over the destiny of cells from any type of organism are those involving their self-destruction. This process is well characterized and conceptually logical to understand in multicellular organisms; however, the levels of knowledge and comprehension of its existence are still quite enigmatic in unicellular organisms. We use Chlamydomonas (Chlamydomonas reinhardtii) to lay the foundation for understanding the mechanisms of programmed cell death (PCD) in a unicellular photosynthetic organism. In this paper, we show that while PCD induces the death of a proportion of cells, it allows the survival of the remaining population. A quantitative proteomic analysis aiming at unveiling the proteome of PCD in Chlamydomonas allowed us to identify key proteins that led to the discovery of essential mechanisms. We show that in Chlamydomonas, PCD relies on the light dependence of a photosynthetic organism to generate reactive oxygen species and induce cell death. Finally, we obtained and characterized mutants for the 2 metacaspase genes in Chlamydomonas and showed that a type II metacaspase is essential for PCD execution.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/genética , Proteómica , Apoptosis/genética , Muerte Celular/genética , Chlamydomonas/genética
18.
Front Biosci (Landmark Ed) ; 28(11): 289, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-38062817

RESUMEN

BACKGROUND: Abnormalities in regulated cell death (RCD) are involved in multiple diseases. However, the role of RCD in intracranial aneurysms (IA) remains unknown. The aim of this study was to explore different RCD processes in the pathogenesis of IA. METHODS: Four microarray datasets (GSE75436, GSE54083, GSE13353, GSE15629) and one RNA sequencing (RNA-seq) dataset (GSE122897) were extracted from the Gene Expression Omnibus (GEO) database. The microarray datasets were merged to form the training set, while the RNA-seq dataset was used as the validation set. Differentially expressed genes (DEGs), gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA) were used to investigate the role of different types of RCD, including apoptosis, necroptosis, autophagy, ferroptosis and pyroptosis in the formation of IA. A novel cell death classification system for IA was established using an unsupervised consensus clustering algorithm based on cell death signature genes. Differences in functional enrichment, cell death-related regulators, and immune infiltration between two cell death clusters were evaluated. Finally, predictive genes were identified using the least absolute shrinkage and selection operator (LASSO) regression, random forest and logistic regression, allowing a prediction model to be constructed for IA rupture. RESULTS: Multiple RCD processes were significantly activated in IAs compared to controls. A total of 33 signature genes related to cell death were identified. The IA samples were divided into two clusters based on the cell death signature. The cell death-high subtype had a relatively higher rate of rupture, and higher enrichment levels for multiple cell death processes and several signal transduction and immune-related pathways. Immune infiltration analysis showed that cell death scores were correlated with multiple immune cell types, including macrophages, mast cells, T cells and B cells. A six-gene prediction model was constructed to predict rupture. The area under curves (AUCs) for predicting rupture in the training and validation cohorts were 0.924 and 0.855, respectively. CONCLUSIONS: Comprehensively analysis of RCD in IA and found that multiple RCD types are likely to be involved in IA formation and rupture. These cell death processes were correlated with inflammation and immunity. We present novel insights into the mechanism of IA pathogenesis that should help to guide further research.


Asunto(s)
Aneurisma Intracraneal , Muerte Celular Regulada , Humanos , Aneurisma Intracraneal/genética , Muerte Celular/genética , Apoptosis/genética , Algoritmos
19.
Development ; 150(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38078651

RESUMEN

To investigate the role of the nuclear receptor NR5A1 in the testis after sex determination, we analyzed mice lacking NR5A1 in Sertoli cells (SCs) from embryonic day (E) 13.5 onwards. Ablation of Nr5a1 impaired the expression of genes characteristic of SC identity (e.g. Sox9 and Amh), caused SC death from E14.5 onwards through a Trp53-independent mechanism related to anoikis, and induced disorganization of the testis cords. Together, these effects caused germ cells to enter meiosis and die. Single-cell RNA-sequencing experiments revealed that NR5A1-deficient SCs changed their molecular identity: some acquired a 'pre-granulosa-like' cell identity, whereas other reverted to a 'supporting progenitor-like' cell identity, most of them being 'intersex' because they expressed both testicular and ovarian genes. Fetal Leydig cells (LCs) did not display significant changes, indicating that SCs are not required beyond E14.5 for their emergence or maintenance. In contrast, adult LCs were absent from postnatal testes. In addition, adult mutant males displayed persistence of Müllerian duct derivatives, decreased anogenital distance and reduced penis length, which could be explained by the loss of AMH and testosterone synthesis due to SC failure.


Asunto(s)
Anoicis , Células de Sertoli , Animales , Masculino , Ratones , Anoicis/genética , Muerte Celular/genética , Células de Sertoli/metabolismo , Testículo/metabolismo
20.
Genes (Basel) ; 14(11)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38002924

RESUMEN

Mitochondrial dysfunction occurs in numerous neurodegenerative diseases, particularly amyotrophic lateral sclerosis (ALS), where it contributes to motor neuron (MN) death. Of all the factors involved in ALS, mitochondria have been considered as a major player, as secondary mitochondrial dysfunction has been found in various models and patients. Abnormal mitochondrial morphology, defects in mitochondrial dynamics, altered activities of respiratory chain enzymes and increased production of reactive oxygen species have been described. Moreover, the identification of CHCHD10 variants in ALS patients was the first genetic evidence that a mitochondrial defect may be a primary cause of MN damage and directly links mitochondrial dysfunction to the pathogenesis of ALS. In this review, we focus on the role of mitochondria in ALS and highlight the pathogenic variants of ALS genes associated with impaired mitochondrial functions. The multiple pathways demonstrated in ALS pathogenesis suggest that all converge to a common endpoint leading to MN loss. This may explain the disappointing results obtained with treatments targeting a single pathological process. Fighting against mitochondrial dysfunction appears to be a promising avenue for developing combined therapies in the future.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/patología , Mitocondrias/metabolismo , Neuronas Motoras/metabolismo , Muerte Celular/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...