Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
J Cell Mol Med ; 28(8): e18348, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652105

RESUMEN

Tumour immune microenvironment (TIME) plays an indispensable role in tumour progression, and tumour-associated macrophages (TAMs) are the most abundant immune cells in TIME. Non-apoptotic regulated cell death (RCD) can avoid the influence of tumour apoptosis resistance on anti-tumour immune response. Specifically, autophagy, ferroptosis, pyroptosis and necroptosis mediate the crosstalk between TAMs and tumour cells in TIME, thus reprogram TIME and affect the progress of tumour. In addition, although some achievements have been made in immune checkpoint inhibitors (ICIs), there is still defect that ICIs are only effective for some people because non-apoptotic RCD can bypass the apoptosis resistance of tumour. As a result, ICIs combined with targeting non-apoptotic RCD may be a promising solution. In this paper, the basic molecular mechanism of non-apoptotic RCD, the way in which non-apoptotic RCD mediates crosstalk between TAMs and tumour cells to reprogram TIME, and the latest research progress in targeting non-apoptotic RCD and ICIs are reviewed.


Asunto(s)
Neoplasias , Muerte Celular Regulada , Microambiente Tumoral , Macrófagos Asociados a Tumores , Animales , Humanos , Apoptosis , Autofagia , Ferroptosis/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Muerte Celular Regulada/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología
2.
Front Cell Infect Microbiol ; 14: 1363407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590437

RESUMEN

Introduction: Influenza A virus (IAV) infection can cause the often-lethal acute respiratory distress syndrome (ARDS) of the lung. Concomitantly, acute kidney injury (AKI) is frequently noticed during IAV infection, correlating with an increased mortality. The aim of this study was to elucidate the interaction of IAV with human kidney cells and, thereby, to assess the mechanisms underlying IAV-mediated AKI. Methods: To investigate IAV effects on nephron cells we performed infectivity assays with human IAV, as well as with human isolates of either low or highly pathogenic avian IAV. Also, transcriptome and proteome analysis of IAV-infected primary human distal tubular kidney cells (DTC) was performed. Furthermore, the DTC transcriptome was compared to existing transcriptomic data from IAV-infected lung and trachea cells. Results: We demonstrate productive replication of all tested IAV strains on primary and immortalized nephron cells. Comparison of our transcriptome and proteome analysis of H1N1-type IAV-infected human primary distal tubular cells (DTC) with existing data from H1N1-type IAV-infected lung and primary trachea cells revealed enrichment of specific factors responsible for regulated cell death in primary DTC, which could be targeted by specific inhibitors. Discussion: IAV not only infects, but also productively replicates on different human nephron cells. Importantly, multi-omics analysis revealed regulated cell death as potential contributing factor for the clinically observed kidney pathology in influenza.


Asunto(s)
Lesión Renal Aguda , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Muerte Celular Regulada , Humanos , Proteoma/metabolismo , Subtipo H3N2 del Virus de la Influenza A/fisiología , Replicación Viral/fisiología , Riñón/patología , Infecciones por Orthomyxoviridae/patología
3.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612455

RESUMEN

Recently, it was established that ferroptosis, a type of iron-dependent regulated cell death, plays a prominent role in radiotherapy-triggered cell death. Accordingly, ferroptosis inducers attracted a lot of interest as potential radio-synergizing drugs, ultimately enhancing radioresponses and patient outcomes. Nevertheless, the tumor microenvironment seems to have a major impact on ferroptosis induction. The influence of hypoxic conditions is an area of interest, as it remains the principal hurdle in the field of radiotherapy. In this review, we focus on the implications of hypoxic conditions on ferroptosis, contemplating the plausibility of using ferroptosis inducers as clinical radiosensitizers. Furthermore, we dive into the prospects of drug repurposing in the domain of ferroptosis inducers and radiosensitizers. Lastly, the potential adverse effects of ferroptosis inducers on normal tissue were discussed in detail. This review will provide an important framework for subsequent ferroptosis research, ascertaining the feasibility of ferroptosis inducers as clinical radiosensitizers.


Asunto(s)
Ferroptosis , Oncología por Radiación , Fármacos Sensibilizantes a Radiaciones , Muerte Celular Regulada , Humanos , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Muerte Celular , Hipoxia
4.
Acta Neuropathol ; 147(1): 69, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38583129

RESUMEN

Despite considerable research efforts, it is still not clear which mechanisms underlie neuronal cell death in neurodegenerative diseases. During the last 20 years, multiple pathways have been identified that can execute regulated cell death (RCD). Among these RCD pathways, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-related cell death, and lysosome-dependent cell death have been intensively investigated. Although RCD consists of numerous individual pathways, multiple common proteins have been identified that allow shifting from one cell death pathway to another. Another layer of complexity is added by mechanisms such as the endosomal machinery, able to regulate the activation of some RCD pathways, preventing cell death. In addition, restricted axonal degeneration and synaptic pruning can occur as a result of RCD activation without loss of the cell body. RCD plays a complex role in neurodegenerative processes, varying across different disorders. It has been shown that RCD is differentially involved in Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), among the most common neurodegenerative diseases. In AD, neuronal loss is associated with the activation of not only necroptosis, but also pyroptosis. In ALS, on the other hand, motor neuron death is not linked to canonical necroptosis, whereas pyroptosis pathway activation is seen in white matter microglia. Despite these differences in the activation of RCD pathways in AD and ALS, the accumulation of protein aggregates immunoreactive for p62/SQSTM1 (sequestosome 1) is a common event in both diseases and many other neurodegenerative disorders. In this review, we describe the major RCD pathways with clear activation in AD and ALS, the main interactions between these pathways, as well as their differential and similar involvement in these disorders. Finally, we will discuss targeting RCD as an innovative therapeutic concept for neurodegenerative diseases, such as AD and ALS. Considering that the execution of RCD or "cellular suicide" represents the final stage in neurodegeneration, it seems crucial to prevent neuronal death in patients by targeting RCD. This would offer valuable time to address upstream events in the pathological cascade by keeping the neurons alive.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Muerte Celular Regulada , Humanos , Muerte Celular , Neuronas Motoras
5.
Biomed Pharmacother ; 174: 116453, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513593

RESUMEN

Sepsis-associated encephalopathy (SAE), a common neurological complication of sepsis, is a heterogenous complex clinical syndrome caused by the dysfunctional response of a host to infection. This dysfunctional response leads to excess mortality and morbidity worldwide. Despite clinical relevance with high incidence, there is a lack of understanding for its both its acute/chronic pathogenesis and therapeutic management. A better understanding of the molecular mechanisms behind SAE may provide tools to better enhance therapeutic efficacy. Mounting evidence indicates that some types of non-apoptotic regulated cell death (RCD), such as ferroptosis, pyroptosis, and autophagy, contribute to SAE. Targeting these types of RCD may provide meaningful targets for future treatments against SAE. This review summarizes the core mechanism by which non-apoptotic RCD leads to the pathogenesis of SAE. We focus on the emerging types of therapeutic compounds that can inhibit RCD and delineate their beneficial pharmacological effects against SAE. Within this review we suggest that pharmacological inhibition of non-apoptotic RCD may serve as a potential therapeutic strategy against SAE.


Asunto(s)
Autofagia , Ferroptosis , Piroptosis , Encefalopatía Asociada a la Sepsis , Humanos , Piroptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/fisiología , Ferroptosis/efectos de los fármacos , Animales , Encefalopatía Asociada a la Sepsis/patología , Encefalopatía Asociada a la Sepsis/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Sepsis/patología , Sepsis/tratamiento farmacológico , Muerte Celular Regulada/efectos de los fármacos
6.
Theranostics ; 14(5): 1939-1955, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505601

RESUMEN

Rationale: Cancer continues to be a significant public health issue. Traditional treatments such as surgery, radiotherapy, and chemotherapy often fall short because of intrinsic issues such as lack of specificity and poor drug delivery, leading to insufficient drug concentration at the tumor site and/or potential side effects. Consequently, improving the delivery of conventional chemotherapy drugs like doxorubicin (DOX) is crucial for their therapeutic efficacy. Successful cancer treatment is achieved when regulated cell death (RCD) of cancer cells, which includes apoptotic and non-apoptotic processes such as ferroptosis, is fundamental to successful cancer treatment. The developing field of nanozymes holds considerable promise for innovative cancer treatment approaches. Methods: A dual-metallic nanozyme system encapsulated with DOX was created, derived from metal-organic frameworks (MOFs), designed to combat tumors by depleting glutathione (GSH) and concurrently liberating DOX. The initial phase of the study examined the GSH oxidase-mimicking function of the dimetallic nanozyme (ZIF-8/SrSe) through enzyme kinetic assays and Density Functional Theory (DFT) simulations. Following this, we probed the ability of ZIF-8/SrSe@DOX to release DOX in response to the tumor microenvironment in vitro, alongside examining its anticancer capabilities and mechanisms prompting apoptosis or ferroptosis in cancer cells. Moreover, we established tumor-bearing animal models to corroborate the anti-tumor effectiveness of our nanozyme complex and to identify the involved apoptotic and ferroptotic pathways implicated. Results: Enzyme kinetic analyses demonstrated that the ZIF-8/SrSe nanozyme exhibits substantial GSH oxidase-like activity, effectively oxidizing reduced GSH to glutathione disulfide (GSSG), while also inhibiting glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). This inhibition led to an imbalance in iron homeostasis, pronounced caspase activation, and subsequent induction of apoptosis and ferroptosis in tumor cells. Additionally, the ZIF-8/SrSe@DOX nanoparticles efficiently delivered DOX, causing DNA damage and further promoting apoptotic and ferroptotic pathways. Conclusions: This research outlines the design of a novel platform that combines chemotherapeutic agents with a Fenton reaction catalyst, offering a promising strategy for cancer therapy that leverages the synergistic effects of apoptosis and ferroptosis.


Asunto(s)
Ferroptosis , Neoplasias , Muerte Celular Regulada , Animales , Apoptosis , Sistemas de Liberación de Medicamentos , Glutatión , Disulfuro de Glutatión , Doxorrubicina/farmacología , Oxidorreductasas , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
7.
Int J Oncol ; 64(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38456493

RESUMEN

Breast cancer arises from the malignant transformation of mammary epithelial cells under the influence of various carcinogenic factors, leading to a gradual increase in its prevalence. This disease has become the leading cause of mortality among female malignancies, posing a significant threat to the health of women. The timely identification of breast cancer remains challenging, often resulting in diagnosis at the advanced stages of the disease. Conventional therapeutic approaches, such as surgical excision, chemotherapy and radiotherapy, exhibit limited efficacy in controlling the progression and metastasis of the disease. Regulated cell death (RCD), a process essential for physiological tissue cell renewal, occurs within the body independently of external influences. In the context of cancer, research on RCD primarily focuses on cuproptosis, ferroptosis and pyroptosis. Mounting evidence suggests a marked association between these specific forms of RCD, and the onset and progression of breast cancer. For example, a cuproptosis vector can effectively bind copper ions to induce cuproptosis in breast cancer cells, thereby hindering their proliferation. Additionally, the expression of ferroptosis­related genes can enhance the sensitivity of breast cancer cells to chemotherapy. Likewise, pyroptosis­related proteins not only participate in pyroptosis, but also regulate the tumor microenvironment, ultimately leading to the death of breast cancer cells. The present review discusses the unique regulatory mechanisms of cuproptosis, ferroptosis and pyroptosis in breast cancer, and the mechanisms through which they are affected by conventional cancer drugs. Furthermore, it provides a comprehensive overview of the significance of these forms of RCD in modulating the efficacy of chemotherapy and highlights their shared characteristics. This knowledge may provide novel avenues for both clinical interventions and fundamental research in the context of breast cancer.


Asunto(s)
Neoplasias de la Mama , Ferroptosis , Muerte Celular Regulada , Femenino , Humanos , Mama , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Carcinogénesis , Microambiente Tumoral
8.
Ageing Res Rev ; 95: 102251, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38428821

RESUMEN

Aging is a pathophysiological process that causes a gradual and permanent reduction in all biological system functions. The phenomenon is caused by the accumulation of endogenous and exogenous damage as a result of several stressors, resulting in significantly increased risks of various age-related diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. In addition, aging appears to be connected with mis-regulation of programmed cell death (PCD), which is required for regular cell turnover in many tissues sustained by cell division. According to the recent nomenclature, PCDs are physiological forms of regulated cell death (RCD) useful for normal tissue development and turnover. To some extent, some cell types are connected with a decrease in RCD throughout aging, whereas others are related with an increase in RCD. Perhaps the widespread decline in RCD markers with age is due to a slowdown of the normal rate of homeostatic cell turnover in various adult tissues. As a result, proper RCD regulation requires a careful balance of many pro-RCD and anti-RCD components, which may render cell death signaling pathways more sensitive to maladaptive signals during aging. Current research, on the other hand, tries to further dive into the pathophysiology of aging in order to develop therapies that improve health and longevity. In this scenario, RCD handling might be a helpful strategy for human health since it could reduce the occurrence and development of age-related disorders, promoting healthy aging and lifespan. In this review we propose a general overview of the most recent RCD mechanisms and their connection with the pathophysiology of aging in order to promote targeted therapeutic strategies.


Asunto(s)
Enfermedades Neurodegenerativas , Muerte Celular Regulada , Humanos , Envejecimiento/fisiología , Apoptosis/fisiología , Longevidad
10.
Cell Rep Methods ; 4(3): 100710, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38401540

RESUMEN

Ferroptosis, a regulated cell death hallmarked by unrestrained lipid peroxidation, plays a pivotal role in the pathophysiology of various diseases, making it a promising therapeutic target. Glutathione peroxidase 4 (GPX4) prevents ferroptosis by reducing (phospho)lipid hydroperoxides, yet evaluation of its actual activity has remained arduous. Here, we present a tangible method using affinity-purified GPX4 to capture a snapshot of its native activity. Next to measuring GPX4 activity, this improved method allows for the investigation of mutational GPX4 activity, exemplified by the GPX4U46C mutant lacking selenocysteine at its active site, as well as the evaluation of GPX4 inhibitors, such as RSL3, as a showcase. Furthermore, we apply this method to the second ferroptosis guardian, ferroptosis suppressor protein 1, to validate the newly identified ferroptosis inhibitor WIN62577. Together, these methods open up opportunities for evaluating alternative ferroptosis suppression mechanisms.


Asunto(s)
Ferroptosis , Muerte Celular Regulada , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido/fisiología , Peróxidos Lipídicos
11.
Apoptosis ; 29(5-6): 586-604, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38324163

RESUMEN

Regulated cell death (RCD), also known as programmed cell death (PCD), plays a critical role in various biological processes, such as tissue injury/repair, development, and homeostasis. Dysregulation of RCD pathways can lead to the development of many human diseases, such as cancer, neurodegenerative disorders, and cardiovascular diseases. Maintaining proper metal ion homeostasis is critical for human health. However, imbalances in metal levels within cells can result in cytotoxicity and cell death, leading to a variety of diseases and health problems. In recent years, new types of metal overload-induced cell death have been identified, including ferroptosis, cuproptosis, and calcicoptosis. This has prompted us to examine the three defined metal-dependent cell death types, and discuss other metals-induced ferroptosis, cuproptosis, and disrupted Ca2+ homeostasis, as well as the roles of Zn2+ in metals' homeostasis and related RCD. We have reviewed the connection between metals-induced RCD and various diseases, as well as the underlying mechanisms. We believe that further research in this area will lead to the discovery of novel types of metal-dependent RCD, a better understanding of the underlying mechanisms, and the development of new therapeutic strategies for human diseases.


Asunto(s)
Ferroptosis , Homeostasis , Humanos , Ferroptosis/efectos de los fármacos , Homeostasis/efectos de los fármacos , Animales , Metales/metabolismo , Metales/toxicidad , Calcio/metabolismo , Muerte Celular Regulada/efectos de los fármacos , Cobre/metabolismo , Cobre/toxicidad , Zinc/metabolismo , Apoptosis/efectos de los fármacos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología
12.
Sci Rep ; 14(1): 4173, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378721

RESUMEN

Glioblastoma is a highly aggressive and malignant type of brain cancer that originates from glial cells in the brain, with a median survival time of 15 months and a 5-year survival rate of less than 5%. Regulated cell death (RCD) is the autonomous and orderly cell death under genetic control, controlled by precise signaling pathways and molecularly defined effector mechanisms, modulated by pharmacological or genetic interventions, and plays a key role in maintaining homeostasis of the internal environment. The comprehensive and systemic landscape of the RCD in glioma is not fully investigated and explored. After collecting 18 RCD-related signatures from the opening literature, we comprehensively explored the RCD landscape, integrating the multi-omics data, including large-scale bulk data, single-cell level data, glioma cell lines, and proteome level data. We also provided a machine learning framework for screening the potentially therapeutic candidates. Here, based on bulk and single-cell sequencing samples, we explored RCD-related phenotypes, investigated the profile of the RCD, and developed an RCD gene pair scoring system, named RCD.GP signature, showing a reliable and robust performance in predicting the prognosis of glioblastoma. Using the machine learning framework consisting of Lasso, RSF, XgBoost, Enet, CoxBoost and Boruta, we identified seven RCD genes as potential therapeutic targets in glioma and verified that the SLC43A3 highly expressed in glioma grades and glioma cell lines through qRT-PCR. Our study provided comprehensive insights into the RCD roles in glioma, developed a robust RCD gene pair signature for predicting the prognosis of glioma patients, constructed a machine learning framework for screening the core candidates and identified the SLC43A3 as an oncogenic role and a prediction biomarker in glioblastoma.


Asunto(s)
Glioblastoma , Glioma , Muerte Celular Regulada , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Glioma/genética , Glioma/terapia , Pronóstico , Inmunoterapia , Aprendizaje Automático , Microambiente Tumoral , Sistemas de Transporte de Aminoácidos
13.
Curr Microbiol ; 81(3): 86, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305917

RESUMEN

Salmonella is responsible for the majority of food poisoning outbreaks around the world. Pathogenic Salmonella mostly carries a virulence plasmid that contains the Salmonella plasmid virulence gene (spv), a highly conserved sequence encoding effector proteins that can manipulate host cells. Intestinal epithelial cells are crucial components of the innate immune system, acting as the first barrier of defense against infection. When the barrier is breached, Salmonella encounters the underlying macrophages in lamina propria, triggering inflammation and engaging in combat with immune cells recruited by inflammatory factors. Host regulated cell death (RCD) provides a variety of means to fight against or favour Salmonella infection. However, Salmonella releases effector proteins to regulate RCD, evading host immune killing and neutralizing host antimicrobial effects. This review provides an overview of pathogen-host interactions in terms of (1) pathogenicity of Salmonella spv on intestinal epithelial cells and macrophages, (2) mechanisms of host RCD to limit or promote pathogenic Salmonella expansion, and (3) effects and mechanisms of Salmonella spv gene on host RCD.


Asunto(s)
Muerte Celular Regulada , Salmonella , Virulencia/genética , Salmonella/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Plásmidos/genética
14.
Biomolecules ; 14(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38397379

RESUMEN

Regulated cell death (RCD) represents a distinct mode of cell demise, differing from accidental cell death (ACD), characterized by specific signaling cascades orchestrated by diverse biomolecules. The regular process of cell death plays a crucial role in upholding internal homeostasis, acting as a safeguard against biological or chemical damage. Nonetheless, specific programmed cell deaths have the potential to activate an immune-inflammatory response, potentially contributing to diseases by enlisting immune cells and releasing pro-inflammatory factors. Endometriosis, a prevalent gynecological ailment, remains incompletely understood despite substantial progress in unraveling associated signaling pathways. Its complexity is intricately tied to the dysregulation of inflammatory immune responses, with various RCD processes such as apoptosis, autophagic cell death, pyroptosis, and ferroptosis implicated in its development. Notably, limited research explores the association between endometriosis and specific RCD pathways like pyroptosis and cuproptosis. The exploration of regulated cell death in the context of endometriosis holds tremendous potential for further advancements. This article thoroughly reviews the molecular mechanisms governed by regulated cell death and their implications for endometriosis. A comprehensive understanding of the regulated cell death mechanism in endometriosis has the potential to catalyze the development of promising therapeutic strategies and chart the course for future research directions in the field.


Asunto(s)
Endometriosis , Ferroptosis , Muerte Celular Regulada , Femenino , Humanos , Apoptosis , Muerte Celular
15.
Cytokine Growth Factor Rev ; 76: 99-111, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38182464

RESUMEN

The imbalance between proliferation and death of kidney resident cells is a crucial factor in the development of acute or chronic renal dysfunction. Acute kidney injury (AKI) is often associated with the rapid loss of tubular epithelial cells (TECs). Sustained injury leads to the loss of glomerular endothelial cells (GECs) and podocytes, which is a key mechanism in the pathogenesis of glomerular diseases. This irreversible damage resulting from progressive cell loss eventually leads to deterioration of renal function characterized by glomerular compensatory hypertrophy, tubular degeneration, and renal fibrosis. Regulated cell death (RCD), which involves a cascade of gene expression events with tight structures, plays a certain role in regulating kidney health by determining the fate of kidney resident cells. Under pathological conditions, cells in the nephron have been demonstrated to constitutively release extracellular vesicles (EVs) which act as messengers that specifically interact with recipient cells to regulate their cell death process. For therapeutic intervention, exogenous EVs have exhibited great potential for the prevention and treatment of kidney disease by modulating RCD, with enhanced effects through engineering modification. Based on the functional role of EVs, this review comprehensively explores the regulation of RCD by EVs in AKI and chronic kidney disease (CKD), with emphasis on pathogenesis and therapeutic intervention.


Asunto(s)
Lesión Renal Aguda , Vesículas Extracelulares , Muerte Celular Regulada , Insuficiencia Renal Crónica , Humanos , Células Endoteliales , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/terapia , Vesículas Extracelulares/patología , Insuficiencia Renal Crónica/metabolismo , Riñón/metabolismo , Riñón/patología
16.
Int J Biol Sci ; 20(1): 218-230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164173

RESUMEN

Copper (Cu) plays a crucial and diverse function in biological systems, acting as a cofactor at numerous sites of enzymatic activity and participating in various physiological processes, including oxidative stress regulation, lipid metabolism, and energy metabolism. Similar to other micronutrients, the body regulates Cu levels to ensure homeostasis; any disruption in Cu homeostasis may result in various illnesses. Cuproptosis causes proteotoxic stress and ultimately results in cell death by the binding of Cu ions to lipid-acylated proteins during the tricarboxylic acid cycle of mitochondrial respiration. Cu is not only involved in regulatory cell death (RCD), but also in exogenous factors that induce cellular responses and toxic outcomes. Cu imbalances also affect the transmission of several RCD messages. Therefore, this article presents a thorough examination of the mechanisms involved in Cu-induced RCD as well as the role of Cu complexes in its pathophysiology.


Asunto(s)
Muerte Celular Regulada , Humanos , Muerte Celular , Comunicación , Cobre/toxicidad , Metabolismo Energético , Apoptosis
17.
Theranostics ; 14(2): 640-661, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169587

RESUMEN

Regulated cell death (RCD) is considered a critical pathway in cancer therapy, contributing to eliminating cancer cells and influencing treatment outcomes. The application of RCD in cancer treatment is marked by its potential in targeted therapy and immunotherapy. As a type of RCD, PANoptosis has emerged as a unique form of programmed cell death (PCD) characterized by features of pyroptosis, apoptosis, and necroptosis but cannot be fully explained by any of these pathways alone. It is regulated by a multi-protein complex called the PANoptosome. As a relatively new concept first described in 2019, PANoptosis has been shown to play a role in many diseases, including cancer, infection, and inflammation. This study reviews the application of PCD in cancer, particularly the emergence and implication of PANoptosis in developing therapeutic strategies for cancer. Studies have shown that the characterization of PANoptosis patterns in cancer can predict survival and response to immunotherapy and chemotherapy, highlighting the potential for PANoptosis to be used as a therapeutic target in cancer treatment. It also plays a role in limiting the spread of cancer cells. PANoptosis allows for the elimination of cancer cells by multiple cell death pathways and has the potential to address various challenges in cancer treatment, including drug resistance and immune evasion. Moreover, active investigation of the mechanisms and potential therapeutic agents that can induce PANoptosis in cancer cells is likely to yield effective cancer treatments and improve patient outcomes. Research on PANoptosis is still ongoing, but it is a rapidly evolving field with the potential to lead to new treatments for various diseases, including cancer.


Asunto(s)
Neoplasias , Muerte Celular Regulada , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Apoptosis , Muerte Celular
18.
Apoptosis ; 29(3-4): 289-302, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38095762

RESUMEN

Metal ions play an important role in living organisms and are involved in essential physiological activities. However, the overload state of ions can cause excess free radicals, cell damage, and even cell death. Ferroptosis and cuproptosis are specific forms of cell death that are distinct from apoptosis, necroptosis, and other regulated cell death. These unique modalities of cell death, dependent on iron and copper, are regulated by multiple cellular metabolic pathways, including steady-state metal redox treatment mitochondrial activity of lipid, amino acid and glucose metabolism, and various signaling pathways associated with disease. Although the mechanisms of ferroptosis and cuproptosis are not yet fully understood, there is no doubt that ion overload plays a crucial act in these metal-dependent cell deaths. In this review, we discussed the core roles of ion overload in ferroptosis and cuproptosis, the association between metabolism imbalance and ferroptosis and cuproptosis, the extract the diseases caused by ion overload and current treatment modalities.


Asunto(s)
Ferroptosis , Enfermedades Renales , Muerte Celular Regulada , Humanos , Ferroptosis/genética , Apoptosis , Iones
19.
Immunol Rev ; 321(1): 300-334, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688394

RESUMEN

Non-small-cell lung cancer (NSCLC), which has a high rate of metastatic spread and drug resistance, is the most common subtype of lung cancer. Therefore, NSCLC patients have a very poor prognosis and a very low chance of survival. Human cancers are closely linked to regulated cell death (RCD), such as apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. Currently, small-molecule compounds targeting various types of RCD have shown potential as anticancer treatments. Moreover, RCD appears to be a specific part of the antitumor immune response; hence, the combination of RCD and immunotherapy might increase the inhibitory effect of therapy on tumor growth. In this review, we summarize small-molecule compounds used for the treatment of NSCLC by focusing on RCD and pharmacological systems. In addition, we describe the current research status of an immunotherapy combined with an RCD-based regimen for NSCLC, providing new ideas for targeting RCD pathways in combination with immunotherapy for patients with NSCLC in the future.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Muerte Celular Regulada , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Inmunoterapia , Apoptosis
20.
Eur J Med Chem ; 265: 116040, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38142509

RESUMEN

Colorectal cancer (CRC), a tumor of the digestive system, is characterized by high malignancy and poor prognosis. Currently, targeted therapy of CRC is far away from satisfying. The molecular mechanisms of regulated cell death (RCD) have been clearly elucidated, which can be intervened by drug or genetic modification. Numerous studies have provided substantial evidence linking these mechanisms to the progression and treatment of CRC. The RCD includes apoptosis, autophagy-dependent cell death (ADCD), ferroptosis, necroptosis, and pyroptosis, and immunogenic cell death, etc, which provide potential targets for anti-cancer treatment. For the last several years, small-molecule compounds targeting RCD have been a well concerned therapeutic strategy for CRC. This present review aims to describe the function of small-molecule compounds in the targeted therapy of CRC via targeting apoptosis, ADCD, ferroptosis, necroptosis, immunogenic dell death and pyroptosis, and their mechanisms. In addition, we prospect the application of newly discovered cuproptosis and disulfidptosis in CRC. Our review may provide references for the targeted therapy of CRC using small-molecule compounds targeting RCD, including the potential targets and candidate compounds.


Asunto(s)
Muerte Celular Autofágica , Neoplasias Colorrectales , Ferroptosis , Muerte Celular Regulada , Humanos , Necroptosis , Apoptosis , Neoplasias Colorrectales/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...