Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.925
Filtrar
1.
Elife ; 132024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742856

RESUMEN

The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.


Asunto(s)
Inhibidores de Proteínas Quinasas , Multimerización de Proteína , Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/química , Regulación Alostérica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/metabolismo , Multimerización de Proteína/efectos de los fármacos , Humanos , Conformación Proteica , Unión Proteica , Modelos Moleculares
2.
J Phys Chem B ; 128(18): 4354-4366, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38683784

RESUMEN

G protein-coupled receptors (GPCRs) are a major gateway to cellular signaling, which respond to ligands binding at extracellular sites through allosteric conformational changes that modulate their interactions with G proteins and arrestins at intracellular sites. High-resolution structures in different ligand states, together with spectroscopic studies and molecular dynamics simulations, have revealed a rich conformational landscape of GPCRs. However, their supramolecular structure and spatiotemporal distribution is also thought to play a significant role in receptor activation and signaling bias within the native cell membrane environment. Here, we applied single-molecule fluorescence techniques, including single-particle tracking, single-molecule photobleaching, and fluorescence correlation spectroscopy, to characterize the diffusion and oligomerization behavior of the muscarinic M1 receptor (M1R) in live cells. Control samples included the monomeric protein CD86 and fixed cells, and experiments performed in the presence of different orthosteric M1R ligands and of several compounds known to change the fluidity and organization of the lipid bilayer. M1 receptors exhibit Brownian diffusion characterized by three diffusion constants: confined/immobile (∼0.01 µm2/s), slow (∼0.04 µm2/s), and fast (∼0.14 µm2/s), whose populations were found to be modulated by both orthosteric ligands and membrane disruptors. The lipid raft disruptor C6 ceramide led to significant changes for CD86, while the diffusion of M1R remained unchanged, indicating that M1 receptors do not partition in lipid rafts. The extent of receptor oligomerization was found to be promoted by increasing the level of expression and the binding of orthosteric ligands; in particular, the agonist carbachol elicited a large increase in the fraction of M1R oligomers. This study provides new insights into the balance between conformational and environmental factors that define the movement and oligomerization states of GPCRs in live cells under close-to-native conditions.


Asunto(s)
Receptor Muscarínico M1 , Ligandos , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M1/química , Difusión , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Multimerización de Proteína/efectos de los fármacos , Animales , Espectrometría de Fluorescencia , Simulación de Dinámica Molecular , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo
3.
Int J Biol Macromol ; 267(Pt 1): 131392, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582483

RESUMEN

The main protease (Mpro) of SARS-CoV-2 is critical in the virus's replication cycle, facilitating the maturation of polyproteins into functional units. Due to its conservation across taxa, Mpro is a promising target for broad-spectrum antiviral drugs. Targeting Mpro with small molecule inhibitors, such as nirmatrelvir combined with ritonavir (Paxlovid™), which the FDA has approved for post-exposure treatment and prophylaxis, can effectively interrupt the replication process of the virus. A key aspect of Mpro's function is its ability to form a functional dimer. However, the mechanics of dimerization and its influence on proteolytic activity remain less understood. In this study, we utilized biochemical, structural, and molecular modelling approaches to explore Mpro dimerization. We evaluated critical residues, specifically Arg4 and Arg298, that are essential for dimerization. Our results show that changes in the oligomerization state of Mpro directly affect its enzymatic activity and dimerization propensity. We discovered a synergistic relationship influencing dimer formation, involving both intra- and intermolecular interactions. These findings highlight the potential for developing allosteric inhibitors targeting Mpro, offering promising new directions for therapeutic strategies.


Asunto(s)
Antivirales , Proteasas 3C de Coronavirus , Multimerización de Proteína , SARS-CoV-2 , SARS-CoV-2/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Humanos , Antivirales/farmacología , Antivirales/química , Tratamiento Farmacológico de COVID-19 , Modelos Moleculares , COVID-19/virología , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química
4.
Chem Commun (Camb) ; 60(37): 4910-4913, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38623638

RESUMEN

Several natural cytotoxic C2-symmetric bis-lactones, such as swinholide A and rhizopodin, sequester actin dimer from the actin network and potently inhibit actin dynamics. To develop new protein-protein interaction (PPI) modulators, we synthesized structurally simplified actin-binding side-chain dimers of antitumor macrolide aplyronine A. By fixing the two side-chains closer than those of rhizopodin, the C4 linker analog depolymerized filamentous actin more potently than natural aplyronines. Cross-link experiments revealed that actin dimer was formed by treatment with the C4 linker analog. Molecular dynamics simulations showed that this analog significantly changed the interaction and spatial arrangement of the two actins compared to those in rhizopodin to provide a highly distorted and twisted orientation in the complex. Our study may promote the development of PPI-based anticancer and other drug leads related to cytoskeletal dynamics.


Asunto(s)
Actinas , Macrólidos , Multimerización de Proteína , Factores Despolimerizantes de la Actina/química , Factores Despolimerizantes de la Actina/farmacología , Actinas/metabolismo , Actinas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Dimerización , Macrólidos/química , Macrólidos/farmacología , Macrólidos/síntesis química , Simulación de Dinámica Molecular , Multimerización de Proteína/efectos de los fármacos
5.
Nature ; 621(7977): 206-214, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648856

RESUMEN

Transient receptor potential (TRP) channels are a large, eukaryotic ion channel superfamily that control diverse physiological functions, and therefore are attractive drug targets1-5. More than 210 structures from more than 20 different TRP channels have been determined, and all are tetramers4. Despite this wealth of structures, many aspects concerning TRPV channels remain poorly understood, including the pore-dilation phenomenon, whereby prolonged activation leads to increased conductance, permeability to large ions and loss of rectification6,7. Here, we used high-speed atomic force microscopy (HS-AFM) to analyse membrane-embedded TRPV3 at the single-molecule level and discovered a pentameric state. HS-AFM dynamic imaging revealed transience and reversibility of the pentamer in dynamic equilibrium with the canonical tetramer through membrane diffusive protomer exchange. The pentamer population increased upon diphenylboronic anhydride (DPBA) addition, an agonist that has been shown to induce TRPV3 pore dilation. On the basis of these findings, we designed a protein production and data analysis pipeline that resulted in a cryogenic-electron microscopy structure of the TRPV3 pentamer, showing an enlarged pore compared to the tetramer. The slow kinetics to enter and exit the pentameric state, the increased pentamer formation upon DPBA addition and the enlarged pore indicate that the pentamer represents the structural correlate of pore dilation. We thus show membrane diffusive protomer exchange as an additional mechanism for structural changes and conformational variability. Overall, we provide structural evidence for a non-canonical pentameric TRP-channel assembly, laying the foundation for new directions in TRP channel research.


Asunto(s)
Multimerización de Proteína , Canales Catiónicos TRPV , Anhídridos/química , Anhídridos/farmacología , Análisis de Datos , Difusión , Subunidades de Proteína/química , Subunidades de Proteína/efectos de los fármacos , Subunidades de Proteína/metabolismo , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/ultraestructura , Microscopía de Fuerza Atómica , Terapia Molecular Dirigida , Microscopía por Crioelectrón , Estructura Cuaternaria de Proteína/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos
6.
Chem Biol Interact ; 378: 110489, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37059213

RESUMEN

We assessed the mechanism of human androgen receptor-mediated endocrine-disrupting effect by a triazole fungicide, metconazole in this study. The internationally validated stably transfected transactivation (STTA) in vitro assay, which was established for determination of a human androgen receptor (AR) agonist/antagonist by using 22Rv1/MMTV_GR-KO cell line, alongside an in vitro reporter-gene assay to confirm AR homodimerization was used. The STTA in vitro assay results showed that metconazole is a true AR antagonist. Furthermore, the results from the in vitro reporter-gene assay and western blotting showed that metconazole blocks the nuclear transfer of cytoplasmic AR proteins by suppressing the homodimerization of AR. These results suggest that metconazole can be considered to have an AR-mediated endocrine-disrupting effect. Additionally, the evidence from this study might help identify the endocrine-disrupting mechanism of triazole fungicides containing a phenyl ring.


Asunto(s)
Antagonistas de Receptores Androgénicos , Disruptores Endocrinos , Fungicidas Industriales , Multimerización de Proteína , Receptores Androgénicos , Activación Transcripcional , Triazoles , Triazoles/química , Triazoles/toxicidad , Fungicidas Industriales/química , Fungicidas Industriales/toxicidad , Multimerización de Proteína/efectos de los fármacos , Humanos , Receptores Androgénicos/química , Receptores Androgénicos/metabolismo , Disruptores Endocrinos/química , Disruptores Endocrinos/farmacología , Antagonistas de Receptores Androgénicos/química , Antagonistas de Receptores Androgénicos/toxicidad , Línea Celular Tumoral , Activación Transcripcional/efectos de los fármacos , Citotoxinas/química , Citotoxinas/toxicidad
7.
Proc Natl Acad Sci U S A ; 119(35): e2201204119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994658

RESUMEN

Bacteria utilize two-component system (TCS) signal transduction pathways to sense and adapt to changing environments. In a typical TCS, a stimulus induces a sensor histidine kinase (SHK) to phosphorylate a response regulator (RR), which then dimerizes and activates a transcriptional response. Here, we demonstrate that oligomerization-dependent depolarization of excitation light by fused mNeonGreen fluorescent protein probes enables real-time monitoring of RR dimerization dynamics in live bacteria. Using inducible promoters to independently express SHKs and RRs, we detect RR dimerization within seconds of stimulus addition in several model pathways. We go on to combine experiments with mathematical modeling to reveal that TCS phosphosignaling accelerates with SHK expression but decelerates with RR expression and SHK phosphatase activity. We further observe pulsatile activation of the SHK NarX in response to addition and depletion of the extracellular electron acceptor nitrate when the corresponding TCS is expressed from both inducible systems and the native chromosomal operon. Finally, we combine our method with polarized light microscopy to enable single-cell measurements of RR dimerization under changing stimulus conditions. Direct in vivo characterization of RR oligomerization dynamics should enable insights into the regulation of bacterial physiology.


Asunto(s)
Bacterias , Proteínas Bacterianas , Histidina Quinasa , Viabilidad Microbiana , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/efectos de la radiación , Electrones , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Microscopía de Polarización , Nitratos , Operón/genética , Fosforilación , Regiones Promotoras Genéticas , Multimerización de Proteína/efectos de los fármacos , Análisis de la Célula Individual , Factores de Tiempo
8.
Molecules ; 27(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35209177

RESUMEN

Alzheimer's disease displays aggregates of the amyloid-beta (Aß) peptide in the brain, and there is increasing evidence that cholesterol may contribute to the pathogenesis of the disease. Though many experimental and theoretical studies have focused on the interactions of Aß oligomers with membrane models containing cholesterol, an understanding of the effect of free cholesterol on small Aß42 oligomers is not fully established. To address this question, we report on replica exchange with a solute tempering simulation of an Aß42 trimer with cholesterol and compare it with a previous replica exchange molecular dynamics simulation. We show that the binding hot spots of cholesterol are rather complex, involving hydrophobic residues L17-F20 and L30-M35 with a non-negligible contribution of loop residues D22-K28 and N-terminus residues. We also examine the effects of cholesterol on the trimers of the disease-causing A21G and disease-protective A2T mutations by molecular dynamics simulations. We show that these two mutations moderately impact cholesterol-binding modes. In our REST2 simulations, we find that cholesterol is rarely inserted into aggregates but rather attached as dimers and trimers at the surface of Aß42 oligomers. We propose that cholesterol acts as a glue to speed up the formation of larger aggregates; this provides a mechanistic link between cholesterol and Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/química , Colesterol/química , Proteínas Mutantes/química , Fragmentos de Péptidos/química , Multimerización de Proteína , Secuencia de Aminoácidos , Colesterol/farmacología , Concentración de Iones de Hidrógeno , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Agregado de Proteínas , Agregación Patológica de Proteínas , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Relación Estructura-Actividad
9.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163573

RESUMEN

Inflammasomes are multiprotein complexes that represent critical elements of the inflammatory response. The dysregulation of the best-characterized complex, the NLRP3 inflammasome, has been linked to the pathogenesis of diseases such as multiple sclerosis, type 2 diabetes mellitus, Alzheimer's disease, and cancer. While there exist molecular inhibitors specific for the various components of inflammasome complexes, no currently reported inhibitors specifically target NLRP3PYD homo-oligomerization. In the present study, we describe the identification of QM380 and QM381 as NLRP3PYD homo-oligomerization inhibitors after screening small molecules from the MyriaScreen library using a split-luciferase complementation assay. Our results demonstrate that these NLRP3PYD inhibitors interfere with ASC speck formation, inhibit pro-inflammatory cytokine IL1-ß release, and decrease pyroptotic cell death. We employed spectroscopic techniques and computational docking analyses with QM380 and QM381 and the PYD domain to confirm the experimental results and predict possible mechanisms underlying the inhibition of NLRP3PYD homo-interactions.


Asunto(s)
Antiinflamatorios , Proteína con Dominio Pirina 3 de la Familia NLR , Multimerización de Proteína/efectos de los fármacos , Piroptosis/efectos de los fármacos , Antiinflamatorios/química , Antiinflamatorios/farmacología , Células HEK293 , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Proteína con Dominio Pirina 3 de la Familia NLR/química , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
10.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055076

RESUMEN

The most common type of dementia, Alzheimer's disease, is associated with senile plaques formed by the filamentous aggregation of hydrophobic amyloid-ß (Aß) in the brains of patients. Small oligomeric assemblies also occur and drugs and chemical compounds that can interact with such assemblies have attracted much attention. However, these compounds need to be solubilized in appropriate solvents, such as ethanol, which may also destabilize their protein structures. As the impact of ethanol on oligomeric Aß assembly is unknown, we investigated the effect of various concentrations of ethanol (0 to 7.2 M) on Aß pentameric assemblies (Aßp) by combining blue native-PAGE (BN-PAGE) and ambient air atomic force microscopy (AFM). This approach was proven to be very convenient and reliable for the quantitative analysis of Aß assembly. The Gaussian analysis of the height histogram obtained from the AFM images was correlated with band intensity on BN-PAGE for the quantitative estimation of Aßp. Our observations indicated up to 1.4 M (8.3%) of added ethanol can be used as a solvent/vehicle without quantitatively affecting Aß pentamer stability. Higher concentration induced significant destabilization of Aßp and eventually resulted in the complete disassembly of Aßp.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Etanol/química , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Agregado de Proteínas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Electroforesis , Etanol/farmacología , Humanos , Microscopía de Fuerza Atómica , Agregación Patológica de Proteínas
11.
Molecules ; 27(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35011550

RESUMEN

A series of eleven 4-substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines were designed and synthesized and their biological activities were evaluated. Synthesis involved the Gewald reaction to synthesize ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate ring, and SNAr reactions. Compound 4 was 1.6- and ~7-fold more potent than the lead compound 1 in cell proliferation and microtubule depolymerization assays, respectively. Compounds 4, 5 and 7 showed the most potent antiproliferative effects (IC50 values < 40 nM), while compounds 6, 8, 10, 12 and 13 had lower antiproliferative potencies (IC50 values of 53-125 nM). Additionally, compounds 4-8, 10 and 12-13 circumvented Pgp and ßIII-tubulin mediated drug resistance, mechanisms that diminish the clinical efficacy of paclitaxel (PTX). In the NCI-60 cell line panel, compound 4 exhibited an average GI50 of ~10 nM in the 40 most sensitive cell lines. Compound 4 demonstrated statistically significant antitumor effects in a murine MDA-MB-435 xenograft model.


Asunto(s)
Técnicas de Química Sintética , Diseño de Fármacos , Pirimidinas/química , Pirimidinas/farmacología , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Humanos , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Multimerización de Proteína/efectos de los fármacos , Pirimidinas/síntesis química , Relación Estructura-Actividad , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química
12.
Arch Biochem Biophys ; 715: 109096, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34848178

RESUMEN

The assembly of amyloidogenic proteins into highly-structured fibrillar aggregates is related to the onset and progression of several amyloidoses, including neurodegenerative Alzheimer's or Parkinson's diseases. Despite years of research and a general understanding of the process of such aggregate formation, there are currently still very few drugs and treatment modalities available. One of the factors that is relatively insufficiently understood is the cross-interaction between different amyloid-forming proteins. In recent years, it has been shown that several of these proteins or their aggregates can alter each other's fibrillization properties, however, there are still many unknowns in the amyloid interactome. In this work, we examine the interaction between amyloid disease-related prion protein and superoxide dismutase-1. We show that not only does superoxide dismutase-1 increase the lag time of prion protein fibril formation, but it also changes the conformation of the resulting aggregates.


Asunto(s)
Fragmentos de Péptidos/metabolismo , Proteínas Priónicas/metabolismo , Agregado de Proteínas/efectos de los fármacos , Superóxido Dismutasa-1/metabolismo , Animales , Enlace de Hidrógeno , Ratones , Fragmentos de Péptidos/química , Proteínas Priónicas/química , Conformación Proteica en Lámina beta/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos
13.
J Mater Chem B ; 9(47): 9764-9769, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34806096

RESUMEN

Although silk proteins are considered promising in building a scaffold for tissue engineering, one of the silk proteins, Bombyx mori silk sericin (BS), has limited processability in producing nanofibrous scaffolds because its surface charge anisotropy promotes gelation instead. To overcome this daunting challenge, we developed a mild and simple procedure for assembling BS into nanofibers and nanofibrous scaffolds. Briefly, arginine was added to the aqueous BS solution to reduce the negative charge of BS, thereby inducing BS to self-assemble into nanofibers in the solution. Circular dichroism (CD) and Fourier transform infrared (FT-IR) spectra showed that arginine promoted the formation of ß-sheet conformation in BS and increased its thermal stability. Furthermore, the arginine-induced BS nanofiber solution could be casted into scaffolds made of abundant network-like nanofibrous structures. The BS scaffolds promoted cell adhesion and growth and stimulated osteogenic differentiation of the bone marrow mesenchymal stem cells (BMSCs) in the absence of differentiation inducers in culture media. Our study presents a new strategy for assembling proteins into osteogenic nanofibrous scaffolds for inducing stem cell differentiation in regenerative medicine.


Asunto(s)
Arginina/química , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Nanofibras/química , Sericinas/farmacología , Andamios del Tejido/química , Animales , Bombyx/química , Membranas Artificiales , Conformación Proteica en Lámina beta/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Sericinas/química
14.
Cell Death Dis ; 12(10): 917, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620841

RESUMEN

We previously demonstrated that sulforaphane (SFN) inhibited autophagy leading to apoptosis in human non-small cell lung cancer (NSCLC) cells, but the underlying subcellular mechanisms were unknown. Hereby, high-performance liquid chromatography-tandem mass spectrometry uncovered that SFN regulated the production of lipoproteins, and microtubule- and autophagy-associated proteins. Further, highly expressed fatty acid synthase (FASN) contributed to cancer malignancy and poor prognosis. Results showed that SFN depolymerized microtubules, downregulated FASN, and decreased its binding to α-tubulin; SFN downregulated FASN, acetyl CoA carboxylase (ACACA), and ATP citrate lyase (ACLY) via activating proteasomes and downregulating transcriptional factor SREBP1; SFN inhibited the interactions among α-tubulin and FASN, ACACA, and ACLY; SFN decreased the amount of intracellular fatty acid (FA) and mitochondrial phospholipids; and knockdown of FASN decreased mitochondrial membrane potential (ΔΨm) and increased reactive oxygen species, mitochondrial abnormality, and apoptosis. Further, SFN downregulated mitophagy-associated proteins Bnip3 and NIX, and upregulated mitochondrial LC3 II/I. Transmission electron microscopy showed mitochondrial abnormality and accumulation of mitophagosomes in response to SFN. Combined with mitophagy inducer CCCP or autophagosome-lysosome fusion inhibitor Bafilomycin A1, we found that SFN inhibited mitophagosome-lysosome fusion leading to mitophagosome accumulation. SFN reduced the interaction between NIX and LC3 II/I, and reversed CCCP-caused FA increase. Furthermore, knockdown of α-tubulin downregulated NIX and BNIP3 production, and upregulated LC3 II/I. Besides, SFN reduced the interaction and colocalization between α-tubulin and NIX. Thus, SFN might cause apoptosis via inhibiting microtubule-mediated mitophagy. These results might give us a new insight into the mechanisms of SFN-caused apoptosis in the subcellular level.


Asunto(s)
Apoptosis , Regulación hacia Abajo , Ácido Graso Sintasas/metabolismo , Isotiocianatos/farmacología , Microtúbulos/metabolismo , Mitofagia , Sulfóxidos/farmacología , Anciano , Apoptosis/efectos de los fármacos , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Ácidos Grasos/biosíntesis , Femenino , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Masculino , Fusión de Membrana/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , Persona de Mediana Edad , Mitofagia/efectos de los fármacos , Modelos Biológicos , Polimerizacion , Complejo de la Endopetidasa Proteasomal/metabolismo , Multimerización de Proteína/efectos de los fármacos , Tubulina (Proteína)/metabolismo
15.
Nat Commun ; 12(1): 5754, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34599176

RESUMEN

Small-molecule responsive protein switches are crucial components to control synthetic cellular activities. However, the repertoire of small-molecule protein switches is insufficient for many applications, including those in the translational spaces, where properties such as safety, immunogenicity, drug half-life, and drug side-effects are critical. Here, we present a computational protein design strategy to repurpose drug-inhibited protein-protein interactions as OFF- and ON-switches. The designed binders and drug-receptors form chemically-disruptable heterodimers (CDH) which dissociate in the presence of small molecules. To design ON-switches, we converted the CDHs into a multi-domain architecture which we refer to as activation by inhibitor release switches (AIR) that incorporate a rationally designed drug-insensitive receptor protein. CDHs and AIRs showed excellent performance as drug responsive switches to control combinations of synthetic circuits in mammalian cells. This approach effectively expands the chemical space and logic responses in living cells and provides a blueprint to develop new ON- and OFF-switches.


Asunto(s)
Diseño Asistido por Computadora , Receptores de Droga/metabolismo , Biología Sintética/métodos , Células HEK293 , Humanos , Multimerización de Proteína/efectos de los fármacos , Receptores de Droga/agonistas , Receptores de Droga/antagonistas & inhibidores
16.
Arch Biochem Biophys ; 713: 109062, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34688606

RESUMEN

Bacterial biofilms are an alternative lifestyle in which communities of bacteria are embedded in an extracellular matrix manly composed by polysaccharides, nucleic acids and proteins, being the hallmark of bacterial survival in a variety of ecological niches. Amyloid fibrils are one of the proteinaceous components of such extracellular crowded environments. FapC is the main component of the functional amyloid recently discovered in Pseudomonas species, including the opportunistic pathogen P. aeruginosa, which is a major cause of nosocomial infections and contamination of medical devices. Considering that several functional roles have been attributed to this bacterial amyloid, FapC emerged as a novel target to control Pseudomonas biofilm formation and to design new treatments against chronic infections. In this study, we used complementary biophysical techniques to evaluate conformational signatures of FapC amyloids formed in the presence of alginate, the major exopolysaccharide associated with the mucoid phenotype of P. aeruginosa strains isolated from cystic fibrosis patients. We found that the this naturally occurring macromolecular crowder leads to morphological similar yet polymorphic FapC fibrils, highlighting the importance of considering the complexity of the extracellular matrix in order to improve our understanding of microbial functional amyloids.


Asunto(s)
Alginatos/farmacología , Proteínas Amiloidogénicas/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Estructura Secundaria de Proteína/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología
17.
Molecules ; 26(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34641612

RESUMEN

3CL-Pro is the SARS-CoV-2 main protease (MPro). It acts as a homodimer to cleave the large polyprotein 1ab transcript into proteins that are necessary for viral growth and replication. 3CL-Pro has been one of the most studied SARS-CoV-2 proteins and a main target of therapeutics. A number of drug candidates have been reported, including natural products. Here, we employ elaborate computational methods to explore the dimerization of the 3CL-Pro protein, and we formulate a computational context to identify potential inhibitors of this process. We report that fortunellin (acacetin 7-O-neohesperidoside), a natural flavonoid O-glycoside, and its structural analogs are potent inhibitors of 3CL-Pro dimerization, inhibiting viral plaque formation in vitro. We thus propose a novel basis for the search of pharmaceuticals as well as dietary supplements in the fight against SARS-CoV-2 and COVID-19.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Flavonoides/farmacología , Glicósidos/farmacología , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Antivirales/química , Chlorocebus aethiops , Proteasas 3C de Coronavirus/metabolismo , Flavonoides/química , Glicósidos/química , Humanos , Simulación del Acoplamiento Molecular , Polifenoles/química , Polifenoles/farmacología , Inhibidores de Proteasas/química , Multimerización de Proteína/efectos de los fármacos , SARS-CoV-2/metabolismo , Células Vero
18.
J Am Chem Soc ; 143(43): 18073-18090, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34699194

RESUMEN

Human calprotectin (CP, S100A8/S100A9 oligomer, MRP8/MRP14 oligomer) is an abundant innate immune protein that contributes to the host metal-withholding response. Its ability to sequester transition metal nutrients from microbial pathogens depends on a complex interplay of Ca(II) binding and self-association, which converts the αß heterodimeric apo protein into a Ca(II)-bound (αß)2 heterotetramer that displays enhanced transition metal affinities, antimicrobial activity, and protease stability. A paucity of structural data on the αß heterodimer has hampered molecular understanding of how Ca(II) binding enables CP to exert its metal-sequestering innate immune function. We report solution NMR data that reveal how Ca(II) binding affects the structure and dynamics of the CP αß heterodimer. These studies provide a structural model in which the apo αß heterodimer undergoes conformational exchange and switches between two states, a tetramerization-incompetent or "inactive" state and a tetramerization-competent or "active" state. Ca(II) binding to the EF-hands of the αß heterodimer causes the active state to predominate, resulting in self-association and formation of the (αß)2 heterotetramer. Moreover, Ca(II) binding causes local and allosteric ordering of the His3Asp and His6 metal-binding sites. Ca(II) binding to the noncanonical EF-hand of S100A9 positions (A9)D30 and organizes the His3Asp site. Remarkably, Ca(II) binding causes allosteric effects in the C-terminal region of helix αIV of S100A9, which stabilize the α-helicity at positions H91 and H95 and thereby organize the functionally versatile His6 site. Collectively, this study illuminates the molecular basis for how CP responds to high extracellular Ca(II) concentrations, which enables its metal-sequestering host-defense function.


Asunto(s)
Calcio/metabolismo , Complejo de Antígeno L1 de Leucocito/metabolismo , Multimerización de Proteína/efectos de los fármacos , Elementos de Transición/metabolismo , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Histidina/química , Humanos , Complejo de Antígeno L1 de Leucocito/genética , Metales Pesados/metabolismo , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica en Hélice alfa/efectos de los fármacos , Multimerización de Proteína/genética
19.
Molecules ; 26(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34684786

RESUMEN

Two targeted sets of novel 1,5-diaryl-1H-imidazole-4-carboxylic acids 10 and carbohydrazides 11 were designed and synthesized from their corresponding ester intermediates 17, which were prepared via cycloaddition of ethyl isocyanoacetate 16 and diarylimidoyl chlorides 15. Evaluation of these new target scaffolds in the AlphaScreenTM HIV-1 IN-LEDGF/p75 inhibition assay identified seventeen compounds exceeding the pre-defined 50% inhibitory threshold at 100 µM concentration. Further evaluation of these compounds in the HIV-1 IN strand transfer assay at 100 µM showed that none of the compounds (with the exception of 10a, 10l, and 11k, with marginal inhibitory percentages) were actively bound to the active site, indicating that they are selectively binding to the LEDGF/p75-binding pocket. In a cell-based HIV-1 antiviral assay, compounds 11a, 11b, 11g, and 11h exhibited moderate antiviral percentage inhibition of 33-45% with cytotoxicity (CC50) values of >200 µM, 158.4 µM, >200 µM, and 50.4 µM, respectively. The antiviral inhibitory activity displayed by 11h was attributed to its toxicity. Upon further validation of their ability to induce multimerization in a Western blot gel assay, compounds 11a, 11b, and 11h appeared to increase higher-order forms of IN.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/síntesis química , Integrasa de VIH/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Dominio Catalítico , Línea Celular , Simulación por Computador , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Integrasa de VIH/química , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/farmacología , Interacciones Microbiota-Huesped/efectos de los fármacos , Humanos , Imidazoles/síntesis química , Imidazoles/química , Imidazoles/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Multimerización de Proteína/efectos de los fármacos
20.
Arch Biochem Biophys ; 712: 109033, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34534539

RESUMEN

The N-terminal 17-residue stretch of huntingtin (httN17) folds into an amphipathic α-helix. The httN17-harboring polyQ peptides form oligomers that are mediated via the assembly of the httN17 α-helices. The oligomerization results in higher local concentration of the polyglutamine (polyQ) region, thereby facilitating amyloid formation. The httN17 co-assembles with the httN17-harbouring polyQ peptides, thereby reducing the local polyQ concentration, and consequently inhibiting aggregation. This study presents the aggregation inhibition of the exon I region of pathogenic huntingtin by httN17 and its analogs. The C-terminal amidation of httN17 is found to be essential for activity. The httN17 peptides with free amino terminus and the acetylated amino terminus possess comparable activity. The httN17 analog, wherein the Leu7 and Ala10 are substituted with 2-aminoisobutyric acid residues, exhibits significantly higher activity than the native httN17.


Asunto(s)
Proteína Huntingtina/antagonistas & inhibidores , Proteína Huntingtina/química , Fragmentos de Péptidos/química , Multimerización de Proteína/efectos de los fármacos , Secuencia de Aminoácidos , Humanos , Fragmentos de Péptidos/síntesis química , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...