Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 566
Filtrar
1.
J Virol ; 98(5): e0198623, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38619272

RESUMEN

Human cytomegalovirus (hCMV) is a ubiquitous facultative pathogen, which establishes a characteristic latent and reactivating lifelong infection in immunocompetent hosts. Murine CMV (mCMV) infection is widely used as an experimental model of hCMV infection, employed to investigate the causal nature and extent of CMV's contribution to inflammatory, immunological, and health disturbances in humans. Therefore, mimicking natural human infection in mice would be advantageous to hCMV research. To assess the role of route and age at infection in modeling hCMV in mice, we infected prepubescent and young sexually mature C57BL/6 (B6) mice intranasally (i.n., a likely physiological route in humans) and intraperitoneally (i.p., a frequently used experimental route, possibly akin to transplant-mediated infection). In our hands, both routes led to comparable early viral loads and tissue spreads. However, they yielded differential profiles of innate and adaptive systemic immune activation. Specifically, the younger, prepubescent mice exhibited the strongest natural killer cell activation in the blood in response to i.p. infection. Further, the i.p. infected animals (particularly those infected at 12 weeks) exhibited larger anti-mCMV IgG and greater expansion of circulating CD8+ T cells specific for both acute (non-inflationary) and latent phase (inflationary) mCMV epitopes. By contrast, tissue immune responses were comparable between i.n. and i.p. groups. Our results illustrate a distinction in the bloodborne immune response profiles across infection routes and ages and are discussed in light of physiological parameters of interaction between CMV, immunity, inflammation, and health over the lifespan. IMPORTANCE: The majority of experiments modeling human cytomegalovirus (hCMV) infection in mice have been carried out using intraperitoneal infection in sexually mature adult mice, which stands in contrast to the large number of humans being infected with human CMV at a young age, most likely via bodily fluids through the nasopharyngeal/oral route. This study examined the impact of the choice of age and route of infection in modeling CMV infection in mice. By comparing young, prepubescent to older sexually mature counterparts, infected either via the intranasal or intraperitoneal route, we discovered substantial differences in deployment and response intensity of different arms of the immune system in systemic control of the virus; tissue responses, by contrast, appeared similar between ages and infection routes.


Asunto(s)
Inmunidad Adaptativa , Infecciones por Citomegalovirus , Modelos Animales de Enfermedad , Inmunidad Innata , Ratones Endogámicos C57BL , Muromegalovirus , Carga Viral , Animales , Ratones , Muromegalovirus/inmunología , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Factores de Edad , Células Asesinas Naturales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Femenino , Humanos
2.
J Virol ; 96(7): e0007722, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35293772

RESUMEN

CD4+ T cells are key to controlling cytomegalovirus infections. Salivary gland infection by murine cytomegalovirus (MCMV) provides a way to identify mechanisms. CD11c+ dendritic cells (DC) disseminate MCMV to the salivary glands, where they transfer infection to acinar cells. Antiviral CD4+ T cells are often considered to be directly cytotoxic for cells expressing major histocompatibility complex class II (MHCII). However, persistently infected salivary gland acinar cells are MHCII- and are presumably inaccessible to direct CD4 T cell recognition. Here, we show that CD4+ T cell depletion amplified infection of MHCII- acinar cells but not MHCII+ cells. MCMV-infected mice with disrupted MHCII on CD11c+ cells showed increased MHCII- acinar infection; antiviral CD4+ T cells were still primed, but their recruitment to the salivary glands was reduced, suggesting that engagement with local MHCII+ DC is important for antiviral protection. As MCMV downregulates MHCII on infected DC, the DC participating in CD4 protection may thus be uninfected. NK cells and gamma interferon (IFN-γ) may also contribute to CD4+ T cell-dependent virus control: CD4 T cell depletion reduced NK cell recruitment to the salivary glands, and both NK cell and IFN-γ depletion equalized infection between MHCII-disrupted and control mice. Taken together, these results suggest that CD4+ T cells protect indirectly against infected acinar cells in the salivary gland via DC engagement, requiring the recruitment of NK cells and the action of IFN-γ. Congruence of these results with an established CD4+ T cell/NK cell axis of gammaherpesvirus infection control suggests a common mode of defense against evasive viruses. IMPORTANCE Cytomegalovirus infections commonly cause problems in immunocompromised patients and in pregnancy. We lack effective vaccines. CD4+ T cells play an important role in normal infection control, yet how they act has been unknown. Using murine cytomegalovirus as an accessible model, we show that CD4+ T cells are unlikely to recognize infected cells directly. We propose that CD4+ T cells interact with uninfected cells that present viral antigens and recruit other immune cells to attack infected targets. These data present a new outlook on understanding how CD4+ T cell-directed control protects against persistent cytomegalovirus infection.


Asunto(s)
Linfocitos T CD4-Positivos , Infecciones por Citomegalovirus , Muromegalovirus , Animales , Antivirales , Linfocitos T CD4-Positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Humanos , Interferón gamma , Ratones , Muromegalovirus/inmunología
3.
J Immunol ; 208(4): 799-806, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35091435

RESUMEN

The potential of memory T cells to provide protection against reinfection is beyond question. Yet, it remains debated whether long-term T cell memory is due to long-lived memory cells. There is ample evidence that blood-derived memory phenotype CD8+ T cells maintain themselves through cell division, rather than through longevity of individual cells. It has recently been proposed, however, that there may be heterogeneity in the lifespans of memory T cells, depending on factors such as exposure to cognate Ag. CMV infection induces not only conventional, contracting T cell responses, but also inflationary CD8+ T cell responses, which are maintained at unusually high numbers, and are even thought to continue to expand over time. It has been proposed that such inflating T cell responses result from the accumulation of relatively long-lived CMV-specific memory CD8+ T cells. Using in vivo deuterium labeling and mathematical modeling, we found that the average production rates and expected lifespans of mouse CMV-specific CD8+ T cells are very similar to those of bulk memory-phenotype CD8+ T cells. Even CMV-specific inflationary CD8+ T cell responses that differ 3-fold in size were found to turn over at similar rates.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Interacciones Huésped-Patógeno/inmunología , Memoria Inmunológica , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Muromegalovirus/inmunología , Algoritmos , Animales , Biomarcadores , Linfocitos T CD8-positivos/metabolismo , Infecciones por Citomegalovirus/virología , Epítopos de Linfocito T/inmunología , Femenino , Inmunofenotipificación , Ratones , Modelos Teóricos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
4.
Immunohorizons ; 6(1): 8-15, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35031582

RESUMEN

NK cells are important mediators of viral control with the capacity to form adaptive immune features following infection. However, studies of infection-induced adaptive NK cells require adoptive cell transfer to lower the precursor frequency of "Ag-specific" NK cells, potentially limiting the diversity of the NK cell response. In seeking an unmanipulated model to probe the adaptive NK cells, we interrogated a wide range of Collaborative Cross (CC) inbred mice, inbred mouse strains that exhibit broad genetic diversity across strains. Our assessment identified and validated a putative "ideal" CC strain, CC006, which does not require manipulation to generate and maintain adaptive NK cells. Critically, CC006 mice, in contrast to C57BL/6 mice, are capable of developing enhanced NK cell-mediated protective responses to murine CMV infection following m157-mediated vaccination. This work both furthers our understanding of adaptive NK cells and demonstrates the utility of CC mice in the development and interrogation of immunologic models.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones por Herpesviridae/inmunología , Células Asesinas Naturales/inmunología , Muromegalovirus/inmunología , Traslado Adoptivo , Animales , Femenino , Infecciones por Herpesviridae/patología , Células Asesinas Naturales/patología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
5.
J Virol ; 95(21): e0126421, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34431701

RESUMEN

Vaccination against the betaherpesvirus, human cytomegalovirus (HCMV) is a public health goal. However, HCMV has proved difficult to vaccinate against. Vaccination against single HCMV determinants has not worked, suggesting that immunity to a wider antigenic profile may be required. Live attenuated vaccines provide the best prospects for protection, but the question remains as to how to balance vaccine virulence with safety. Animal models of HCMV infection provide insights into identifying targets for virus attenuation and understanding how host immunity blocks natural, mucosal infection. Here, we evaluated the vaccine potential of a mouse cytomegalovirus (MCMV) vaccine deleted of a viral G protein-coupled receptor (GPCR), designated M33, that renders it attenuated for systemic spread. A single noninvasive olfactory ΔM33 MCMV vaccine replicated locally, but as a result of the loss of the M33 GPCR, it failed to spread systemically and was attenuated for latent infection. Vaccination did not prevent host entry of a superinfecting MCMV but spread from the mucosa was blocked. This approach to vaccine design may provide a viable alternative for a safe and effective betaherpesvirus vaccine. IMPORTANCE Human cytomegalovirus (HCMV) is the most common cause of congenital infection for which a vaccine is not yet available. Subunit vaccine candidates have failed to achieve licensure. A live HCMV vaccine may prove more efficacious, but it faces safety hurdles which include its propensity to persist and to establish latency. Understanding how pathogens infect guide rational vaccine design. However, HCMV infections are asymptomatic and thus difficult to capture. Animal models of experimental infection provide insight. Here, we investigated the vaccine potential of a mouse cytomegalovirus (MCMV) attenuated for systemic spread and latency. We used olfactory vaccination and virus challenge to mimic its natural acquisition. We provide proof of concept that a single olfactory MCMV that is deficient in systemic spread can protect against wild-type MCMV superinfection and dissemination. This approach of deleting functional counterpart genes in HCMV may provide safe and effective vaccination against congenital HCMV disease.


Asunto(s)
Infecciones por Citomegalovirus/prevención & control , Vacunas contra Citomegalovirus/inmunología , Citomegalovirus/inmunología , Muromegalovirus/inmunología , Mucosa Olfatoria/virología , Sobreinfección/prevención & control , Sobreinfección/virología , Animales , Infecciones por Citomegalovirus/inmunología , Vacunas contra Citomegalovirus/administración & dosificación , Femenino , Inmunidad Innata , Ratones , Ratones Endogámicos BALB C , Nariz/virología , Prueba de Estudio Conceptual , Vacunación/métodos , Vacunas Atenuadas
6.
Mol Immunol ; 137: 94-104, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34242922

RESUMEN

The signaling adapter MyD88 is critical for immune cell activation in response to viral or bacterial pathogens via several TLRs, IL-1ßR and IL-18R. However, the essential role of MyD88 during activations mediated by germline-encoded NK cell receptors (NKRs), such as Ly49H or NKG2D, has yet to be investigated. To define the NK cell-intrinsic function of MyD88, we generated a novel NK cell conditional knockout mouse for MyD88 (Myd88fl/flNcr1Cre/+). Phenotypic characterization of these mice demonstrated that MyD88 is dispensable for NK cell development and maturation. However, the MyD88-deficient NK cells exhibited significantly reduced cytotoxic potentials in vivo. In addition, the lack of MyD88 significantly reduced the NKG2D-mediated inflammatory cytokine production in vitro. Consistent with this, mice lacking MyD88 were unable to respond and clear MCMV infection. Transcriptomic analyses of splenic NK cells following MCMV infection revealed that inflammatory gene signatures were upregulated in Ly49H+. In contrast, Ly49H- NK cells have significant enrichment in G2M checkpoint genes, revealing distinct transcriptomic profiles of these subsets. Our results identify a central role for MyD88 in Ly49H-dependent gene signatures, including alterations in genes regulating proliferation in Ly49H+ NK cells. In summary, our study reveals a previously unknown function of MyD88 in Ly49H-dependent signaling and in vivo functions of NK cells.


Asunto(s)
Infecciones por Herpesviridae/inmunología , Células Asesinas Naturales/inmunología , Muromegalovirus/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , Animales , Proliferación Celular/fisiología , Citocinas/inmunología , Femenino , Inflamación/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Receptores de Células Asesinas Naturales/inmunología , Transducción de Señal/inmunología , Transcriptoma/inmunología
7.
Front Immunol ; 12: 654225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093543

RESUMEN

Natural killer (NK) cells are the predominant innate lymphocytes that provide early defense against infections. In the inflammatory milieu, NK cells modify their metabolism to support high energy demands required for their proliferation, activation, and functional plasticity. This metabolic reprogramming is usually accompanied by the upregulation of nutrient transporter expression on the cell surface, leading to increased nutrient uptake required for intense proliferation. The interleukin-1 family members of inflammatory cytokines are critical in activating NK cells during infection; however, their underlying mechanism in NK cell metabolism is not fully elucidated. Previously, we have shown that IL-18 upregulates the expression of solute carrier transmembrane proteins and thereby induces a robust metabolic boost in NK cells. Unexpectedly, we found that IL-18 signaling is dispensable during viral infection in vivo, while the upregulation of nutrient transporters is primarily MyD88-dependent. NK cells from Myd88-/- mice displayed significantly reduced surface expression of nutrient receptors and mTOR activity during MCMV infection. We also identified that IL-33, another cytokine employing MyD88 signaling, induces the expression of nutrient transporters but requires a pre-exposure to IL-12. Moreover, signaling through the NK cell activating receptor, Ly49H, can also promote the expression of nutrient transporters. Collectively, our findings revealed multiple pathways that can induce the expression of nutrient transporters on NK cells while highlighting the imperative role of MyD88 in NK cell metabolism during infection.


Asunto(s)
Infecciones por Herpesviridae/etiología , Infecciones por Herpesviridae/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Muromegalovirus/inmunología , Factor 88 de Diferenciación Mieloide/metabolismo , Nutrientes/metabolismo , Animales , Biomarcadores , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Metabolismo Energético , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Transducción de Señal
8.
Front Immunol ; 12: 681380, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34168650

RESUMEN

Viral vectors have emerged as a promising alternative to classical vaccines due to their great potential for induction of a potent cellular and humoral immunity. Cytomegalovirus (CMV) is an attractive vaccine vector due to its large genome with many non-essential immunoregulatory genes that can be easily manipulated to modify the immune response. CMV generates a strong antigen-specific CD8 T cell response with a gradual accumulation of these cells in the process called memory inflation. In our previous work, we have constructed a mouse CMV vector expressing NKG2D ligand RAE-1γ in place of its viral inhibitor m152 (RAE-1γMCMV), which proved to be highly attenuated in vivo. Despite attenuation, RAE-1γMCMV induced a substantially stronger CD8 T cell response to vectored antigen than the control vector and provided superior protection against bacterial and tumor challenge. In the present study, we confirmed the enhanced protective capacity of RAE-1γMCMV as a tumor vaccine vector and determined the phenotypical and functional characteristics of memory CD8 T cells induced by the RAE-1γ expressing MCMV. RNAseq data revealed higher transcription of numerous genes associated with effector-like CD8 T cell phenotype in RAE-1γMCMV immunized mice. CD8 T cells primed with RAE-1γMCMV were enriched in TCF1 negative population, with higher expression of KLRG1 and lower expression of CD127, CD27, and Eomes. These phenotypical differences were associated with distinct functional features as cells primed with RAE-1γMCMV showed inferior cytokine-producing abilities but comparable cytotoxic potential. After adoptive transfer into naive hosts, OT-1 cells induced with both RAE-1γMCMV and the control vector were equally efficient in rejecting established tumors, suggesting the context of latent infection and cell numbers as important determinants of enhanced anti-tumor response following RAE-1γMCMV vaccination. Overall, our results shed new light on the phenotypical and functional distinctness of memory CD8 T cells induced with CMV vector expressing cellular ligand for the NKG2D receptor.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Vacunas contra Citomegalovirus/inmunología , Memoria Inmunológica , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Fenotipo , Animales , Vacunas contra el Cáncer/inmunología , Biología Computacional/métodos , Citomegalovirus/inmunología , Citotoxicidad Inmunológica , Perfilación de la Expresión Génica , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/prevención & control , Inmunofenotipificación , Activación de Linfocitos/inmunología , Ratones , Muromegalovirus/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Transcriptoma
9.
Cytokine ; 144: 155596, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34078571

RESUMEN

Interleukin-1α (IL-1α) is an alarmin involved in the recruitment of macrophages and neutrophils during tissue inflammation. IL-1α can undergo cleavage by proteases, such as calpain-1, that enhances IL-1α binding to its receptor, although proteolytic cleavage is not necessary for biological activity. Macrophages and neutrophils are involved in the retinal inflammation associated with development of AIDS-related human cytomegalovirus (HCMV) retinitis. We therefore performed studies to test the hypothesis that IL-1α gene expression is stimulated intraocularly during retinitis development using two mouse models of murine cytomegalovirus (MCMV) retinitis that differ in method of immunosuppression, one by retrovirus-induced immunosuppression (MAIDS) and the other by corticosteroid-induced immunosuppression. MCMV-infected eyes of groups of retinitis-susceptible mice with MAIDS of 10 weeks duration (MAIDS-10 mice) and retinitis-susceptible corticosteroid-treated mice showed significant stimulation of IL-1α mRNA. Western blot analysis confirmed IL-1α protein production within the MCMV-infected eyes of MAIDS-10 mice. Whereas significant intraocular calpain-1 mRNA and protein production were also observed within MCMV-infected eyes of MAIDS-10 mice, the MCMV-infected eyes of retinitis-susceptible corticosteroid-treated mice showed a pattern of mRNA synthesis equivalent to that found within the MCMV-infected eyes of healthy mice that fail to develop retinitis. Our findings suggest a role for the alarmin IL-1α in the pathogenesis of MCMV retinitis in immunosuppressed mice. These findings may extend to the pathogenesis of HCMV retinitis in patients with AIDS or other forms of immunosuppression.


Asunto(s)
Retinitis por Citomegalovirus/inmunología , Interleucina-1alfa/inmunología , Síndrome de Inmunodeficiencia Adquirida del Murino/inmunología , Muromegalovirus/inmunología , Retina/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Tolerancia Inmunológica/inmunología , Terapia de Inmunosupresión/métodos , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , ARN Mensajero/inmunología
10.
Cell Rep ; 35(9): 109210, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077737

RESUMEN

Natural killer (NK) cells are cytotoxic lymphocytes capable of rapid cytotoxicity, cytokine secretion, and clonal expansion. To sustain such energetically demanding processes, NK cells must increase their metabolic capacity upon activation. However, little is known about the metabolic requirements specific to NK cells in vivo. To gain greater insight, we investigated the role of aerobic glycolysis in NK cell function and demonstrate that their glycolytic rate increases rapidly following viral infection and inflammation, prior to that of CD8+ T cells. NK cell-specific deletion of lactate dehydrogenase A (LDHA) reveals that activated NK cells rely on this enzyme for both effector function and clonal proliferation, with the latter being shared with T cells. As a result, LDHA-deficient NK cells are defective in their anti-viral and anti-tumor protection. These findings suggest that aerobic glycolysis is a hallmark of NK cell activation that is key to their function.


Asunto(s)
Glucólisis , Células Asesinas Naturales/inmunología , Lactato Deshidrogenasa 5/metabolismo , Muromegalovirus/inmunología , Neoplasias/inmunología , Aerobiosis , Animales , Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Células Clonales , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/patología , Infecciones por Citomegalovirus/virología , Homeostasis , Ratones Endogámicos C57BL , Neoplasias/patología , Regulación hacia Arriba
11.
Front Immunol ; 12: 668885, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968074

RESUMEN

Acute infection with murine cytomegalovirus (mCMV) is controlled by CD8+ T cells and develops into a state of latent infection, referred to as latency, which is defined by lifelong maintenance of viral genomes but absence of infectious virus in latently infected cell types. Latency is associated with an increase in numbers of viral epitope-specific CD8+ T cells over time, a phenomenon known as "memory inflation" (MI). The "inflationary" subset of CD8+ T cells has been phenotyped as KLRG1+CD62L- effector-memory T cells (iTEM). It is agreed upon that proliferation of iTEM requires repeated episodes of antigen presentation, which implies that antigen-encoding viral genes must be transcribed during latency. Evidence for this has been provided previously for the genes encoding the MI-driving antigenic peptides IE1-YPHFMPTNL and m164-AGPPRYSRI of mCMV in the H-2d haplotype. There exist two competing hypotheses for explaining MI-driving viral transcription. The "reactivation hypothesis" proposes frequent events of productive virus reactivation from latency. Reactivation involves a coordinated gene expression cascade from immediate-early (IE) to early (E) and late phase (L) transcripts, eventually leading to assembly and release of infectious virus. In contrast, the "stochastic transcription hypothesis" proposes that viral genes become transiently de-silenced in latent viral genomes in a stochastic fashion, not following the canonical IE-E-L temporal cascade of reactivation. The reactivation hypothesis, however, is incompatible with the finding that productive virus reactivation is exceedingly rare in immunocompetent mice and observed only under conditions of compromised immunity. In addition, the reactivation hypothesis fails to explain why immune evasion genes, which are regularly expressed during reactivation in the same cells in which epitope-encoding genes are expressed, do not prevent antigen presentation and thus MI. Here we show that IE, E, and L genes are transcribed during latency, though stochastically, not following the IE-E-L temporal cascade. Importantly, transcripts that encode MI-driving antigenic peptides rarely coincide with those that encode immune evasion proteins. As immune evasion can operate only in cis, that is, in a cell that simultaneously expresses antigenic peptides, the stochastic transcription hypothesis explains why immune evasion is not operative in latently infected cells and, therefore, does not interfere with MI.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Infecciones por Herpesviridae/virología , Evasión Inmune , Memoria Inmunológica , Infección Latente/virología , Pulmón/virología , Muromegalovirus/patogenicidad , Activación Viral , Latencia del Virus , Animales , Antígenos Virales/genética , Antígenos Virales/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación Viral de la Expresión Génica , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/metabolismo , Interacciones Huésped-Patógeno , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Infección Latente/inmunología , Infección Latente/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Ratones Endogámicos BALB C , Modelos Inmunológicos , Muromegalovirus/genética , Muromegalovirus/inmunología , Fenotipo , Procesos Estocásticos , Factores de Tiempo , Transcripción Genética
12.
Nat Immunol ; 22(5): 627-638, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33859404

RESUMEN

Cytokine signaling via signal transducer and activator of transcription (STAT) proteins is crucial for optimal antiviral responses of natural killer (NK) cells. However, the pleiotropic effects of both cytokine and STAT signaling preclude the ability to precisely attribute molecular changes to specific cytokine-STAT modules. Here, we employed a multi-omics approach to deconstruct and rebuild the complex interaction of multiple cytokine signaling pathways in NK cells. Proinflammatory cytokines and homeostatic cytokines formed a cooperative axis to commonly regulate global gene expression and to further repress expression induced by type I interferon signaling. These cytokines mediated distinct modes of epigenetic regulation via STAT proteins, and collective signaling best recapitulated global antiviral responses. The most dynamically responsive genes were conserved across humans and mice, which included a cytokine-STAT-induced cross-regulatory program. Thus, an intricate crosstalk exists between cytokine signaling pathways, which governs NK cell responses.


Asunto(s)
Epigénesis Genética/inmunología , Infecciones por Herpesviridae/inmunología , Interleucinas/metabolismo , Células Asesinas Naturales/inmunología , Factores de Transcripción STAT/metabolismo , Animales , Separación Celular , Secuenciación de Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Redes Reguladoras de Genes/inmunología , Infecciones por Herpesviridae/sangre , Infecciones por Herpesviridae/virología , Humanos , Inmunidad Innata/genética , Células Asesinas Naturales/metabolismo , Masculino , Ratones , Ratones Noqueados , Muromegalovirus/inmunología , Análisis de Componente Principal , RNA-Seq , Factores de Transcripción STAT/genética , Transducción de Señal/genética , Transducción de Señal/inmunología
14.
Methods Mol Biol ; 2244: 365-401, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33555596

RESUMEN

Human cytomegalovirus (HCMV) is a leading viral cause of congenital infections in the central nervous system (CNS) and may result in severe long-term sequelae. High rates of sequelae following congenital HCMV infection and insufficient antiviral therapy in the perinatal period makes the development of an HCMV-specific vaccine a high priority of modern medicine. Due to the species specificity of HCMV, animal models are frequently used to study CMV pathogenesis. Studies of murine cytomegalovirus (MCMV) infections of adult mice have played a significant role as a model of CMV biology and pathogenesis, while MCMV infection of newborn mice has been successfully used as a model of perinatal CMV infection. Newborn mice infected with MCMV have high levels of viremia during which the virus establishes a productive infection in most organs, coupled with a robust inflammatory response. Productive infection in the brain parenchyma during early postnatal period leads to an extensive nonnecrotizing multifocal widespread encephalitis characterized by infiltration of components of both innate and adaptive immunity. As a result, impairment in postnatal development of mouse cerebellum leads to long-term motor and sensor disabilities. This chapter summarizes current findings of rodent models of perinatal CMV infection and describes methods for analysis of perinatal MCMV infection in newborn mice.


Asunto(s)
Citomegalovirus/inmunología , Modelos Animales de Enfermedad , Animales , Animales Recién Nacidos , Encéfalo/inmunología , Sistema Nervioso Central/virología , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/inmunología , Encefalitis , Enfermedades Fetales , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Muromegalovirus/inmunología , Cultivo Primario de Células
15.
PLoS Pathog ; 17(1): e1009255, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33508041

RESUMEN

Cytomegalovirus (CMV) causes clinically important diseases in immune compromised and immune immature individuals. Based largely on work in the mouse model of murine (M)CMV, there is a consensus that myeloid cells are important for disseminating CMV from the site of infection. In theory, such dissemination should expose CMV to cell-mediated immunity and thus necessitate evasion of T cells and NK cells. However, this hypothesis remains untested. We constructed a recombinant MCMV encoding target sites for the hematopoietic specific miRNA miR-142-3p in the essential viral gene IE3. This virus disseminated poorly to the salivary gland following intranasal or footpad infections but not following intraperitoneal infection in C57BL/6 mice, demonstrating that dissemination by hematopoietic cells is essential for specific routes of infection. Remarkably, depletion of NK cells or T cells restored dissemination of this virus in C57BL/6 mice after intranasal infection, while dissemination occurred normally in BALB/c mice, which lack strong NK cell control of MCMV. These data show that cell-mediated immunity is responsible for restricting MCMV to hematopoietic cell-mediated dissemination. Infected hematopoietic cells avoided cell-mediated immunity via three immune evasion genes that modulate class I MHC and NKG2D ligands (m04, m06 and m152). MCMV lacking these 3 genes spread poorly to the salivary gland unless NK cells were depleted, but also failed to replicate persistently in either the nasal mucosa or salivary gland unless CD8+ T cells were depleted. Surprisingly, CD8+ T cells primed after intranasal infection required CD4+ T cell help to expand and become functional. Together, our data suggest that MCMV can use both hematopoietic cell-dependent and -independent means of dissemination after intranasal infection and that cell mediated immune responses restrict dissemination to infected hematopoietic cells, which are protected from NK cells during dissemination by viral immune evasion. In contrast, viral replication within mucosal tissues depends on evasion of T cells.


Asunto(s)
Infecciones por Herpesviridae/inmunología , Evasión Inmune , Inmunidad Celular , Muromegalovirus/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/virología , Infecciones por Herpesviridae/virología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/virología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Muromegalovirus/genética , Muromegalovirus/fisiología , Replicación Viral
16.
Eur J Immunol ; 51(2): 393-407, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33029793

RESUMEN

Cytomegalovirus (CMV)-based vaccines show promising effects against chronic infections in nonhuman primates. Therefore, we examined the potential of hepatitis B virus (HBV) vaccines based on mouse CMV (MCMV) vectors expressing the small HBsAg. Immunological consequences of vaccine virus attenuation were addressed by either replacing the dispensable gene m157 ("MCMV-HBsȍ) or the gene M27 ("ΔM27-HBs"), the latter encodes a potent IFN antagonist targeting the transcription factor STAT2. M27 was chosen, since human CMV encodes an analogous gene product, which also induced proteasomal STAT2 degradation by exploiting Cullin RING ubiquitin ligases. Vaccinated mice were challenged with HBV through hydrodynamic injection. MCMV-HBs and ΔM27-HBs vaccination achieved accelerated HBV clearance in serum and liver as well as robust HBV-specific CD8+ T-cell responses. When we explored the therapeutic potential of MCMV-based vaccines, especially the combination of ΔM27-HBs prime and DNA boost vaccination resulted in increased intrahepatic HBs-specific CD8+ T-cell responses and HBV clearance in persistently infected mice. Our results demonstrated that vaccines based on a replication competent MCMV attenuated through the deletion of an IFN antagonist targeting STAT2 elicit robust anti-HBV immune responses and mediate HBV clearance in mice in prophylactic and therapeutic immunization regimes.


Asunto(s)
Antígenos de Superficie de la Hepatitis B/inmunología , Vacunas contra Hepatitis B/inmunología , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/inmunología , Muromegalovirus/inmunología , Animales , Antivirales/inmunología , Linfocitos T CD8-positivos/inmunología , Células Cultivadas , Femenino , Hepatitis B Crónica/virología , Inmunización/métodos , Interferones/inmunología , Hígado/inmunología , Hígado/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción STAT2/inmunología , Vacunación/métodos , Replicación Viral/inmunología
17.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375121

RESUMEN

Regulatory T cells (Tregs) prevent excessive immune responses and limit immune pathology upon infections. To fulfill this role in different immune environments elicited by different types of pathogens, Tregs undergo functional specialization into distinct subsets. During acute type 1 immune responses, type 1 Tregs are induced and recruited to the site of ongoing Th1 responses to efficiently control Th1 responses. However, whether a similar specialization process also takes place following chronic infections is still unknown. In this study, we investigated Treg specialization in persistent viral infections using lymphocytic choriomeningitis virus (LCMV) and murine cytomegalovirus (MCMV) infection as models for chronic and latent infections, respectively. We identify CD85k as a Th1-specific co-inhibitory receptor with sustained expression in persistent viral infections and show that recombinant CD85k inhibits LCMV-specific effector T cells. Furthermore, expression of the CD85k ligand ALCAM is induced on LCMV-specific and exhausted T cells during chronic LCMV infection. Finally, we demonstrate that type 1 Tregs arising during chronic LCMV infection suppress Th1 effector cells in an ALCAM-dependent manner. These results extend the current knowledge of Treg specialization from acute to persistent viral infections and reveal an important functional role of CD85k in Treg-mediated suppression of type 1 immunity.


Asunto(s)
Virus de la Coriomeningitis Linfocítica/inmunología , Glicoproteínas de Membrana/inmunología , Muromegalovirus/inmunología , Receptores Inmunológicos/inmunología , Linfocitos T Reguladores/inmunología , Animales , Antígenos CD/inmunología , Antígenos CD/metabolismo , Moléculas de Adhesión Celular Neuronal/inmunología , Moléculas de Adhesión Celular Neuronal/metabolismo , Línea Celular , Células Cultivadas , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/metabolismo , Infecciones por Herpesviridae/virología , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/metabolismo , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/fisiología , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Muromegalovirus/fisiología , Receptores Inmunológicos/metabolismo , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/virología , Células TH1/inmunología , Células TH1/metabolismo
18.
Retrovirology ; 17(1): 36, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33228686

RESUMEN

BACKGROUND: A reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-1 infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV-1 and other common pathogens to reverse latency. RESULTS: We obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV-1 and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-1 expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-1 expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. CONCLUSIONS: In this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-1 latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


Asunto(s)
Antígenos/inmunología , Infecciones por VIH/virología , VIH-1/fisiología , Latencia del Virus/inmunología , Adulto , Anciano , Presentación de Antígeno , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Células Dendríticas/inmunología , Femenino , VIH-1/inmunología , Humanos , Memoria Inmunológica , Interferón gamma/metabolismo , Masculino , Persona de Mediana Edad , Muromegalovirus/inmunología , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Virión/metabolismo , Activación Viral/inmunología
19.
PLoS Pathog ; 16(11): e1009032, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33156834

RESUMEN

Human cytomegalovirus (HCMV) is an opportunistic human herpesvirus that causes a sight-threatening retinitis in immunosuppressed patients, especially those with AIDS. Using an established model of experimental murine cytomegalovirus (MCMV) retinitis in mice with retrovirus-induced immunodeficiency (MAIDS), we have been attempting to define with greater clarity the immunologic mechanisms that contribute to the progression of AIDS-related HCMV retinitis in the unique immunosuppressive setting of HIV infection. Toward this end, we provide herein a comprehensive assessment of immune response gene expression during the onset and development of MAIDS-related MCMV retinitis employing NanoString nCounter. In so doing, we analyzed and compared the intraocular expressions of 561 immune response genes within MCMV-infected eyes of groups of healthy mice, MCMV-infected mice with MAIDS of 4 weeks' (MAIDS-4) duration, and MCMV-infected eyes of mice with MAIDS of 10 weeks' (MAIDS-10) duration. These animal groups show a progression of retinal disease from absolute resistance to retinitis development in healthy mice to the development of classic full-thickness retinal necrosis in MAIDS-10 mice but through an intermediate stage of retinal disease development in MAIDS-4 mice. Our findings showed that increased susceptibility to MCMV retinitis during the progression of MAIDS is associated with robust upregulation or downregulation of a surprisingly large number of immune response genes that operate within several immune response pathways often unique to each animal group. Analysis of 14 additional immune response genes associated with programmed cell death pathways suggested involvement of necroptosis and pyroptosis during MAIDS-related MCMV retinitis pathogenesis. Use of the NanoString nCounter technology provided new and unexpected information on the immunopathogenesis of retinitis within MCMV-infected eyes of mice with retrovirus-induced immunosuppression. Our findings may provide new insights into the immunologic events that operate during the pathogenesis of AIDS-related HCMV retinitis.


Asunto(s)
Retinitis por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Infecciones por VIH/inmunología , Inmunidad/genética , Síndrome de Inmunodeficiencia Adquirida del Murino/inmunología , Muromegalovirus/inmunología , Animales , Retinitis por Citomegalovirus/virología , Modelos Animales de Enfermedad , Ojo/inmunología , Ojo/virología , Femenino , Perfilación de la Expresión Génica , Infecciones por VIH/virología , Humanos , Terapia de Inmunosupresión , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Síndrome de Inmunodeficiencia Adquirida del Murino/virología
20.
Viruses ; 12(11)2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126536

RESUMEN

Cytomegaloviruses all encode the viral inhibitor of caspase-8-induced apoptosis (vICA). After binding to this initiator caspase, vICA blocks caspase-8 proteolytic activity and ability to activate caspase-3 and/or caspase-7. In this manner, vICA has long been known to prevent apoptosis triggered via tumor necrosis factor (TNF) family death receptor-dependent extrinsic signaling. Here, we employ fully wild-type murine cytomegalovirus (MCMV) and vICA-deficient MCMV (∆M36) to investigate the contribution of TNF signaling to apoptosis during infection of different cell types. ∆M36 shows the expected ability to kill mouse splenic hematopoietic cells, bone marrow-derived macrophages (BMDM), and dendritic cells (BMDC). Antibody blockade or genetic elimination of TNF protects myeloid cells from death, and caspase-8 activation accompanies cell death. Interferons, necroptosis, and pyroptotic gasdermin D (GSDMD) do not contribute to myeloid cell death. Human and murine fibroblasts or murine endothelial cells (SVEC4-10) normally insensitive to TNF become sensitized to ∆M36-induced apoptosis when treated with TNF or TNF-containing BMDM-conditioned medium. We demonstrate that myeloid cells are the natural source of TNF that triggers apoptosis in either myeloid (autocrine) or non-myeloid cells (paracrine) during ∆M36 infection of mice. Caspase-8 suppression by vICA emerges as key to subverting innate immune elimination of a wide variety of infected cell types.


Asunto(s)
Apoptosis/genética , Caspasa 8/metabolismo , Muromegalovirus/patogenicidad , Transducción de Señal , Factor de Necrosis Tumoral alfa/inmunología , Proteínas Virales/genética , Animales , Caspasa 8/genética , Supervivencia Celular , Células Dendríticas/inmunología , Células Dendríticas/virología , Células Endoteliales/inmunología , Células Endoteliales/virología , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/inmunología , Macrófagos/virología , Ratones , Ratones Noqueados , Muromegalovirus/inmunología , Células Mieloides/inmunología , Células Mieloides/virología , Células 3T3 NIH , Factor de Necrosis Tumoral alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...