Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-32265046

RESUMEN

Human risk assessment of genotoxic chemicals is an important area of research. However, the specificity of in vitro mammalian genotoxicity assays is sometime low, as they yield to misleading positive results that are not observe in in vivo studies. Apoptosis can be a confounding factor in the interpretation of the results. Recently, a new strategy for genotoxicity screening, based on the combined analysis of phosphorylated histones H2AX (γH2AX) and H3 (pH3), was proposed to discriminate efficiently aneugenic from clastogenic compounds. However, γH2AX biomarker could also be induce by apoptosis. The aim of the present study was to investigate the specificity of this genotoxic biomarker. For this purpose, we analyzed 26 compounds inducing apoptosis by different mechanism of action, with the γH2AX assay in three human cell lines after 24 h treatment. Most of the tested chemicals were negative in the assay, whatever the cell line tested. The few compounds that generated positive data have also been report positive in other genotoxicity assays. The data presented here demonstrate that the γH2AX assay is not vulnerable to the generation of misleading positive results by apoptosis inducers. Currently, no formal guidelines have been approve for the γH2AX assay for regular genotoxicity studies, but we suggest that this biomarker could be used as a new standard genotoxicity assay.


Asunto(s)
Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/genética , Western Blotting/métodos , Histonas/genética , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Mutágenos/toxicidad , Apoptosis/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Expresión Génica , Células Hep G2 , Histonas/metabolismo , Humanos , Pruebas de Micronúcleos , Pruebas de Mutagenicidad , Mutágenos/clasificación , Fosforilación , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-32087853

RESUMEN

The International Workshop on Genotoxicity Testing (IWGT) meets every four years to obtain consensus on unresolved issues associated with genotoxicity testing. At the 2017 IWGT meeting in Tokyo, four sub-groups addressed issues associated with the Organization for Economic Cooperation and Development (OECD) Test Guideline TG471, which describes the use of bacterial reverse-mutation tests. The strains sub-group analyzed test data from >10,000 chemicals, tested additional chemicals, and concluded that some strains listed in TG471 are unnecessary because they detected fewer mutagens than other strains that the guideline describes as equivalent. Thus, they concluded that a smaller panel of strains would suffice to detect most mutagens. The laboratory proficiency sub-group recommended (a) establishing strain cell banks, (b) developing bacterial growth protocols that optimize assay sensitivity, and (c) testing "proficiency compounds" to gain assay experience and establish historical positive and control databases. The sub-group on criteria for assay evaluation recommended that laboratories (a) track positive and negative control data; (b) develop acceptability criteria for positive and negative controls; (c) optimize dose-spacing and the number of analyzable doses when there is evidence of toxicity; (d) use a combination of three criteria to evaluate results: a dose-related increase in revertants, a clear increase in revertants in at least one dose relative to the concurrent negative control, and at least one dose that produced an increase in revertants above control limits established by the laboratory from historical negative controls; and (e) establish experimental designs to resolve unclear results. The in silico sub-group summarized in silico utility as a tool in genotoxicity assessment but made no specific recommendations for TG471. Thus, the workgroup identified issues that could be addressed if TG471 is revised. The companion papers (a) provide evidence-based approaches, (b) recommend priorities, and (c) give examples of clearly defined terms to support revision of TG471.


Asunto(s)
Escherichia coli/efectos de los fármacos , Mutagénesis , Pruebas de Mutagenicidad/normas , Mutágenos/toxicidad , Salmonella typhimurium/efectos de los fármacos , Animales , Bancos de Muestras Biológicas/organización & administración , Bases de Datos de Compuestos Químicos/provisión & distribución , Escherichia coli/genética , Guías como Asunto , Humanos , Cooperación Internacional , Mutágenos/clasificación , Salmonella typhimurium/genética , Tokio
3.
Ecotoxicol Environ Saf ; 185: 109733, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31580980

RESUMEN

Presence of missing data points in datasets is among main challenges in handling the toxicological data for nanomaterials. As the processing of missing data is an important part of data analysis, we have introduced a read-across approach that uses a combination of supervised and unsupervised machine learning techniques to fill the missing values. A series of classification models (supervised learning) was developed to predict class label, and self-organizing map approach (unsupervised learning) was used to estimate relative distances between nanoparticles and refine results obtained during supervised learning. In this study, genotoxicity of 49 silicon and metal oxide nanoparticles in Ames and Comet tests. Collected literature data did not demonstrate significant variations related to the change of size including selected bulk materials. Genotoxicity-related features of nanomaterials were represented by ionic characteristics. General tendencies found in the current study were convincingly linked to known theories of genotoxic action at nano-level. Mechanisms of primary and secondary genotoxic effects were discussed in the context of developed models.


Asunto(s)
Daño del ADN , Nanopartículas del Metal/toxicidad , Modelos Teóricos , Mutágenos/toxicidad , Aprendizaje Automático no Supervisado , Línea Celular , Ensayo Cometa , Humanos , Nanopartículas del Metal/clasificación , Mutágenos/clasificación , Óxidos/clasificación , Óxidos/toxicidad , Relación Estructura-Actividad Cuantitativa , Salmonella typhimurium/genética
4.
Regul Toxicol Pharmacol ; 102: 53-64, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30562600

RESUMEN

The International Council for Harmonization (ICH) M7 guideline describes a hazard assessment process for impurities that have the potential to be present in a drug substance or drug product. In the absence of adequate experimental bacterial mutagenicity data, (Q)SAR analysis may be used as a test to predict impurities' DNA reactive (mutagenic) potential. However, in certain situations, (Q)SAR software is unable to generate a positive or negative prediction either because of conflicting information or because the impurity is outside the applicability domain of the model. Such results present challenges in generating an overall mutagenicity prediction and highlight the importance of performing a thorough expert review. The following paper reviews pharmaceutical and regulatory experiences handling such situations. The paper also presents an analysis of proprietary data to help understand the likelihood of misclassifying a mutagenic impurity as non-mutagenic based on different combinations of (Q)SAR results. This information may be taken into consideration when supporting the (Q)SAR results with an expert review, especially when out-of-domain results are generated during a (Q)SAR evaluation.


Asunto(s)
Contaminación de Medicamentos , Guías como Asunto , Mutágenos/clasificación , Relación Estructura-Actividad Cuantitativa , Industria Farmacéutica , Agencias Gubernamentales , Mutágenos/toxicidad , Medición de Riesgo
5.
Environ Mol Mutagen ; 58(7): 494-507, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28714573

RESUMEN

Genotoxicity potential is a critical component of any comprehensive toxicological profile. Compounds that induce DNA or chromosomal damage often activate p53, a transcription factor essential to cell cycle regulation. Thus, within the US Tox21 Program, we screened a library of ∼10,000 (∼8,300 unique) environmental compounds and drugs for activation of the p53-signaling pathway using a quantitative high-throughput screening assay employing HCT-116 cells (p53+/+ ) containing a stably integrated ß-lactamase reporter gene under control of the p53 response element (p53RE). Cells were exposed (-S9) for 16 hr at 15 concentrations (generally 1.2 nM to 92 µM) three times, independently. Excluding compounds that failed analytical chemistry analysis or were suspected of inducing assay interference, 365 (4.7%) of 7,849 unique compounds were concluded to activate p53. As part of an in-depth characterization of our results, we first compared them with results from traditional in vitro genotoxicity assays (bacterial mutation, chromosomal aberration); ∼15% of known, direct-acting genotoxicants in our library activated the p53RE. Mining the Comparative Toxicogenomics Database revealed that these p53 actives were significantly associated with increased expression of p53 downstream genes involved in DNA damage responses. Furthermore, 53 chemical substructures associated with genotoxicity were enriched in certain classes of p53 actives, for example, anthracyclines (antineoplastics) and vinca alkaloids (tubulin disruptors). Interestingly, the tubulin disruptors manifested unusual nonmonotonic concentration response curves suggesting activity through a unique p53 regulatory mechanism. Through the analysis of our results, we aim to define a role for this assay as one component of a comprehensive toxicological characterization of large compound libraries. Environ. Mol. Mutagen. 58:494-507, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Daño del ADN , Contaminantes Ambientales/toxicidad , Ensayos Analíticos de Alto Rendimiento/métodos , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Proteína p53 Supresora de Tumor/metabolismo , Activación Metabólica , Técnicas de Cultivo de Célula , Contaminantes Ambientales/química , Contaminantes Ambientales/clasificación , Interacción Gen-Ambiente , Células HCT116 , Humanos , Mutágenos/química , Mutágenos/clasificación , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/genética
6.
Regul Toxicol Pharmacol ; 86: 392-401, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28385577

RESUMEN

Carbamates are widely used in the chemical industry so understanding their toxicity is important to safety assessment. Carbamates have been associated with certain toxicities resulting in publication of structural alerts, including alerts for mutagenicity. Structural alerts for bacterial mutagenicity can be used in combination with statistical systems to enable ICH M7 classification, which allows assessment of the genotoxic risk posed by pharmaceutical impurities. This study tested a hypothetical bacterial mutagenicity alert for carbamates and examined the impact it would have on ICH M7 classifications using (Q)SAR predictions from the expert rule-based system Derek Nexus and the statistical-based system Sarah Nexus. Public datasets have a low prevalence of mutagenic carbamates, which highlighted that systems containing an alert for carbamates perform poorly for achieving correct ICH M7 classifications. Carbamates are commonly used as protecting groups and proprietary datasets containing such compounds were also found to have a low prevalence of mutagenic compounds. Expert review of the mutagenic compounds established that mutagenicity was often only observed under certain (non-standard) conditions and more generally that the Ames test may be a poor predictor for the risk of carcinogenicity posed by chemicals in this class. Overall a structural alert for the in vitro bacterial mutagenesis of carbamates does not benefit workflows for assigning ICH M7 classification to impurities.


Asunto(s)
Carbamatos/toxicidad , Pruebas de Mutagenicidad , Mutágenos/toxicidad , Carbamatos/clasificación , Simulación por Computador , Contaminación de Medicamentos , Mutágenos/clasificación , Relación Estructura-Actividad Cuantitativa
7.
Toxicol In Vitro ; 41: 56-63, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28232239

RESUMEN

Prediction of drug candidates for mutagenicity is a regulatory requirement since mutagenic compounds could pose a toxic risk to humans. The aim of this investigation was to develop a novel prediction model of mutagenicity by using a naïve Bayes classifier. The established model was validated by the internal 5-fold cross validation and external test sets. For comparison, the recursive partitioning classifier prediction model was also established and other various reported prediction models of mutagenicity were collected. Among these methods, the prediction performance of naïve Bayes classifier established here displayed very well and stable, which yielded average overall prediction accuracies for the internal 5-fold cross validation of the training set and external test set I set were 89.1±0.4% and 77.3±1.5%, respectively. The concordance of the external test set II with 446 marketed drugs was 90.9±0.3%. In addition, four simple molecular descriptors (e.g., Apol, No. of H donors, Num-Rings and Wiener) related to mutagenicity and five representative substructures of mutagens (e.g., aromatic nitro, hydroxyl amine, nitroso, aromatic amine and N-methyl-N-methylenemethanaminum) produced by ECFP_14 fingerprints were identified. We hope the established naïve Bayes prediction model can be applied to risk assessment processes; and the obtained important information of mutagenic chemicals can guide the design of chemical libraries for hit and lead optimization.


Asunto(s)
Teorema de Bayes , Modelos Estadísticos , Mutágenos/clasificación , Mutágenos/toxicidad , Pruebas de Mutagenicidad , Reproducibilidad de los Resultados , Salmonella/efectos de los fármacos , Salmonella/genética
9.
Regul Toxicol Pharmacol ; 77: 13-24, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26877192

RESUMEN

The ICH M7 guideline describes a consistent approach to identify, categorize, and control DNA reactive, mutagenic, impurities in pharmaceutical products to limit the potential carcinogenic risk related to such impurities. This paper outlines a series of principles and procedures to consider when generating (Q)SAR assessments aligned with the ICH M7 guideline to be included in a regulatory submission. In the absence of adequate experimental data, the results from two complementary (Q)SAR methodologies may be combined to support an initial hazard classification. This may be followed by an assessment of additional information that serves as the basis for an expert review to support or refute the predictions. This paper elucidates scenarios where additional expert knowledge may be beneficial, what such an expert review may contain, and how the results and accompanying considerations may be documented. Furthermore, the use of these principles and procedures to yield a consistent and robust (Q)SAR-based argument to support impurity qualification for regulatory purposes is described in this manuscript.


Asunto(s)
Pruebas de Carcinogenicidad/métodos , Daño del ADN , Minería de Datos/métodos , Mutagénesis , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Toxicología/métodos , Animales , Pruebas de Carcinogenicidad/normas , Simulación por Computador , Bases de Datos Factuales , Adhesión a Directriz , Guías como Asunto , Humanos , Modelos Moleculares , Estructura Molecular , Pruebas de Mutagenicidad/normas , Mutágenos/química , Mutágenos/clasificación , Formulación de Políticas , Relación Estructura-Actividad Cuantitativa , Medición de Riesgo , Toxicología/legislación & jurisprudencia , Toxicología/normas
10.
Regul Toxicol Pharmacol ; 77: 1-12, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26879463

RESUMEN

Statistical-based and expert rule-based models built using public domain mutagenicity knowledge and data are routinely used for computational (Q)SAR assessments of pharmaceutical impurities in line with the approach recommended in the ICH M7 guideline. Knowledge from proprietary corporate mutagenicity databases could be used to increase the predictive performance for selected chemical classes as well as expand the applicability domain of these (Q)SAR models. This paper outlines a mechanism for sharing knowledge without the release of proprietary data. Primary aromatic amine mutagenicity was selected as a case study because this chemical class is often encountered in pharmaceutical impurity analysis and mutagenicity of aromatic amines is currently difficult to predict. As part of this analysis, a series of aromatic amine substructures were defined and the number of mutagenic and non-mutagenic examples for each chemical substructure calculated across a series of public and proprietary mutagenicity databases. This information was pooled across all sources to identify structural classes that activate or deactivate aromatic amine mutagenicity. This structure activity knowledge, in combination with newly released primary aromatic amine data, was incorporated into Leadscope's expert rule-based and statistical-based (Q)SAR models where increased predictive performance was demonstrated.


Asunto(s)
Aminas/toxicidad , Minería de Datos/métodos , Bases del Conocimiento , Mutagénesis , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Aminas/química , Aminas/clasificación , Animales , Simulación por Computador , Bases de Datos Factuales , Humanos , Modelos Moleculares , Estructura Molecular , Mutágenos/química , Mutágenos/clasificación , Reconocimiento de Normas Patrones Automatizadas , Relación Estructura-Actividad Cuantitativa , Medición de Riesgo
11.
Chemosphere ; 120: 492-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25278177

RESUMEN

The randomly selected set of 558 chemicals from Cosmetic inventory was studied with internet accessible program package CAESAR. Four toxic endpoints were considered: mutagenicity, carcinogenicity, developmental toxicity and skin sensitization. The CAESAR program provides beside the predictions comprehensive information on applicability domain and the similarity between the considered compound and the compounds from model's training set. This information was used to implement for clustering and classification of chemicals. As the technique the Self Organizing Maps was applied. This technique also enables us to define to each cluster the cluster indicator, i.e., the characteristic compound, which is considered as a representative for a cluster.


Asunto(s)
Cosméticos/clasificación , Cosméticos/toxicidad , Modelos Teóricos , Carcinógenos/clasificación , Carcinógenos/toxicidad , Crecimiento y Desarrollo/efectos de los fármacos , Haptenos/clasificación , Haptenos/toxicidad , Humanos , Mutágenos/clasificación , Mutágenos/toxicidad
12.
Environ Mol Mutagen ; 56(5): 468-76, 2015 06.
Artículo en Inglés | MEDLINE | ID: mdl-25537651

RESUMEN

ToxCast is a multiyear effort to develop a cost-effective approach for the US EPA to prioritize chemicals for toxicity testing. Initial evaluation of more than 500 high-throughput (HT) microwell-based assays without metabolic activation showed that most lacked high specificity and sensitivity for detecting genotoxicants. Thus, EPA initiated a pilot project to investigate the use of standard genotoxicity endpoints using medium-throughput genotoxicity (MTG) assays in the context of a large testing program. Twenty-five chemicals were selected from the ToxCast program based in part on their known genotoxicity. The two MTG assays used were the Ames II(™) assay and 96-well In Vitro MicroFlow(®) Micronucleus (MN) assay. The Ames II assay showed a reasonable correlation with published Ames test data and industry submissions, though specificity was much better than sensitivity due to restraints on top concentrations as prescribed by ToxCast. Overall concordance was 73% both with and without metabolic activation. The flow MN assay had concordances of 71% and 58% with and without metabolic activation, respectively, when compared to published data and submissions. Importantly, a comparison of results without S9 from the MTG assays to an HT ToxCast p53 activation assay showed a fairly good degree of concordance (67%). The results reported here indicate that assays for genotoxicity endpoints can be conducted in a MT format and have the potential to add to the interpretation of results from large-scale testing programs such as EPA's ToxCast program. Inherent limitations such as the top concentrations used in large scale testing programs are discussed. Environ. Mol. Mutagen. 56:468-476, 2015. © 2014 Wiley Periodicals, Inc.


Asunto(s)
Micronúcleos con Defecto Cromosómico/inducido químicamente , Pruebas de Mutagenicidad/métodos , Mutágenos , Salmonella typhimurium/efectos de los fármacos , Animales , Células CHO , Cricetulus , Citometría de Flujo , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Mutágenos/química , Mutágenos/clasificación , Mutágenos/toxicidad , Ratas , Reproducibilidad de los Resultados , Salmonella typhimurium/genética , Sensibilidad y Especificidad , Estados Unidos , United States Environmental Protection Agency
13.
Artículo en Inglés | MEDLINE | ID: mdl-25308438

RESUMEN

The phosphorylated form of the histone protein H2AX, called γH2AX, is recognized as a useful biomarker not only for DNA double-strand breaks but also for a wide range of other DNA damage. An increasing number of publications propose γH2AX to be measured when determining genotoxicity, phototoxicity, and the effectiveness of cancer therapy. Because γH2AX is also generated by apoptosis, a γH2AX-assay might assess genotoxic risk incorrectly. The aim of this study was to elucidate the influence of apoptosis on measurements of γH2AX by flow cytometry, with the clastogens mitomycin C (MMC) and etoposide (ETP), and the aneugens vinblastine (VB) and paclitaxel (PT), which do not react directly with DNA. TK6 human lymphoblastoid cells were treated with the clastogens and the aneugens, stained for the apoptotic biomarker caspase-3 and for γH2AX, and then analyzed by flow cytometry. All the test compounds caused a dose-dependent increase of γH2AX-positive (γH2AX+) cells. The γH2AX+ cell population included both caspase-3-positive (γH2AX+/caspase-3+) and caspase-3-negative (γH2AX+/caspase-3-) cells. The increase in γH2AX+ cells after treatment with the aneugens corresponded to the increase in caspase-3+ cells. The increase in γH2AX+/caspase-3- cells after treatment with the clastogens was significant, but there was only a slight increase after treatment with the aneugens. This reflects the fact that the apoptotic pathway of a clastogen starts from DNA damage, whereas that of an aneugen starts from cell-cycle arrest in the M-phase. Therefore, the two pathways contribute differently to apoptosis. Double staining for γH2AX and caspase-3 provided helpful information for the different mechanistic effects of aneugens and clastogens that induce γH2AX.


Asunto(s)
Aneugénicos/farmacología , Apoptosis/fisiología , Histonas/metabolismo , Mutágenos/clasificación , Mutágenos/farmacología , Aneugénicos/clasificación , Apoptosis/efectos de los fármacos , Células Cultivadas , Daño del ADN , Etopósido/farmacología , Humanos , Pruebas de Micronúcleos , Mitomicina/farmacología , Paclitaxel/farmacología , Vinblastina/farmacología
14.
J Appl Toxicol ; 34(10): 1068-72, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25059745

RESUMEN

There is an issue in the EU classification of substances for carcinogenicity and for reproductive or developmental toxicity which has brought difficulties to those involved in the process. The issue lies in the inability of the classification system to distinguish between carcinogens and reproductive toxicants with different levels of concern. This has its origins in the early years of toxicology when it was thought that a relatively small number of chemicals would be either carcinogens or reproductive toxicants, but this has turned out not to be the case. This can cause problems in communicating to the users of chemicals, including the public, the nature of the hazard presented by chemicals. Processes have been developed within the classification system for setting specific concentration limits which assess the degree of hazard for carcinogens and reproductive toxicants as high, medium or low. However these categories are not otherwise used in classification. It is proposed that their wider use would bring the advantages of transparency, clarity of communication, certainty of the process and would allow chemicals with a high degree of hazard to be identified and managed in an appropriate way.


Asunto(s)
Carcinógenos/clasificación , Mutágenos/clasificación , Teratógenos/clasificación , Animales , Unión Europea , Humanos , Reproducción , Gestión de Riesgos
15.
Arch Toxicol ; 88(4): 1023-34, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24390151

RESUMEN

There is a high need to improve the assessment of, especially non-genotoxic, carcinogenic features of chemicals. We therefore explored a toxicogenomics-based approach using genome-wide microRNA and mRNA expression profiles upon short-term exposure in mice. For this, wild-type mice were exposed for seven days to three different classes of chemicals, i.e., four genotoxic carcinogens (GTXC), seven non-genotoxic carcinogens (NGTXC), and five toxic non-carcinogens. Hepatic expression patterns of mRNA and microRNA transcripts were determined after exposure and used to assess the discriminative power of the in vivo transcriptome for GTXC and NGTXC. A final classifier set, discriminative for GTXC and NGTXC, was generated from the transcriptomic data using a tiered approach. This appeared to be a valid approach, since the predictive power of the final classifier set in three different classifier algorithms was very high for the original training set of chemicals. Subsequent validation in an additional set of chemicals revealed that the predictive power for GTXC remained high, in contrast to NGTXC, which appeared to be more troublesome. Our study demonstrated that the in vivo microRNA-ome has less discriminative power to correctly identify (non-)genotoxic carcinogen classes. The results generally indicate that single mRNA transcripts do have the potential to be applied in risk assessment, but that additional (genomic) strategies are necessary to correctly predict the non-genotoxic carcinogenic potential of a chemical.


Asunto(s)
Carcinógenos/toxicidad , Perfilación de la Expresión Génica , Hígado/efectos de los fármacos , MicroARNs/metabolismo , Mutágenos/toxicidad , ARN Mensajero/metabolismo , Toxicogenética/métodos , Algoritmos , Animales , Carcinógenos/clasificación , Análisis Discriminante , Regulación de la Expresión Génica/efectos de los fármacos , Marcadores Genéticos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mutágenos/clasificación , Reproducibilidad de los Resultados , Medición de Riesgo , Factores de Tiempo
16.
J Proteome Res ; 12(12): 5775-90, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24161236

RESUMEN

Non-genotoxic carcinogens (NGCs) promote tumor growth by altering gene expression, which ultimately leads to cancer without directly causing a change in DNA sequence. As a result NGCs are not detected in mutagenesis assays. While there are proposed biomarkers of carcinogenic potential, the definitive identification of non-genotoxic carcinogens still rests with the rat and mouse long-term bioassay. Such assays are expensive and time-consuming and require a large number of animals, and their relevance to human health risk assessments is debatable. Metabolomics and lipidomics in combination with pathology and clinical chemistry were used to profile perturbations produced by 10 compounds that represented a range of rat non-genotoxic hepatocarcinogens (NGC), non-genotoxic non-hepatocarcinogens (non-NGC), and a genotoxic hepatocarcinogen. Each compound was administered at its maximum tolerated dose level for 7, 28, and 91 days to male Fisher 344 rats. Changes in liver metabolite concentration differentiated the treated groups across different time points. The most significant differences were driven by pharmacological mode of action, specifically by the peroxisome proliferator activated receptor alpha (PPAR-α) agonists. Despite these dominant effects, good predictions could be made when differentiating NGCs from non-NGCs. Predictive ability measured by leave one out cross validation was 87% and 77% after 28 days of dosing for NGCs and non-NGCs, respectively. Among the discriminatory metabolites we identified free fatty acids, phospholipids, and triacylglycerols, as well as precursors of eicosanoid and the products of reactive oxygen species linked to processes of inflammation, proliferation, and oxidative stress. Thus, metabolic profiling is able to identify changes due to the pharmacological mode of action of xenobiotics and contribute to early screening for non-genotoxic potential.


Asunto(s)
Carcinógenos/toxicidad , Neoplasias Hepáticas Experimentales/metabolismo , Hígado/efectos de los fármacos , Metabolómica , Mutágenos/toxicidad , Animales , Biomarcadores/metabolismo , Carcinógenos/clasificación , Daño del ADN , Eicosanoides/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Expresión Génica , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/patología , Masculino , Mutágenos/clasificación , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , Fosfolípidos/metabolismo , Ratas , Ratas Endogámicas F344 , Especies Reactivas de Oxígeno/metabolismo , Triglicéridos/metabolismo
17.
Natl Toxicol Program Tech Rep Ser ; (578): 1-183, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23652021

RESUMEN

Ginkgo biloba extract has been used primarily as a medicinal agent in the treatment or prevention of cardiovascular and cerebrovascular dysfunction. Ginkgo biloba extract was nominated for study by the National Cancer Institute because of its widespread use as an herbal supplement to promote mental function and the limited availability of toxicity and carcinogenicity data. Furthermore, one of the major ingredients in Ginkgo biloba extract, quercetin, is a known mutagen. The Ginkgo biloba extract used in the current studies was procured from a supplier known to provide material to United States companies and contained 31.2% flavonol glycosides, 15.4% terpene lactones (6.94% bilo-balide, 3.74% ginkgolide A, 1.62% ginkgolide B, 3.06% ginkgolide C), and 10.45 ppm ginkgolic acid. Male and female F344/N rats and B6C3F1/N mice were administered Ginkgo biloba extract in corn oil by gavage for 3 months or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium, Escherichia coli, and mouse peripheral blood erythrocytes. 3-MONTH STUDY IN RATS: Groups of 10 male and 10 female rats were administered 0, 62.5, 125, 250, 500, or 1,000 mg Ginkgo biloba extract/kg body weight in corn oil by gavage, 5 days per week for 14 weeks. Additional groups of 10 male and 10 female rats (clinical pathology study) were administered the same doses, 5 days per week for 23 days. All rats survived to the end of the study. Mean body weights of all dosed groups were similar to those of the vehicle control groups. Liver weights of all dosed groups of males and females were significantly greater than those of the vehicle control groups. The incidences of hepatocyte hypertrophy in all dosed groups of males and in 500 and 1,000 mg/kg females were significantly greater than those in the vehicle control groups; there was a dose-related increase in severity of this lesion in males. Hepatocyte fatty change occurred in all dosed males. The incidences of thyroid gland follicular cell hypertrophy were significantly increased in 500 and 1,000 mg/kg males and in 1,000 mg/kg females. The incidences of pigmentation in the olfactory epithelium of the nose were significantly increased in 500 and 1,000 mg/kg males and in females administered 125 mg/kg or greater. 3-MONTH STUDY IN MICE: Groups of 10 male and 10 female mice were administered 0, 125, 250, 500, 1,000, or 2,000 mg Ginkgo biloba extract/kg body weight in corn oil by gavage, 5 days per week for 14 weeks. One female mouse in the 1,000 mg/kg group died of a dosing accident during week 11. Mean body weights of 2,000 mg/kg females were significantly less than those of the vehicle control group. Ruffled fur was observed in two 1,000 mg/kg males between weeks 7 and 8 and all 2,000 mg/kg males between weeks 5 and 9. Liver weights of 250 mg/kg or greater males and all dosed groups of females were significantly greater than those of the vehicle control groups. Kidney weights of 2,000 mg/kg males were significantly less than those of the vehicle control group. The Markov transition matrix analyses indicate female mice in the 2,000 mg/kg group had a significantly higher probability of extended estrus than did the vehicle control females. The incidences of hepatocytic hypertrophy were significantly increased in males and females in the 250 mg/kg or greater groups. Significantly increased incidences of focal hepatocytic necrosis occurred in 1,000 and 2,000 mg/kg males. The incidences of hyaline droplet accumulation in the respiratory epithelium of the nose were significantly increased in 500 mg/kg males and 1,000 and 2,000 mg/kg females. In the olfactory epithelium of the nose, the incidences of hyaline droplet accumulation were significantly increased in the 125 (female only), 500, and 1,000 mg/kg groups. Incidences of atrophy of the olfactory epithelium were significantly increased in the 1,000 mg/kg groups. The incidences of pigment accumulation in macrophages in the olfactory epithelium were significantly increased in males in the 500 mg/kg or greater groups and in 1,000 and 2,000 mg/kg females. 2-YEAR STUDY IN RATS: Groups of 50 male and 50 female rats were administered 0, 100, 300, or 1,000 mg Ginkgo biloba extract/kg body weight in corn oil by gavage, 5 days per week for 104 or 105 (females) weeks. Additional groups of 10 male and 10 female rats (special study) were administered the same doses, 5 days per week for 14 weeks. Survival of 1,000 mg/kg males was significantly less than that of the vehicle controls. At week 14, all dosed groups of males and 1,000 mg/kg females had increased levels of thyroid stimulating hormone compared to those of the vehicle control groups. There were no significant decreases in the levels of triiodothyronine or total thyroxine. Mean body weights of 300 mg/kg males and females were less (10% or more) than those of the vehicle controls after week 93, and those of 1,000 mg/kg males and females were less after week 89. Clinical findings included ruffled fur in seven, eight, and 10 males in the 100, 300, and 1,000 mg/kg groups, respectively, beginning at week 89; four vehicle control males also had ruffled fur. Liver weights were significantly increased in all dosed groups of special study rats at 14 weeks. In the liver at 2 years, incidences of hepatocellular adenoma were slightly increased in 100 and 300 mg/kg males. Significantly increased incidences of nonneoplastic lesions at 2 years included hepatocyte hypertrophy and bile duct hyperplasia in all dosed groups of males and females, focal fatty change in all dosed groups of females, cystic degeneration in 100 and 1,000 mg/kg males, and oval cell hyperplasia and necrosis in 1,000 mg/kg males. In the thyroid gland, incidences of follicular cell adenoma were slightly increased in 300 and 1,000 mg/kg males and 300 mg/kg females. Single incidences of follicular cell carcinoma occurred in the 300 and 1,000 mg/kg female groups. There were significantly increased incidences of follicular cell hypertrophy in all dosed groups of males and females and follicle hyperplasia in all dosed groups of males. In the nose, adenoma of the respiratory epithelium occurred in two females receiving 300 mg/kg. Except for respiratory epithelium hyperplasia in 100 mg/kg females, the incidences of transitional epithelium and respiratory epithelium hyperplasia were significantly increased in all dosed groups of males and females. Except for olfactory epithelium respiratory metaplasia in 100 mg/kg females, the incidences of atrophy, respiratory metaplasia, nerve atrophy, and pigmentation were significantly increased in the olfactory epithelium of all dosed groups of males and females. Incidences of goblet cell hyperplasia in the respiratory epithelium were significantly increased in 300 and 1,000 mg/kg males and females, and incidences of chronic active inflammation were significantly increased in 1,000 mg/kg males and females. The incidence of submucosa fibrosis was significantly increased in 1,000 mg/kg males. The incidences of mononuclear cell leukemia in 300 and 1,000 mg/kg males were significantly greater than that in the vehicle controls. Dose-related increased severity of kidney nephropathy was noted in all dosed groups of males. 2-YEAR STUDY IN MICE: Groups of 50 male and 50 female mice were administered 0, 200, 600, or 2,000 mg Ginkgo biloba extract/kg body weight in corn oil by gavage, 5 days per week for 104 weeks. Survival of 600 and 2,000 mg/kg males was significantly less than that of the vehicle controls; survival of 600 mg/kg females was significantly greater than that of the vehicle controls. Mean body weights of 600 and 2,000 mg/kg males were less (10% or more) than those of the vehicle controls after weeks 85 and 77, respectively; mean body weights of 2,000 mg/kg females were generally less than those of the vehicle controls between weeks 17 and 69 and after week 93. In the liver, there were significantly increased incidences of hepatocellular adenoma in all dosed groups of females, hepatocellular carcinoma in all dosed groups of males and 2,000 mg/kg females, and hepatoblastoma in all dosed groups of males and 600 and 2,000 mg/kg females. The increased incidences of these neoplasms were primarily due to increased incidences of multiple adenoma, carcinoma, and hepatoblastoma. Except for the incidences of hepatocellular carcinoma or hepatoblastoma (combined) in 200 and 600 mg/kg females, the incidences of hepatocellular adenoma or carcinoma (combined), hepatocellular carcinoma or hepatoblastoma (combined), and hepatocellular adenoma, hepatocellular carcinoma, or hepatoblastoma (combined) were significantly increased in all dosed groups of males and females. Significantly increased incidences of nonneoplastic liver lesions included hypertrophy in all dosed groups of males and females, erythrophagocytosis in all dosed groups of males and in 600 and 2,000 mg/kg females, hematopoietic cell proliferation, inflammation, and necrosis in 600 and 2,000 mg/kg males, and cytoplasmic vacuolization, eosinophilic focus, and mixed cell focus in all dosed groups of females. In the thyroid gland, two incidences each of follicular cell adenoma occurred in the 600 and 2,000 mg/kg male groups. The incidence of follicle hyperplasia was significantly increased in 2,000 mg/kg males, and the incidences of follicular cell hypertrophy were significantly increased in 2,000 mg/kg males and 600 and 2,000 mg/kg females. In the forestomach, the incidences of inflammation, epithelium hyperplasia, and epithelium hyperkeratosis were significantly increased in all dosed groups of males and in 2,000 mg/kg females; the incidences of epithelium ulcer were significantly increased in 2,000 mg/kg males and females. GENETIC TOXICOLOGY Ginkgo biloba extract was mutagenic in S. typhimurium strains TA98 and TA100, and in E. coli strain WP2 uvrA/pKM101, with and without exogenous metabolic activation. (ABSTRACT TRUNCATED)


Asunto(s)
Carcinogénesis/efectos de los fármacos , Carcinógenos/toxicidad , Ginkgo biloba , Mutágenos/toxicidad , Extractos Vegetales/toxicidad , Adenoma de Células Hepáticas/inducido químicamente , Adenoma de Células Hepáticas/patología , Administración Oral , Animales , Pruebas de Carcinogenicidad , Carcinógenos/clasificación , Carcinógenos/metabolismo , Daño del ADN , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Hígado Graso/inducido químicamente , Hígado Graso/patología , Femenino , Ginkgo biloba/química , Hígado/efectos de los fármacos , Hígado/patología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos , Pruebas de Mutagenicidad , Mutágenos/clasificación , Mutágenos/metabolismo , Mutación , Tamaño de los Órganos/efectos de los fármacos , Extractos Vegetales/clasificación , Extractos Vegetales/metabolismo , Ratas , Ratas Endogámicas F344 , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética
18.
J Toxicol Environ Health A ; 76(6): 354-62, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23557234

RESUMEN

Isatin (1H-indole-2,3-dione) is a chemical found in various medicinal plant species and responsible for a broad spectrum of pharmacological and biological properties that may be beneficial to human health, as an anticonvulsant, antibacterial, antifungal, antiviral, and anticancer agent. The aim of the present study was to determine in vitro the cytotoxic, mutagenic, and apoptotic effects of isatin on CHO-K1 and HeLa cells using the MTT viability assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide), micronucleus (MN) test, apoptosis index, and nuclear division index (NDI). The 5 isatin concentrations evaluated in the mutagenicity and apoptosis tests were 0.5, 1, 5, 10, and 50 µM, selected through a preliminary MTT assay. Positive (doxorubicin, DXR) and negative (phosphate buffered saline, PBS) control groups were also included in the analysis. Isatin did not exert a mutagenic effect on CHO-K1 after 3 and 24 h of treatment or on HeLa cells after 24 h. However, 10 and 50 µM concentrations inhibited cell proliferation and promoted apoptosis in both CHO-K1 and HeLa cells. Data indicate that the cytotoxic, apoptotic, and antiproliferative effects of isatin were concentration independent and cell line independent.


Asunto(s)
Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Isatina/toxicidad , Mutágenos/toxicidad , Plantas Medicinales/química , Animales , Células CHO , División Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Cricetinae , Cricetulus , ADN de Neoplasias/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Células HeLa , Humanos , Isatina/clasificación , Micronúcleos con Defecto Cromosómico/inducido químicamente , Pruebas de Micronúcleos/métodos , Mutágenos/clasificación , Extractos Vegetales/clasificación , Extractos Vegetales/toxicidad , Sales de Tetrazolio , Tiazoles
19.
J Toxicol Environ Health A ; 76(6): 381-90, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23557236

RESUMEN

Arrabidaea chica Verlot (Bignoniaceae) is an important folk medicine plant native to the Amazon region and used to treat anemia, hemorrhage, inflammation, intestinal colic, hepatitis, and skin affections. Although studies showed its therapeutic properties, little knowledge regarding genotoxic properties of this plant is available. The aim of this study was to determine the potential mutagenic and genotoxic/antigenotoxic effects of an A. chica chloroformic fraction (Ac-CF) obtained from leaves containing bioactive metabolites. The mutagenic effects were evaluated using the Salmonella mutagenicity assay, with TA98, TA97a, TA100, TA102, and TA1535 strains, with and without metabolic activation. In vivo mutagenic and genotoxic/antigenotoxic effects were investigated using the micronucleus (MN) test in bone marrow and alkaline comet assay in blood and liver after administration of 100, 500, or 1000 mg/kg Ac-CF in CF-1 mice by gavage (once a day for 3 d). In vitro antioxidant potential was evaluated using DPPH and xanthine/hypoxanthine assays. Ac-CF was not mutagenic in any of the Salmonella typhimurium strains tested and showed negative responses for mutagenicity and genotoxicity in mice. Further, Ac-CF displayed antigenotoxic effects by decreasing the oxidative DNA damage induced by hydrogen peroxide by greater than 50% in blood and liver. The antioxidant action detected in the in vitro assays demonstrated IC50 of 0.838 mg/ml in the xanthine/hypoxanthine assay and IC50 of 28.17 µg/ml in the DPPH assay. In conclusion, Ac-CF did not induce mutagenic and genotoxic effects and was able to protect DNA against oxidative damage in vivo, suggesting that this fraction may not pose genetic risks, although further toxicology assays are necessary.


Asunto(s)
Antioxidantes/toxicidad , Bignoniaceae/química , Medicina Tradicional , Mutágenos/toxicidad , Extractos Vegetales/toxicidad , Plantas Medicinales/química , Administración Oral , Animales , Antioxidantes/clasificación , Antioxidantes/metabolismo , Biotransformación , Células de la Médula Ósea/efectos de los fármacos , Ensayo Cometa , ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Depuradores de Radicales Libres/análisis , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos , Micronúcleos con Defecto Cromosómico/inducido químicamente , Pruebas de Micronúcleos , Mutágenos/clasificación , Mutágenos/metabolismo , Extractos Vegetales/clasificación , Extractos Vegetales/metabolismo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética
20.
Toxicology ; 313(2-3): 151-9, 2013 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-23395826

RESUMEN

Powerful, robust in silico approaches offer great promise for classifying and predicting biological effects of complex mixtures and for identifying the constituents of greatest concern. Support vector machine (SVM) methods can deal with high dimensional data and small sample size and examine multiple interrelationships among samples. In this work, we applied SVM methods to examine pollution profiles and mutagenicity of 60 water samples obtained from 6 cities in China during 2006-2011. Pollutant profiles were characterized in water extracts by gas chromatography-mass spectrometry (GC/MS) and mutagenicity examined by Ames assays. We encoded feature vectors of GS-MS peaks in the mixtures and used 48 samples as the training set, reserving 12 samples as the test set. The SVM model and regression were constructed from whole pollution profiles that ranked compounds in relation to their correlation to the mutagenicity. Both classification and prediction performance were evaluated. The SVM model based on whole pollution profiles showed lower performance (sensitivity, specificity, accuracy and correlation coefficient were 69.5-70.7%, 70.6-73.2%, 69.9-72.1%, and 0.55-0.59%, respectively) than one based on compounds with highest association with mutagenicity. A SVM model with the top 10 compounds had the highest performance (sensitivity, specificity, accuracy, and correlation coefficient were 89.8-90.3%, 90.1-92.1%, 90.1-91.3%, and 0.80-0.82%, respectively), with negligible decreases in performance between the test and training set. SVM can be a powerful, robust classifier of the relationship of pollutants and mutagenicity in complex real-world mixtures. The top 14 compounds have the greatest contribution to mutagenicity and deserve further studies to identify these constituents.


Asunto(s)
Mezclas Complejas , Modelos Biológicos , Mutágenos , Máquina de Vectores de Soporte , Contaminantes Químicos del Agua/análisis , China , Mezclas Complejas/clasificación , Mezclas Complejas/toxicidad , Cromatografía de Gases y Espectrometría de Masas , Humanos , Pruebas de Mutagenicidad , Mutágenos/clasificación , Mutágenos/toxicidad , Valor Predictivo de las Pruebas , Análisis de Regresión , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...