Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 561
Filtrar
1.
Crit Rev Immunol ; 44(2): 35-47, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38305335

RESUMEN

This study aimed to elucidate the mechanisms by which microRNA-99b (miR-99b) regulates CD4+ T cell differentiation induced by Bacillus Calmette-Guerin (BCG)-infected immature dendritic cells (imDCs). Levels of miR-99b, interferon-gamma (IFN-γ), Foxp3, interleukin (IL)-10, IL-17, IL-23, and ROR-γt were assessed. Effects of miR-99b inhibition and mechanistic target of rapamycin (mTOR) agonist on Th17/Treg cell ratio and cytokine levels (IL-6, IL-17, IL-23) were studied. Expression of mTOR, S6K1, and 4E-BP1 related to miR-99b was analyzed. BCG-infected imDCs led to CD4+ T cell differentiation and altered levels of IFN-γ, Foxp3, IL-10, miR-99b, IL-17, IL-23, and ROR-γt. Inhibition of miR-99b increased the Th17/Treg cell ratio in CD4+ T cells co-cultured with BCG-infected imDCs, and this effect was further enhanced by the mTOR agonist. Additionally, the miR-99b inhibitor elevated the levels of IL-6, IL-17, and IL-23 when CD4+ T cells were co-cultured with BCG-infected imDCs, and the mTOR agonist further amplified this increase. Notably, miR-99b negatively regulated mTOR signaling, as the miR-99b inhibitor upregulated the expression levels of mTOR, S6K1, and 4E-BP1 while decreasing miR-99b. It was concluded that miR-99b modulates CD4+ T cell differentiation via mTOR pathway in response to BCG-infected im-DCs. Inhibiting miR-99b affects Th17/Treg ratio and pro-inflammatory cytokines, potentially impacting tuberculosis immunotherapies.


Asunto(s)
MicroARNs , Mycobacterium bovis , Humanos , Vacuna BCG , Linfocitos T CD4-Positivos , Diferenciación Celular , Citocinas/metabolismo , Células Dendríticas , Factores de Transcripción Forkhead , Interferón gamma , Interleucina-17 , Interleucina-23 , Interleucina-6 , MicroARNs/genética , Mycobacterium bovis/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Serina-Treonina Quinasas TOR/metabolismo
2.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-38003429

RESUMEN

Tuberculosis (TB) is the leading cause of human death worldwide due to Mycobacterium tuberculosis (Mtb) infection. Mtb infection can cause macrophage pyroptosis. PERK, as a signaling pathway protein on the endoplasmic reticulum, plays an important role in infectious diseases. It is not clear whether PERK is involved in the regulation of pyroptosis of macrophages during Mtb infection. In this study, Bacillus Calmette-Guerin (BCG) infection resulted in high expression of pro-caspase-1, caspase-1 p20, GSDMD-N, and p-PERK in the THP-1 macrophage, being downregulated with the pre-treatment of GSK2656157, a PERK inhibitor. In addition, GSK2656157 inhibited the secretion of IL-1ß and IL-18, cell content release, and cell membrane rupture, as well as the decline in cell viability induced by BCG infection. Similarly, GSK2656157 treatment downregulated the expressions of pro-caspase-1, caspase-1 p20, caspase-11, IL-1ß p17, IL-18 p22, GSDMD, GSDMD-N, and p-PERK, as well as reducing fibrous tissue hyperplasia, inflammatory infiltration, and the bacterial load in the lung tissue of C57BL/6J mice infected with BCG. In conclusion, the inhibition of PERK alleviated pyroptosis induced by BCG infection, which has an effect of resisting infection.


Asunto(s)
Interleucina-18 , Mycobacterium bovis , Animales , Ratones , Humanos , Interleucina-18/metabolismo , Vacuna BCG , Caspasa 1/metabolismo , Piroptosis , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Mycobacterium bovis/metabolismo , Caspasas/metabolismo
3.
Biochem Biophys Res Commun ; 681: 291-297, 2023 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-37801778

RESUMEN

Mycophage endolysins are highly diverse and modular enzymes composed of domains involved in peptidoglycan binding and degradation. Mostly, they are characterized by a three-module design: an N-terminal peptidase domain, a central catalytic domain and a C-terminal peptidoglycan binding domain. Previously, the affinity of cell wall binding domains (CBDs) to the mycobacterial peptidoglycan layer was shown for some of these endolysins. In this study, an in depth screening was performed on twelve mycophage endolysins. The discovered CBDs were characterized for their binding affinity to Mycobacterium (M.) bovis bacille Calmette-Guérin (BCG), a largely unexplored target and an attenuated strain of M. bovis, responsible for bovine tuberculosis. Using homology-based annotation, only four endolysins showed the presence of a known peptidoglycan binding domain, the previously characterized pfam 01471 domain. However, analysis of the secondary structure aided by AlphaFold predictions revealed the presence of a C-terminal domain in the other endolysins. These were hypothesized as new, uncharacterized CBDs. Fusion proteins composed of these domains linked to GFP were constructed and positively assayed for their affinity to M. bovis BCG in a peptidoglycan binding assay. Moreover, two CBDs were able to fluorescently label M. bovis BCG in milk samples, highlighting the potential to further explore their possibility to function as CBD-based diagnostics.


Asunto(s)
Mycobacterium bovis , Peptidoglicano , Peptidoglicano/metabolismo , Mycobacterium bovis/metabolismo , Endopeptidasas/metabolismo , Pared Celular/metabolismo
4.
Tuberculosis (Edinb) ; 143: 102400, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37672955

RESUMEN

Dodecin is a dodecamer involved in flavin homeostasis, with interesting temperature and osmolarity endurance features in Mycobacterium tuberculosis. A single nucleotide polymorphism in the gene's start codon in BCG, converting ATG to ACG, is predicted to generate a N-terminal shorter isoform, lacking the first 7 amino acids. We previously reported that the shortened recombinant protein has reduced extremophilic features. Here we investigate if within the mycobacterial context dodecin can be produced from both alleles, carrying ATG and ACG start codons. Reporter gene assays using mcherry cloned downstream and in phase to both M.tb and BCG "upstream" regions confirms production of functional proteins. Complementation with both dod alleles similarly enhances M. smegmatis growth after entry into logarithmic phase and exposure to hydrogen peroxide, possibly implicating this protein in oxidative stress response mechanisms. Altogether these data indicate that BCG dodecin is indeed produced, notwithstanding in lower levels compared to M.tb, conferring similar phenotypes, even with the SNP altering the M.tb ATG start codon to the BCG ACG. This protein might be an interesting drug target for the development of new therapeutics against tuberculosis.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Mycobacterium bovis/metabolismo , Codón Iniciador/genética , Codón Iniciador/metabolismo , Vacuna BCG/genética , Mutación
5.
Int J Mol Sci ; 24(14)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37511451

RESUMEN

Tuberculosis (TB) is a zoonotic infectious disease caused by Mycobacterium tuberculosis (Mtb). Mtb is a typical intracellular parasite, and macrophages are its main host cells. NLRP3 inflammasome-mediated pyroptosis is a form of programmed cell death implicated in the clearance of pathogenic infections. The bidirectional regulatory effect of endoplasmic reticulum stress (ERS) plays a crucial role in determining cell survival and death. Whether ERS is involved in macrophage pyroptosis with Mtb infection remains unclear. This article aims to explore the regulation of the NLRP3 inflammasome and pyroptosis by ERS in THP-1 macrophages infected with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). The results showed that BCG infection induced THP-1 macrophage ERS, NLRP3 inflammasome activation and pyroptosis, which was inhibited by ERS inhibitor TUDCA. NLRP3 inhibitor MCC950 inhibited THP-1 macrophage NLRP3 inflammasome activation and pyroptosis caused by BCG infection. Compared with specific Caspase-1 inhibitor VX-765, pan-Caspase inhibitor Z-VAD-FMK showed a more significant inhibitory effect on BCG infection-induced pyroptosis of THP-1 macrophages. Taken together, this study demonstrates that ERS mediated NLRP3 inflammasome activation and pyroptosis after BCG infection of THP-1 macrophages, and that BCG infection of THP-1 macrophages induces pyroptosis through canonical and noncanonical pathways.


Asunto(s)
Inflamasomas , Mycobacterium bovis , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Vacuna BCG/farmacología , Mycobacterium bovis/metabolismo , Macrófagos/metabolismo , Estrés del Retículo Endoplásmico
6.
Cell Rep ; 42(5): 112487, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37155329

RESUMEN

Bacillus Calmette-Guérin (BCG) vaccination is a prototype model for the study of trained immunity (TI) in humans, and results in a more effective response of innate immune cells upon stimulation with heterologous stimuli. Here, we investigate the heterogeneity of TI induction by single-cell RNA sequencing of immune cells collected from 156 samples. We observe that both monocytes and CD8+ T cells show heterologous transcriptional responses to lipopolysaccharide, with an active crosstalk between these two cell types. Furthermore, the interferon-γ pathway is crucial in BCG-induced TI, and it is upregulated in functional high responders. Data-driven analyses and functional experiments reveal STAT1 to be one of the important transcription factors for TI shared in all identified monocyte subpopulations. Finally, we report the role of type I interferon-related and neutrophil-related TI transcriptional programs in patients with sepsis. These findings provide comprehensive insights into the importance of monocyte heterogeneity during TI in humans.


Asunto(s)
Mycobacterium bovis , Humanos , Mycobacterium bovis/metabolismo , Vacuna BCG , Inmunidad Entrenada , Linfocitos T CD8-positivos , Interferón gamma/metabolismo , Inmunidad Innata
7.
Cells ; 12(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36766816

RESUMEN

Mycobacterium tuberculosis (M. tb) is the causative agent of tuberculosis (TB) that leads to millions of deaths each year. Extensive evidence has explored the involvement of microRNAs (miRNAs) in M. tb infection. Limitedly, the concrete function of microRNA-100-5p (miR-100-5p) in M. tb remains unexplored and largely elusive. In this study, using Bacillus Calmette-Guérin (BCG) as the model strain, we validated that miR-100-5p was significantly decreased in BCG-infected THP-1 cells. miR-100-5p inhibition effectively facilitated the apoptosis of infected THP-1 cells and reduced BCG survival by regulating the phosphatidylinositol 3-kinase/AKT pathway. Further, SMARCA5 was the target of miR-100-5p and reduced after miR-100-5p overexpression. Since BCG infection down-regulated miR-100-5p in THP-1 cells, the SMARCA5 expression was up-regulated, which in turn increased apoptosis through caspase-3 and Bcl-2 and, thereby, reducing BCG intracellular survival. Collectively, the study uncovered a new molecular mechanism of macrophage to suppress mycobacterial infection through miR-100-5p and SMARCA5 pathway.


Asunto(s)
MicroARNs , Mycobacterium bovis , Tuberculosis , Humanos , Vacuna BCG , Células THP-1 , MicroARNs/metabolismo , Tuberculosis/microbiología , Mycobacterium bovis/metabolismo , Apoptosis , Adenosina Trifosfatasas , Proteínas Cromosómicas no Histona
8.
DNA Cell Biol ; 41(12): 1063-1074, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36394437

RESUMEN

l-Arginine serves as a carbon and nitrogen source and is critical for Mycobacterium tuberculosis (Mtb) survival in the host. Generally, ArgR acts as a repressor regulating arginine biosynthesis by binding to the promoter of the argCJBDFGH gene cluster. In this study, we report that the dormancy regulator DosR is a novel arginine regulator binding to the promoter region of argC (rv1652), which regulates arginine synthesis. Phosphorylation modification promoted DosR binding to a region upstream of the promoter. Cofactors, including arginine and metal ions, had an inhibitory effect on this association. Furthermore, DosR regulatory function relies on the interaction of the 167, 181, 182, and 197 amino acid residues with an inverse complementary sequence. Arginine also binds to DosR and directly affects its DNA-binding ability. Together, the results demonstrate that DosR acts as a novel transcriptional regulator of arginine synthesis in Mycobacterium bovis bacille Calmette-Guerin.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Arginina/genética , Arginina/metabolismo , Familia de Multigenes
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(9): 1279-1287, 2022 Sep 20.
Artículo en Chino | MEDLINE | ID: mdl-36210699

RESUMEN

OBJECTIVE: To investigate the role of tumor necrosis factor receptor-associated factor 6 (TRAF6) in regulating Bacillus Calmette-Guérin (BCG)-induced macrophage apoptosis. METHODS: The expression of TRAF6 in peripheral blood samples of 50 patients with active tuberculosis (TB) and 50 healthy individuals were detected using quantitative real-time PCR (qPCR). RAW264.7 macrophages were infected with BCG at different MOI and for different lengths of time, and the changes in expressions of Caspase 3 and TRAF6 were detected with Western blotting and qPCR. In a RAW264.7 cell model of BCG infection with TRAF6 knockdown established using RNA interference technique, the bacterial load was measured and cell apoptotic rate and mitochondrial membrane potential (MMP) were determined with flow cytometry. The expression levels of TRAF6, Caspase 3, PARP, BAX and Bcl-2 in the cells were detected using Western blotting, and the expressions of TRAF6 and Caspase 3 were also examined with immunofluorescence assay. RESULTS: The expression of TRAF6 was significantly upregulated in the peripheral blood of patients with active TB as compared with healthy subjects (P < 0.001). In RAW264.7 cells, BCG infection significantly increased the expressions of Caspase 3 and TRAF6, which were the highest in cells infected for 18 h and at the MOI of 15. TRAF6 knockdown caused a significant increase of bacterial load in BCG-infected macrophages (P=0.05), lowered the cell apoptotic rate (P < 0.001) and reduced the expressions of Caspase 3 (P=0.002) and PARP (P < 0.001). BCG-infected RAW264.7 cells showed a significantly increased MMP (P < 0.001), which was lowered by TRAF6 knockdown (P < 0.001); the cells with both TRAF6 knockdown and BCG infection showed a lowered BAX expression (P=0.005) and an increased expression of Bcl-2 (P=0.04). CONCLUSION: TRAF6 promotes BCG-induced macrophage apoptosis by regulating the intrinsic apoptosis pathway.


Asunto(s)
Mycobacterium bovis , Factor 6 Asociado a Receptor de TNF , Apoptosis , Vacuna BCG , Caspasa 3/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Macrófagos , Mycobacterium bovis/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteína X Asociada a bcl-2/metabolismo
10.
Arch Razi Inst ; 77(2): 827-834, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36284966

RESUMEN

Mycobacterium tuberculosis (MT) is the causative agent of tuberculosis (TB) in humans. Tuberculosis is one of the top 10 causes of mortality worldwide, resulting in 1.8 million deaths and 10.4 million new cases in 2016. Understanding the fundamental features of MT biology is critical to the eradication of MT in the future. Due to the increasing frequency of antimicrobial treatment resistance and problems in vaccine development, the pathogenesis of TB for its survival and growth is highly dependent on host lipids and stimulated-lipid droplets formation. Toll-like receptor 2 (TLR2) forms heterophilic dimers with TLR1 and TLR6, therefore, recognizing many MT components. Both of these receptors identify the invading antigen and activate downstream protein kinases. Some studies demonstrated that the cyclooxygenase-2 (COX-2) promoter-driven gene expression includes connecting sites for transcription factors, such as nuclear factor-kappa B, CREB, NFAT, and c/EBPß. The current study aimed to investigate the role of the TLR2 receptor in positively regulating prostaglandin E2 production in M. bovis (BCG) infected macrophages in vivo using a human monocytic cell line THP-1. Our results revealed that MT infection triggers a time-dependent increase in COX-2 expression via pathways involving TLR2 receptor activation and enhances COX-2 expression, leading to an increase in lipid droplet formation and suppression of macrophage activation.


Asunto(s)
Antiinfecciosos , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Humanos , Vacuna BCG , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Expresión Génica , Silenciador del Gen , Granuloma/genética , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Receptor Toll-Like 1/genética , Receptor Toll-Like 1/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 6/genética , Receptor Toll-Like 6/metabolismo , Tuberculosis/genética , Tuberculosis/patología
11.
ACS Appl Bio Mater ; 5(6): 2712-2725, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35545815

RESUMEN

In the present study, a facile, eco-friendly, and controlled synthesis of gold nanoparticles (Au NPs) using Prunus nepalensis fruit extract is reported. The biogenically synthesized Au NPs possess ultra-active intrinsic peroxidase-like activity for the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. Chemical analysis of the fruit extract demonstrated the presence of various bioactive molecules such as amino acids (l-alanine and aspartic acids), organic acids (benzoic acid and citric acid), sugars (arabinose and glucose), phenolic acid, and bioflavonoids (niacin and myo-inositol), which likely attributed to the formation of stable biogenic Au NPs with excellent peroxidase-mimicking activity. In comparison with the natural horseradish peroxidase (HRP) enzyme, the biogenic Au NPs displayed a 9.64 times higher activity with regard to the reaction velocity at 6% (v/v) H2O2, presenting a higher affinity toward the TMB substrate. The Michaelis-Menten constant (KM) values for the biogenic Au NPs and HRP were found to be 6.9 × 10-2 and 7.9 × 10-2 mM, respectively, at the same concentration of 100 pM. To investigate its applicability for biosensing, a monoclonal antibody specific for Mycobacterium bovis (QUBMA-Bov) was directly conjugated to the surface of the biogenic Au NPs. The obtained results indicate that the biogenic Au NPs-QUBMA-Bov conjugates are capable of detecting M. bovis based on a colorimetric immunosensing method within a lower range of 100 to 102 cfu mL-1 with limits of detection of ∼53 and ∼71 cfu mL-1 in an artificial buffer solution and in a soft cheese spiked sample, respectively. This strategy demonstrates decent specificity in comparison with those of other bacterial and mycobacterial species. Considering these findings together, this study indicates the potential for the development of a cost-effective biosensing platform with high sensitivity and specificity for the detection of M. bovis using antibody-conjugated Au nanozymes.


Asunto(s)
Nanopartículas del Metal , Mycobacterium bovis , Prunus , Frutas/química , Oro/química , Peroxidasa de Rábano Silvestre/química , Peróxido de Hidrógeno/análisis , Nanopartículas del Metal/química , Mycobacterium bovis/metabolismo , Prunus/metabolismo
12.
Autophagy ; 18(6): 1401-1415, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34720021

RESUMEN

Mitophagy is a selective autophagy mechanism for eliminating damaged mitochondria and plays a crucial role in the immune evasion of some viruses and bacteria. Here, we report that Mycobacterium bovis (M. bovis) utilizes host mitophagy to suppress host xenophagy to enhance its intracellular survival. M. bovis is the causative agent of animal tuberculosis and human tuberculosis. In the current study, we show that M. bovis induces mitophagy in macrophages, and the induction of mitophagy is impaired by PINK1 knockdown, indicating the PINK1-PRKN/Parkin pathway is involved in the mitophagy induced by M. bovis. Moreover, the survival of M. bovis in macrophages and the lung bacterial burden of mice are restricted by the inhibition of mitophagy and are enhanced by the induction of mitophagy. Confocal microscopy analysis reveals that induction of mitophagy suppresses host xenophagy by competitive utilization of p-TBK1. Overall, our results suggest that induction of mitophagy enhances M. bovis growth while inhibition of mitophagy improves growth restriction. The findings provide a new insight for understanding the intracellular survival mechanism of M. bovis in the host.Abbreviations: BMDM: mouse bone marrow-derived macrophage; BNIP3: BCL2/adenovirus E1B interacting protein 3; BNIP3L/NIX: BCL2/adenovirus E1B interacting protein 3-like; BCL2L13: BCL2-like 13 (apoptosis facilitator); CCCP: carbonyl cyanide m-cholorophenyl hydrazone; FUNDC1: FUN14 domain-containing 1; FKBP8: FKBP506 binding protein 8; HCV: hepatitis C virus; HBV: hepatitis B virus; IFN: interferon; L. monocytogenes: Listeria monocytogenes; M. bovis: Mycobacterium bovis; Mtb: Mycobacterium tuberculosis; Mdivi-1: mitochondrial division inhibitor 1; PINK1: PTEN-induced putative kinase 1; TBK1: TANK-binding kinase 1; TUFM: Tu translation elongation factor, mitochondrial; TEM: transmission electron microscopy.


Asunto(s)
Macroautofagia , Macrófagos , Mitofagia , Mycobacterium bovis , Animales , Macrófagos/microbiología , Proteínas de la Membrana , Ratones , Proteínas Mitocondriales/metabolismo , Mycobacterium bovis/metabolismo
13.
IUBMB Life ; 74(3): 221-234, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34773437

RESUMEN

Posttranslational modifications (PTMs) could influence many aspects of protein behavior and function in organisms. Protein glycosylation is one of the major PTMs observed in bacteria, which is crucial for functional regulations of many prokaryotic and eukaryotic organisms. Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine has been recognized as an indispensable tool in the global fight against tuberculosis (TB) worldwide over several decades. Nevertheless, analysis of glycoprotein profiles of BCG has not been clearly investigated. In this study, we performed O-mannosylated protein analysis in BCG bacteria using gel-based and gel-free approaches. In total, 1,670 hexosylated peptides derived from 754 mannosylated proteins were identified. Furthermore, 20 novel protein products supported by 78 unique peptides not annotated in the BCG database were detected. Additionally, the translational start sites of 384 proteins were confirmed, and 78 proteins were validated through the extension of translational start sites based on N-terminus-derived peptides. The bioinformatic analysis of the O-mannosylated proteins was performed and the expression profiles of four randomly selected proteins were validated through Western blotting. A number of proteins involved in metabolic pathways, including the tricarboxylic acid cycle, glycolysis, oxidative phosphorylation, and two-component system, are discussed. Taken together, these results offer the first O-mannosylated protein analysis of a member of mycobacteria reported to date by using complementary gel-based and gel-free approaches. Some of the proteins identified in this study have important roles involved in metabolic pathways, which could provide insight into the immune molecular mechanisms of this recognized vaccine strain.


Asunto(s)
Mycobacterium bovis , Tuberculosis , Vacuna BCG/metabolismo , Glicosilación , Humanos , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Proteómica/métodos
14.
Int Immunopharmacol ; 104: 108407, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34924313

RESUMEN

Mycobacterium tuberculosis (M. tuberculosis (MTB) and M. bovis (MB) of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of the notorious infectious disease tuberculosis (TB) in a range of mammals, including bovine and human. The lipid composition of MTB/MB performed imperative function as invading host macrophage. However, the detailed variations in lipid compositions of MTB and MB were unknown, while the responses relevant to lipid metabolisms in MTB/MB-infected host were also unclear. In the present study, a dual-Lipidomics were used to elucidate the differences in lipid composition of MTB and MB and responses in lipid metabolisms of primary bovine alveolar macrophages infected by MTB/MB. The Lipidomics showed significant differences in lipid composition, especially differences in levels of Glycerophospholipids, Sterol Lipids, Fatty Acyls and Polyketides between these two mycobacterium species. Meanwhile, both MTB and MB could invoke various responses of lipid metabolisms in host macrophages. An infection of MTB mainly induced the increases of Polyketides and Glycerophospholipids in macrophages, whereas an MB infection induced the increases of Glycerophospholipids and Sterol. Furthermore, TAG 13:0-18:5-18:5 of MTB and PC (16:1(9E)/0:0), PI(20:2(11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), 4, 6-Decadiyn-1-ol isovalerate and LacCer (d18:1/24:1(15Z)) of MB were identified to cause variations in lipid metabolisms of macrophages, respectively. From these data, we proposed that the differential compositions of lipid compositions in MTB and MB could successfully colonize in macrophage by different mechanisms. MTB could promote the formation of foam cells of macrophage for its colonization and development, while MB mainly suppresses the macrophage autophagy to escape the immune responses of host.


Asunto(s)
Metabolismo de los Lípidos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/metabolismo , Animales , Bovinos , Células Espumosas , Lipidómica , Lípidos/análisis , Masculino , Tuberculosis/metabolismo , Tuberculosis/veterinaria
15.
Molecules ; 26(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361751

RESUMEN

Species of Mycobacteriaceae cause disease in animals and humans, including tuberculosis and leprosy. Individuals infected with organisms in the Mycobacterium tuberculosis complex (MTBC) or non-tuberculous mycobacteria (NTM) may present identical symptoms, however the treatment for each can be different. Although the NTM infection is considered less vital due to the chronicity of the disease and the infrequency of occurrence in healthy populations, diagnosis and differentiation among Mycobacterium species currently require culture isolation, which can take several weeks. The use of volatile organic compounds (VOCs) is a promising approach for species identification and in recent years has shown promise for use in the rapid analysis of both in vitro cultures as well as ex vivo diagnosis using breath or sputum. The aim of this contribution is to analyze VOCs in the culture headspace of seven different species of mycobacteria and to define the volatilome profiles that are discriminant for each species. For the pre-concentration of VOCs, solid-phase micro-extraction (SPME) was employed and samples were subsequently analyzed using gas chromatography-quadrupole mass spectrometry (GC-qMS). A machine learning approach was applied for the selection of the 13 discriminatory features, which might represent clinically translatable bacterial biomarkers.


Asunto(s)
Metaboloma , Mycobacterium abscessus/química , Complejo Mycobacterium avium/química , Mycobacterium avium/química , Mycobacterium bovis/química , Mycobacterium/química , Compuestos Orgánicos Volátiles/aislamiento & purificación , Biomarcadores/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Aprendizaje Automático/estadística & datos numéricos , Mycobacterium/metabolismo , Mycobacterium abscessus/metabolismo , Mycobacterium avium/metabolismo , Complejo Mycobacterium avium/metabolismo , Mycobacterium bovis/metabolismo , Análisis de Componente Principal , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/clasificación , Compuestos Orgánicos Volátiles/metabolismo
16.
ACS Synth Biol ; 10(8): 1859-1873, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34288650

RESUMEN

Recent efforts to sequence, survey, and functionally characterize the diverse biosynthetic capabilities of bacteria have identified numerous Biosynthetic Gene Clusters (BGCs). Genes found within BGCs are typically transcriptionally silent, suggesting their expression is tightly regulated. To better elucidate the underlying mechanisms and principles that govern BGC regulation on a DNA sequence level, we employed high-throughput DNA synthesis and multiplexed reporter assays to build and to characterize a library of BGC-derived regulatory sequences. Regulatory sequence transcription levels were measured in the Actinobacteria Streptomyces albidoflavus J1074, a popular model strain from a genus rich in BGC diversity. Transcriptional activities varied over 1000-fold in range and were used to identify key features associated with expression, including GC content, transcription start sites, and sequence motifs. Furthermore, we demonstrated that transcription levels could be modulated through coexpression of global regulatory proteins. Lastly, we developed and optimized a S. albidoflavus cell-free expression system for rapid characterization of regulatory sequences. This work helps to elucidate the regulatory landscape of BGCs and provides a diverse library of characterized regulatory sequences for rational engineering and activation of cryptic BGCs.


Asunto(s)
Proteínas Bacterianas , ADN Bacteriano , Motivos de Nucleótidos , Secuencias Reguladoras de Ácidos Nucleicos , Streptomyces , Transcripción Genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Biblioteca de Genes , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
17.
Cells ; 10(5)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064643

RESUMEN

Twenty to thirty percent of the septating mycobacterial cells of the mid-log phase population showed highly deviated asymmetric constriction during division (ACD), while the remaining underwent symmetric constriction during division (SCD). The ACD produced short-sized cells (SCs) and normal/long-sized cells (NCs) as the sister-daughter cells, but with significant differential susceptibility to antibiotic/oxidative/nitrite stress. Here we report that, at 0.2% glycerol, formulated in the Middlebrook 7H9 medium, a significantly high proportion of the cells were divided by SCD. When the glycerol concentration decreased to 0.1% due to cell-growth/division, the ACD proportion gradually increased until the ACD:SCD ratio reached ~50:50. With further decrease in the glycerol levels, the SCD proportion increased with concomitant decrease in the ACD proportion. Maintenance of glycerol at 0.1%, through replenishment, held the ACD:SCD proportion at ~50:50. Transfer of the cells from one culture with a specific glycerol level to the supernatant from another culture, with a different glycerol level, made the cells change the ACD:SCD proportion to that of the culture from which the supernatant was taken. RT-qPCR data showed the possibility of diadenosine tetraphosphate phosphorylase (MSMEG_2932), phosphatidylinositol synthase (MSMEG_2933), and a Nudix family hydrolase (MSMEG_2936) involved in the ACD:SCD proportion-change in response to glycerol levels. We also discussed its physiological significance.


Asunto(s)
Glicerol/metabolismo , Mycobacterium bovis/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácido Anhídrido Hidrolasas/metabolismo , Antioxidantes/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Proliferación Celular , Medios de Cultivo , ADN Complementario/metabolismo , Glicerol/química , Humanos , Mutación , Estrés Oxidativo , Pirofosfatasas/metabolismo , ARN/metabolismo , Tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Hidrolasas Nudix
18.
Biomol Concepts ; 12(1): 16-26, 2021 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-33966361

RESUMEN

Tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tb) still remains a devastating infectious disease in the world. There has been a daunting increase in the incidence of Type 2 Diabetes Mellitus (T2DM) worldwide. T2DM patients are three times more vulnerable to M. tb infection compared to healthy individuals. TB-T2DM coincidence is a challenge for global health control. Despite some progress in the research, M. tb still has unexplored characteristics in successfully evading host defenses. The lengthy duration of treatment, the emergence of multi-drug-resistant strains and extensive-drug-resistant strains of M. tb have made TB treatment very challenging. Previously, we have tested the antimycobacterial effects of everolimus within in vitro granulomas generated from immune cells derived from peripheral blood of healthy subjects. However, the effectiveness of everolimus treatment against mycobacterial infection in individuals with T2DM is unknown. Furthermore, the effectiveness of the combination of in vivo glutathione (GSH) supplementation in individuals with T2DM along with in vitro treatment of isolated immune cells with everolimus against mycobacterial infection has never been tested. Therefore, we postulated that liposomal glutathione (L-GSH) and everolimus would offer great hope for developing adjunctive therapy for mycobacterial infection. L-GSH or placebo was administered to T2DM individuals orally for three months. Study subjects' blood was drawn pre- and post-L-GSH/or placebo supplementation, where Peripheral Blood Mononuclear Cells (PBMCs) were isolated from whole blood to conduct in vitro studies with everolimus. We found that in vitro treatment with everolimus, an mTOR (membrane target of rapamycin) inhibitor, significantly reduced intracellular M. bovis BCG infection alone and in conjunction with L-GSH supplementation. Furthermore, we found L-GSH supplementation coupled with in vitro everolimus treatment produced a greater effect in inhibiting the growth of intracellular Mycobacterium bovis BCG, than with the everolimus treatment alone. We also demonstrated the functions of L-GSH along with in vitro everolimus treatment in modulating the levels of cytokines such as IFN-γ, TNF-α, and IL-2 and IL-6, in favor of improving control of the mycobacterial infection. In summary, in vitro everolimus-treatment alone and in combination with oral L-GSH supplementation for three months in individuals with T2DM, was able to increase the levels of T-helper type 1 (Th1) cytokines IFN-γ, TNF-α, and IL-2 as well as enhance the abilities of granulomas from individuals with T2DM to improve control of a mycobacterial infection.


Asunto(s)
Vacuna BCG/administración & dosificación , Diabetes Mellitus Tipo 2/inmunología , Everolimus/farmacología , Glutatión/administración & dosificación , Leucocitos Mononucleares/inmunología , Mycobacterium bovis/inmunología , Tuberculosis/inmunología , Administración Oral , Adolescente , Adulto , Anciano , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Suplementos Dietéticos , Método Doble Ciego , Femenino , Granuloma/inmunología , Humanos , Inmunidad , Inmunosupresores/farmacología , Técnicas In Vitro , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/microbiología , Masculino , Persona de Mediana Edad , Mycobacterium bovis/efectos de los fármacos , Mycobacterium bovis/metabolismo , Tuberculosis/tratamiento farmacológico , Tuberculosis/metabolismo , Tuberculosis/microbiología , Adulto Joven
19.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805837

RESUMEN

For over 50 years, patients with drug-sensitive and drug-resistant tuberculosis have undergone long, arduous, and complex treatment processes with several antimicrobials. With the prevalence of drug-resistant strains on the rise and new therapies for tuberculosis urgently required, we assessed whether manipulating iron levels in macrophages infected with mycobacteria offered some insight into improving current antimicrobials that are used to treat drug-resistant tuberculosis. We investigated if the iron chelator, desferrioxamine, can support the function of human macrophages treated with an array of second-line antimicrobials, including moxifloxacin, bedaquiline, amikacin, clofazimine, linezolid and cycloserine. Primary human monocyte-derived macrophages were infected with Bacillus Calmette-Guérin (BCG), which is pyrazinamide-resistant, and concomitantly treated for 5 days with desferrioxamine in combination with each one of the second-line tuberculosis antimicrobials. Our data indicate that desferrioxamine used as an adjunctive treatment to bedaquiline significantly reduced the bacterial load in human macrophages infected with BCG. Our findings also reveal a link between enhanced bactericidal activity and increases in specific cytokines, as the addition of desferrioxamine increased levels of IFN-γ, IL-6, and IL-1ß in BCG-infected human monocyte-derived macrophages (hMDMs) treated with bedaquiline. These results provide insight, and an in vitro proof-of-concept, that iron chelators may prove an effective adjunctive therapy in combination with current tuberculosis antimicrobials.


Asunto(s)
Antituberculosos/farmacología , Deferoxamina/farmacología , Diarilquinolinas/farmacología , Quelantes del Hierro/farmacología , Hierro/metabolismo , Macrófagos/efectos de los fármacos , Mycobacterium bovis/efectos de los fármacos , Amicacina/farmacología , Carga Bacteriana/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Clofazimina/farmacología , Cicloserina/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Sinergismo Farmacológico , Expresión Génica , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Linezolid/farmacología , Macrófagos/inmunología , Macrófagos/microbiología , Pruebas de Sensibilidad Microbiana , Moxifloxacino/farmacología , Mycobacterium bovis/crecimiento & desarrollo , Mycobacterium bovis/metabolismo , Cultivo Primario de Células , Pirazinamida/farmacología
20.
Cell Chem Biol ; 28(8): 1180-1191.e20, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-33765439

RESUMEN

Tryptophan biosynthesis represents an important potential drug target for new anti-TB drugs. We identified a series of indole-4-carboxamides with potent antitubercular activity. In vitro, Mycobacterium tuberculosis (Mtb) acquired resistance to these compounds through three discrete mechanisms: (1) a decrease in drug metabolism via loss-of-function mutations in the amidase that hydrolyses these carboxamides, (2) an increased biosynthetic rate of tryptophan precursors via loss of allosteric feedback inhibition of anthranilate synthase (TrpE), and (3) mutation of tryptophan synthase (TrpAB) that decreased incorporation of 4-aminoindole into 4-aminotryptophan. Thus, these indole-4-carboxamides act as prodrugs of a tryptophan antimetabolite, 4-aminoindole.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Indoles/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Triptófano/biosíntesis , Animales , Antituberculosos/química , Antituberculosos/metabolismo , Relación Dosis-Respuesta a Droga , Indoles/química , Indoles/metabolismo , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Mycobacterium bovis/efectos de los fármacos , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...