Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.848
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1427829, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113823

RESUMEN

Introduction: The two-component signal transduction systems play an essential role in the adaptation of bacteria to changing environmental conditions. One of them is the MnoSR system involved in the regulation of methylotrophic metabolism in M. smegmatis. Methods: Mycobacterium smegmatis mutant strains ΔmnoS, ΔmnoR and ΔmnoS/R lacking functional mnoS, mnoR and both genes were generated using a homologous recombination approach. MnoR recombinant protein was purified by affinity column chromatography. The present study employs molecular biology techniques: cloning strategies, global RNA sequencing, qRT-PCR, EMSA, Microscale thermophoresis, and bioinformatics analysis. Results and discussion: The ∆mnoS, ∆mnoR, and ∆mnoS/R mutant strains were generated and cultured in the presence of defined carbon sources. Growth curve analysis confirmed that inactivation of the MnoSR impairs the ability of M. smegmatis cells to use alcohols such as 1,3-propanediol and ethanol but improves the bacterial growth on ethylene glycol, xylitol, and glycerol. The total RNA sequencing method was employed to understand the importance of MnoSR in the global responses of mycobacteria to limited carbon access and in carbon-rich conditions. The loss of MnoSR significantly affected carbon utilization in the case of mycobacteria cultured on glucose or 1,3-propanediol as sole carbon sources as it influenced the expression of multiple metabolic pathways. The numerous transcriptional changes could not be linked to the presence of evident MnoR DNA-binding sites within the promotor regions for the genes outside of the mno operon. This was confirmed by EMSA and microscale thermophoresis with mutated MnoR binding consensus region. Our comprehensive analysis highlights the system's vital role in metabolic adaptability, providing insights into its potential impact on the environmental survival of mycobacteria.


Asunto(s)
Proteínas Bacterianas , Carbono , Regulación Bacteriana de la Expresión Génica , Glucosa , Mycobacterium smegmatis , Glicoles de Propileno , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Glucosa/metabolismo , Glicoles de Propileno/metabolismo , Glicoles de Propileno/farmacología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Carbono/metabolismo , Regiones Promotoras Genéticas
2.
Sci Rep ; 14(1): 18073, 2024 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103410

RESUMEN

The escalating antibiotic resistance in mycobacterial species poses a significant threat globally, necessitating an urgent need to find alternative solutions. Bacteriophage-derived endolysins, which facilitate phage progeny release by attacking bacterial cell walls, present promising antibacterial candidates due to their rapid lytic action, high specificity and low risk of resistance development. In mycobacteria, owing to the complex, hydrophobic cell wall, mycobacteriophages usually synthesize two endolysins: LysinA, which hydrolyzes peptidoglycan; LysinB, which delinks mycolic acid-containing outer membrane and arabinogalactan, releasing free mycolic acid. In this study, we conducted domain analysis and functional characterization of a novel LysinB from RitSun, an F2 sub-cluster mycobacteriophage from our phage collection. Several key properties of RitSun LysinB make it an important antimycobacterial agent: its ability to lyse Mycobacterium smegmatis from without, a higher than previously reported specific activity of 1.36 U/mg and its inhibitory effect on biofilm formation. Given the impermeable nature of the mycobacterial cell envelope, dissecting RitSun LysinB at the molecular level to identify its cell wall-destabilizing sequence could be utilized to engineer other native lysins as fusion proteins, broadening their activity spectrum.


Asunto(s)
Endopeptidasas , Micobacteriófagos , Mycobacterium smegmatis , Mycobacterium smegmatis/virología , Mycobacterium smegmatis/efectos de los fármacos , Endopeptidasas/metabolismo , Endopeptidasas/química , Endopeptidasas/farmacología , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Pared Celular/metabolismo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Antibacterianos/farmacología , Peptidoglicano/metabolismo , Peptidoglicano/química , Galactanos
3.
Nat Commun ; 15(1): 6673, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107302

RESUMEN

Allosteric regulation of inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme of purine metabolism, contributes to the homeostasis of adenine and guanine nucleotides. However, the precise molecular mechanism of IMPDH regulation in bacteria remains unclear. Using biochemical and cryo-EM approaches, we reveal the intricate molecular mechanism of the IMPDH allosteric regulation in mycobacteria. The enzyme is inhibited by both GTP and (p)ppGpp, which bind to the regulatory CBS domains and, via interactions with basic residues in hinge regions, lock the catalytic core domains in a compressed conformation. This results in occlusion of inosine monophosphate (IMP) substrate binding to the active site and, ultimately, inhibition of the enzyme. The GTP and (p)ppGpp allosteric effectors bind to their dedicated sites but stabilize the compressed octamer by a common mechanism. Inhibition is relieved by the competitive displacement of GTP or (p)ppGpp by ATP allowing IMP-induced enzyme expansion. The structural knowledge and mechanistic understanding presented here open up new possibilities for the development of allosteric inhibitors with antibacterial potential.


Asunto(s)
Guanosina Trifosfato , IMP Deshidrogenasa , IMP Deshidrogenasa/metabolismo , IMP Deshidrogenasa/química , IMP Deshidrogenasa/antagonistas & inhibidores , Regulación Alostérica , Guanosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Dominio Catalítico , Modelos Moleculares , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Guanosina Pentafosfato/metabolismo , Inosina Monofosfato/metabolismo , Inosina Monofosfato/química , Unión Proteica , Adenosina Trifosfato/metabolismo , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(34): e2322938121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39141351

RESUMEN

The removal of mis-incorporated nucleotides by proofreading activity ensures DNA replication fidelity. Whereas the ε-exonuclease DnaQ is a well-established proofreader in the model organism Escherichia coli, it has been shown that proofreading in a majority of bacteria relies on the polymerase and histidinol phosphatase (PHP) domain of replicative polymerase, despite the presence of a DnaQ homolog that is structurally and functionally distinct from E. coli DnaQ. However, the biological functions of this type of noncanonical DnaQ remain unclear. Here, we provide independent evidence that noncanonical DnaQ functions as an additional proofreader for mycobacteria. Using the mutation accumulation assay in combination with whole-genome sequencing, we showed that depletion of DnaQ in Mycolicibacterium smegmatis leads to an increased mutation rate, resulting in AT-biased mutagenesis and increased insertions/deletions in the homopolymer tract. Our results showed that mycobacterial DnaQ binds to the ß clamp and functions synergistically with the PHP domain proofreader to correct replication errors. Furthermore, the loss of dnaQ results in replication fork dysfunction, leading to attenuated growth and increased mutagenesis on subinhibitory fluoroquinolones potentially due to increased vulnerability to fork collapse. By analyzing the sequence polymorphism of dnaQ in clinical isolates of Mycobacterium tuberculosis (Mtb), we demonstrated that a naturally evolved DnaQ variant prevalent in Mtb lineage 4.3 may enable hypermutability and is associated with drug resistance. These results establish a coproofreading model and suggest a division of labor between DnaQ and PHP domain proofreader. This study also provides real-world evidence that a mutator-driven evolutionary pathway may exist during the adaptation of Mtb.


Asunto(s)
Replicación del ADN , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Mutación
5.
Int J Mol Sci ; 25(15)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39126073

RESUMEN

The spread of multidrug-resistant mycobacterium strains requires the development of new approaches to combat diseases caused by these pathogens. For that, photodynamic inactivation (PDI) is a promising approach. In this study, a tricarbocyanine (TCC) is used for the first time as a near-infrared (740 nm) activatable PDI photosensitizer to kill mycobacteria with deep light penetration. For better targeting, a novel tricarbocyanine dye functionalized with two trehalose units (TCC2Tre) is developed. The photodynamic effect of the conjugates against mycobacteria, including Mycobacterium tuberculosis, is evaluated. Under irradiation, TCC2Tre causes more effective killing of mycobacteria compared to the photosensitizer without trehalose conjugation, with 99.99% dead vegetative cells of M. tuberculosis and M. smegmatis. In addition, effective photoinactivation of dormant forms of M. smegmatis is observed after incubation with TCC2Tre. Mycobacteria treated with TCC2Tre are more sensitive to 740 nm light than the Gram-positive Micrococcus luteus and the Gram-negative Escherichia coli. For the first time, this study demonstrates the proof of principle of in vitro PDI of mycobacteria including the fast-growing M. smegmatis and the slow-growing M. tuberculosis using near-infrared activatable photosensitizers conjugated with trehalose. These findings are useful for the development of new efficient alternatives to antibiotic therapy.


Asunto(s)
Rayos Infrarrojos , Mycobacterium smegmatis , Mycobacterium tuberculosis , Fármacos Fotosensibilizantes , Trehalosa , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/efectos de la radiación , Trehalosa/farmacología , Trehalosa/química , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/efectos de la radiación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Carbocianinas/química , Carbocianinas/farmacología , Fotoquimioterapia/métodos
6.
Sci Rep ; 14(1): 19026, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152186

RESUMEN

Condensins play important roles in maintaining bacterial chromatin integrity. In mycobacteria, three types of condensins have been characterized: a homolog of SMC and two MksB-like proteins, the recently identified MksB and EptC. Previous studies suggest that EptC contributes to defending against foreign DNA, while SMC and MksB may play roles in chromosome organization. Here, we report for the first time that the condensins, SMC and MksB, are involved in various DNA transactions during the cell cycle of Mycobacterium smegmatis (currently named Mycolicibacterium smegmatis). SMC appears to be required during the last steps of the cell cycle, where it contributes to sister chromosome separation. Intriguingly, in contrast to other bacteria, mycobacterial MksB follows replication forks during chromosome replication and hence may be involved in organizing newly replicated DNA.


Asunto(s)
Adenosina Trifosfatasas , Proteínas Bacterianas , Replicación del ADN , Proteínas de Unión al ADN , Complejos Multiproteicos , Mycobacterium smegmatis , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Adenosina Trifosfatasas/metabolismo , Complejos Multiproteicos/metabolismo , Cromosomas Bacterianos/metabolismo , Cromosomas Bacterianos/genética , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
7.
Arch Microbiol ; 206(9): 369, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110213

RESUMEN

The RNA-based study provides an excellent indication of an organism's gene expression profile. Obtaining high-yield and high-purity RNA from Gram-positive and acid-fast bacteria is difficult without high-end kits and facilities. We optimised effective and simple protocol for RNA isolation that is a combination of enzymatic, physical and chemical treatment to disrupt cells. We successfully isolated high quality intact total RNA with yields ranging from 23.13 ± 0.40 to 61.51 ± 0.27 µg and the 260/280 purity ratio of 1.95 ± 0.01 to 2.05 ± 0.01 from Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, and Mycobacterium smegmatis. These results represents a significantly enhanced yield and purity compared to other combination of techniques which we performed. Compared to previous studies the yield obtained by this method is high for the studied organisms. Furthermore the yielded RNA was successfully used for downstream applications such as quantitative real time PCR. The described method can be easily optimised and used for various bacteria.


Asunto(s)
ARN Bacteriano , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación , Staphylococcus aureus/genética , Staphylococcus aureus/aislamiento & purificación , Bacterias Grampositivas/genética , Bacterias Grampositivas/aislamiento & purificación , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/aislamiento & purificación , Enterococcus faecalis/genética , Enterococcus faecalis/aislamiento & purificación , Mycobacterium smegmatis/genética
8.
ACS Infect Dis ; 10(8): 2623-2636, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959403

RESUMEN

Antibiotic resistance is a pressing health issue, with the emergence of resistance in bacteria outcompeting the discovery of novel drug candidates. While many studies have used Adaptive Laboratory Evolution (ALE) to understand the determinants of resistance, the influence of the drug dosing profile on the evolutionary trajectory remains understudied. In this study, we employed ALE on Mycobacterium smegmatis exposed to various concentrations of Norfloxacin using both cyclic constant and stepwise increasing drug dosages to examine their impact on the resistance mechanisms selected. Mutations in an efflux pump regulator, LfrR, were found in all of the evolved populations irrespective of the drug profile and population bottleneck, indicating a conserved efflux-based resistance mechanism. This mutation appeared early in the evolutionary trajectory, providing low-level resistance when present alone, with a further increase in resistance resulting from successive accumulation of other mutations. Notably, drug target mutations, similar to those observed in clinical isolates, were only seen above a threshold of greater than 4× the minimum inhibitory concentration (MIC). A combination of three mutations in the genes, lfrR, MSMEG_1959, and MSMEG_5045, was conserved across multiple lineages, leading to high-level resistance and preceding the appearance of drug target mutations. Interestingly, in populations evolved from parental strains lacking the lfrA efflux pump, the primary target of the lfrR regulator, no lfrR gene mutations are selected. Furthermore, evolutional trajectories originating from the ΔlfrA strain displayed early arrest in some lineages and the absence of target gene mutations in those that evolved, albeit delayed. Thus, blocking or inhibiting the expression of efflux pumps can arrest or delay the fixation of drug target mutations, potentially limiting the maximum attainable resistance levels.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium smegmatis , Norfloxacino , Norfloxacino/farmacología , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/genética , Antibacterianos/farmacología , Evolución Molecular , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
9.
J Vis Exp ; (209)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39072629

RESUMEN

Many bacteria thrive in intricate natural communities, exhibiting key attributes of multicellularity such as communication, cooperation, and competition. The most prevalent manifestation of bacterial multicellular behavior is the formation of biofilms, often linked to pathogenicity. Biofilms offer a haven against antimicrobial agents, fostering the emergence of antimicrobial resistance. The conventional practice of cultivating bacteria in shake flask liquid cultures fails to represent their proper physiological growth in nature, consequently limiting our comprehension of their intricate dynamics. Notably, the metabolic and transcriptional profiles of bacteria residing in biofilms closely resemble those of naturally growing cells. This parallelism underscores the significance of biofilms as an ideal model for foundational and translational research. This article focuses on utilizing Mycobacterium smegmatis as a model organism to illustrate a technique for cultivating pellicle biofilms. The approach is adaptable to various culture volumes, facilitating its implementation for diverse experimental objectives such as antimicrobial studies. Moreover, the method's design enables the qualitative or quantitative evaluation of the biofilm-forming capabilities of different mycobacterial species with minor adjustments.


Asunto(s)
Biopelículas , Farmacorresistencia Bacteriana , Mycobacterium smegmatis , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/fisiología , Técnicas Bacteriológicas/métodos
10.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39000573

RESUMEN

Mycobacteriophages are viruses that specifically infect bacterial species within the genera Mycobacterium and Mycolicibacterium. Over 2400 mycobacteriophages have been isolated on the host Mycolicibacterium smegmatis and sequenced. This wealth of genomic data indicates that mycobacteriophage genomes are diverse, mosaic, and contain numerous (35-60%) genes for which there is no predicted function based on sequence similarity to characterized orthologs, many of which are essential to lytic growth. To fully understand the molecular aspects of mycobacteriophage-host interactions, it is paramount to investigate the function of these genes and gene products. Here we show that the temperate mycobacteriophage, Alexphander, makes stable lysogens with a frequency of 2.8%. Alexphander gene 94 is essential for lytic infection and encodes a protein predicted to contain a C-terminal MerR family helix-turn-helix DNA-binding motif (HTH) and an N-terminal DinB/YfiT motif, a putative metal-binding motif found in stress-inducible gene products. Full-length and C-terminal gp94 constructs form high-order nucleoprotein complexes on 100-500 base pair double-stranded DNA fragments and full-length phage genomic DNA with little sequence discrimination for the DNA fragments tested. Maximum gene 94 mRNA levels are observed late in the lytic growth cycle, and gene 94 is transcribed in a message with neighboring genes 92 through 96. We hypothesize that gp94 is an essential DNA-binding protein for Alexphander during lytic growth. We proposed that gp94 forms multiprotein complexes on DNA through cooperative interactions involving its HTH DNA-binding motif at sites throughout the phage chromosome, facilitating essential DNA transactions required for lytic propagation.


Asunto(s)
Proteínas de Unión al ADN , Micobacteriófagos , Mycobacterium smegmatis , Proteínas Virales , Micobacteriófagos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Mycobacterium smegmatis/virología , Mycobacterium smegmatis/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Virales/química , Lisogenia/genética , Genoma Viral , ADN Viral/genética
11.
Methods Mol Biol ; 2833: 109-119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38949705

RESUMEN

Tuberculosis (TB) is the most common cause of death from an infectious disease. Although treatment has been available for more than 70 years, it still takes too long and many patients default risking relapse and the emergence of resistance. It is known that lipid-rich, phenotypically antibiotic-tolerant, bacteria are more resistant to antibiotics and may be responsible for relapse necessitating extended therapy. Using a microfluidic system that acoustically traps live mycobacteria, M. smegmatis, a model organism for M. tuberculosis we can perform optical analysis in the form of wavelength-modulated Raman spectroscopy (WMRS) on the trapped organisms. This system can allow observations of the mycobacteria for up to 8 h. By adding antibiotics, it is possible to study the effect of antibiotics in real-time by comparing the Raman fingerprints in comparison to the unstressed condition. This microfluidic platform may be used to study any microorganism and to dynamically monitor its response to many conditions including antibiotic stress, and changes in the growth media. This opens the possibility of understanding better the stimuli that trigger the lipid-rich downregulated and phenotypically antibiotic-resistant cell state.


Asunto(s)
Mycobacterium smegmatis , Espectrometría Raman , Espectrometría Raman/métodos , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/crecimiento & desarrollo , Microfluídica/métodos , Microfluídica/instrumentación , Antibacterianos/farmacología , Acústica/instrumentación , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Humanos
12.
mBio ; 15(8): e0124824, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39012146

RESUMEN

Mycobacterium smegmatis Nei2 is a monomeric enzyme with AP ß-lyase activity on single-stranded DNA. Expression of Nei2, and its operonic neighbor Lhr (a tetrameric 3'-to-5' helicase), is induced in mycobacteria exposed to DNA damaging agents. Here, we find that nei2 deletion sensitizes M. smegmatis to killing by DNA inter-strand crosslinker trimethylpsoralen but not to crosslinkers mitomycin C and cisplatin. By contrast, deletion of lhr sensitizes to killing by all three crosslinking agents. We report a 1.45 Å crystal structure of recombinant Nei2, which is composed of N and C terminal lobes flanking a central groove suitable for DNA binding. The C lobe includes a tetracysteine zinc complex. Mutational analysis identifies the N-terminal proline residue (Pro2 of the ORF) and Lys51, but not Glu3, as essential for AP lyase activity. We find that Nei2 has 5-hydroxyuracil glycosylase activity on single-stranded DNA that is effaced by alanine mutations of Glu3 and Lys51 but not Pro2. Testing complementation of psoralen sensitivity by expression of wild-type and mutant nei2 alleles in ∆nei2 cells established that AP lyase activity is neither sufficient nor essential for crosslink repair. By contrast, complementation of psoralen sensitivity of ∆lhr cells by mutant lhr alleles depended on Lhr's ATPase/helicase activities and its tetrameric quaternary structure. The lhr-nei2 operon comprises a unique bacterial system to rectify inter-strand crosslinks.IMPORTANCEThe DNA inter-strand crosslinking agents mitomycin C, cisplatin, and psoralen-UVA are used clinically for the treatment of cancers and skin diseases; they have been invaluable in elucidating the pathways of inter-strand crosslink repair in eukaryal systems. Whereas DNA crosslinkers are known to trigger a DNA damage response in bacteria, the roster of bacterial crosslink repair factors is incomplete and likely to vary among taxa. This study implicates the DNA damage-inducible mycobacterial lhr-nei2 gene operon in protecting Mycobacterium smegmatis from killing by inter-strand crosslinkers. Whereas interdicting the activity of the Lhr helicase sensitizes mycobacteria to mitomycin C, cisplatin, and psoralen-UVA, the Nei2 glycosylase functions uniquely in evasion of damage caused by psoralen-UVA.


Asunto(s)
Reparación del ADN , Ficusina , Mycobacterium smegmatis , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/metabolismo , Ficusina/química , Ficusina/farmacología , Ficusina/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Daño del ADN , Reactivos de Enlaces Cruzados/química , Cristalografía por Rayos X , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Mitomicina/farmacología , Mitomicina/metabolismo , Eliminación de Gen
13.
Mol Microbiol ; 122(2): 243-254, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38994875

RESUMEN

Endolysins produced by bacteriophages hydrolyze host cell wall peptidoglycan to release newly assembled virions. D29 mycobacteriophage specifically infects mycobacteria including the pathogenic Mycobacterium tuberculosis. D29 encodes LysA endolysin, which hydrolyzes mycobacterial cell wall peptidoglycan. We previously showed that LysA harbors two catalytic domains (N-terminal domain [NTD] and lysozyme-like domain [LD]) and a C-terminal cell wall binding domain (CTD). While the importance of LD and CTD in mycobacteriophage biology has been examined in great detail, NTD has largely remained unexplored. Here, to address NTD's significance in D29 physiology, we generated NTD-deficient D29 (D29∆NTD) by deleting the NTD-coding region from D29 genome using CRISPY-BRED. We show that D29∆NTD is viable, but has a longer latent period, and a remarkably reduced burst size and plaque size. A large number of phages were found to be trapped in the host during the D29∆NTD-mediated cell lysis event. Such poor release of progeny phages during host cell lysis strongly suggests that NTD-deficient LysA produced by D29∆NTD, despite having catalytically-active LD, is unable to efficiently lyse host bacteria. We thus conclude that LysA NTD is essential for optimal release of progeny virions, thereby playing an extremely vital role in phage physiology and phage propagation in the environment.


Asunto(s)
Pared Celular , Endopeptidasas , Micobacteriófagos , Mycobacterium tuberculosis , Peptidoglicano , Micobacteriófagos/genética , Micobacteriófagos/metabolismo , Endopeptidasas/metabolismo , Endopeptidasas/genética , Pared Celular/metabolismo , Peptidoglicano/metabolismo , Mycobacterium tuberculosis/virología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Dominios Proteicos , Virión/metabolismo , Bacteriólisis , Mycobacterium smegmatis/virología , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo
15.
Int J Biol Macromol ; 272(Pt 1): 132727, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38823743

RESUMEN

Due to the uniqueness and essentiality of MEP pathway for the synthesis of crucial metabolites- isoprenoids, hopanoids, menaquinone etc. in mycobacterium, enzymes of this pathway are considered promising anti-tubercular drug targets. In the present study we seek to understand the consequences of downregulation of three of the essential genes- DXS, IspD, and IspF of MEP pathway using CRISPRi approach combined with transcriptomics in Mycobacterium smegmatis. Conditional knock down of either DXS or IspD or IspF gene showed strong bactericidal effect and a profound change in colony morphology. Impaired MEP pathway due to downregulation of these genes increased the susceptibility to frontline anti-tubercular drugs. Further, reduced EtBr accumulation in all the knock down strains in the presence and absence of efflux inhibitor indicated altered cell wall topology. Subsequently, transcriptional analysis validated by qRT-PCR of +154DXS, +128IspD, +104IspF strains showed that modifying the expression of these MEP pathway enzymes affects the regulation of mycobacterial core components. Among the DEGs, expression of small and large ribosomal binding proteins (rpsL, rpsJ, rplN, rplX, rplM, rplS, etc), essential protein translocases (secE, secY and infA, infC), transcriptional regulator (CarD and SigB) and metabolic enzymes (acpP, hydA, ald and fabD) were significantly depleted causing the bactericidal effect. However, mycobacteria survived under these damaging conditions by upregulating mostly the genes needed for the repair of DNA damage (DNA polymerase IV, dinB), synthesis of essential metabolites (serB, LeuA, atpD) and those strengthening the cell wall integrity (otsA, murA, D-alanyl-D-alanine dipeptidase etc.).


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Mycobacterium smegmatis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Antituberculosos/farmacología , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/genética , Redes y Vías Metabólicas
16.
Nat Commun ; 15(1): 5276, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902248

RESUMEN

Aerobic life is powered by membrane-bound redox enzymes that shuttle electrons to oxygen and transfer protons across a biological membrane. Structural studies suggest that these energy-transducing enzymes operate as higher-order supercomplexes, but their functional role remains poorly understood and highly debated. Here we resolve the functional dynamics of the 0.7 MDa III2IV2 obligate supercomplex from Mycobacterium smegmatis, a close relative of M. tuberculosis, the causative agent of tuberculosis. By combining computational, biochemical, and high-resolution (2.3 Å) cryo-electron microscopy experiments, we show how the mycobacterial supercomplex catalyses long-range charge transport from its menaquinol oxidation site to the binuclear active site for oxygen reduction. Our data reveal proton and electron pathways responsible for the charge transfer reactions, mechanistic principles of the quinone catalysis, and how unique molecular adaptations, water molecules, and lipid interactions enable the proton-coupled electron transfer (PCET) reactions. Our combined findings provide a mechanistic blueprint of mycobacterial supercomplexes and a basis for developing drugs against pathogenic bacteria.


Asunto(s)
Microscopía por Crioelectrón , Mycobacterium smegmatis , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/enzimología , Transporte de Electrón , Oxidación-Reducción , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Protones , Complejo III de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/química , Oxígeno/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/química , Dominio Catalítico , Modelos Moleculares
17.
Microbiol Spectr ; 12(8): e0320723, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38916330

RESUMEN

Riboflavin (vitamin B2) is the precursor of the flavin coenzymes, FAD and FMN, which play a central role in cellular redox metabolism. While humans must obtain riboflavin from dietary sources, certain microbes, including Mycobacterium tuberculosis (Mtb), can biosynthesize riboflavin de novo. Riboflavin precursors have also been implicated in the activation of mucosal-associated invariant T (MAIT) cells which recognize metabolites derived from the riboflavin biosynthesis pathway complexed to the MHC-I-like molecule, MR1. To investigate the biosynthesis and function of riboflavin and its pathway intermediates in mycobacterial metabolism and physiology, we constructed conditional knockdowns (hypomorphs) in riboflavin biosynthesis and utilization genes in Mycobacterium smegmatis (Msm) and Mtb by inducible CRISPR interference. Using this comprehensive panel of hypomorphs, we analyzed the impact of gene silencing on viability, on the transcription of (other) riboflavin pathway genes, on the levels of the pathway proteins, and on riboflavin itself. Our results revealed that (i) despite lacking a canonical transporter, both Msm and Mtb assimilate exogenous riboflavin when supplied at high concentration; (ii) there is functional redundancy in lumazine synthase activity in Msm; (iii) silencing of ribA2 or ribF is profoundly bactericidal in Mtb; and (iv) in Msm, ribA2 silencing results in concomitant knockdown of other pathway genes coupled with RibA2 and riboflavin depletion and is also bactericidal. In addition to their use in genetic validation of potential drug targets for tuberculosis, this collection of hypomorphs provides a useful resource for future studies investigating the role of pathway intermediates in MAIT cell recognition of mycobacteria. IMPORTANCE: The pathway for biosynthesis and utilization of riboflavin, precursor of the essential coenzymes, FMN and FAD, is of particular interest in the flavin-rich pathogen, Mycobacterium tuberculosis (Mtb), for two important reasons: (i) the pathway includes potential tuberculosis (TB) drug targets and (ii) intermediates from the riboflavin biosynthesis pathway provide ligands for mucosal-associated invariant T (MAIT) cells, which have been implicated in TB pathogenesis. However, the riboflavin pathway is poorly understood in mycobacteria, which lack canonical mechanisms to transport this vitamin and to regulate flavin coenzyme homeostasis. By conditionally disrupting each step of the pathway and assessing the impact on mycobacterial viability and on the levels of the pathway proteins as well as riboflavin, our work provides genetic validation of the riboflavin pathway as a target for TB drug discovery and offers a resource for further exploring the association between riboflavin biosynthesis, MAIT cell activation, and TB infection and disease.


Asunto(s)
Mycobacterium smegmatis , Mycobacterium tuberculosis , Riboflavina , Riboflavina/biosíntesis , Riboflavina/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Flavina-Adenina Dinucleótido/metabolismo , Vías Biosintéticas/genética , Técnicas de Silenciamiento del Gen , Células T Invariantes Asociadas a Mucosa/metabolismo , Regulación Bacteriana de la Expresión Génica
18.
Microbiol Spectr ; 12(7): e0048724, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38860795

RESUMEN

Iron scavenging is required for full virulence of mycobacterial pathogens. During infection, the host immune response restricts mycobacterial access to iron, which is essential for bacterial respiration and DNA synthesis. The Mycobacterium tuberculosis iron-dependent regulator (IdeR) responds to changes in iron accessibility by repressing iron-uptake genes when iron is available. In contrast, iron-uptake gene transcription is induced when iron is depleted. The ideR gene is essential in M. tuberculosis and is required for bacterial growth. To further study how iron regulates transcription, wee developed an iron responsive reporter system that relies on an IdeR-regulated promoter to drive Cre and loxP mediated recombination in Mycobacterium smegmatis. Recombination leads to the expression of an antibiotic resistance gene so that mutations that activate the IdeR-regulated promoter can be selected. A transposon library in the background of this reporter system was exposed to media containing iron and hemin, and this resulted in the selection of mutants in the antioxidant mycothiol synthesis pathway. We validated that inactivation of the mycothiol synthesis gene mshA results in increased recombination and increased IdeR-regulated promoter activity in the reporter system. Further, we show that vitamin C, which has been shown to oxidize iron through the Fenton reaction, can decrease promoter activity in the mshA mutant. We conclude that the intracellular redox state balanced by mycothiol can alter IdeR activity in the presence of iron.IMPORTANCEMycobacterium smegmatis is a tractable organism to study mycobacterial gene regulation. We used M. smegmatis to construct a novel recombination-based reporter system that allows for the selection of mutations that deregulate a promoter of interest. Transposon mutagenesis and insertion sequencing (TnSeq) in the recombination reporter strain identified genes that impact iron regulated promoter activity in mycobacteria. We found that the mycothiol synthesis gene mshA is required for IdeR mediated transcriptional regulation by maintaining intracellular redox balance. By affecting the oxidative state of the intracellular environment, mycothiol can modulate iron-dependent transcriptional activity. Taken more broadly, this novel reporter system can be used in combination with transposon mutagenesis to identify genes that are required by Mycobacterium tuberculosis to overcome temporary or local changes in iron availability during infection.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Genes Reporteros , Glicopéptidos , Inositol , Hierro , Mycobacterium smegmatis , Oxidación-Reducción , Hierro/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Inositol/metabolismo , Glicopéptidos/metabolismo , Glicopéptidos/biosíntesis , Regiones Promotoras Genéticas , Cisteína/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Elementos Transponibles de ADN , Proteínas Represoras
19.
Sci Rep ; 14(1): 14660, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918410

RESUMEN

The emergence of drug-resistant Mycobacterium tuberculosis strains is a threat to global health necessitating the discovery of novel chemotherapeutic agents. Natural products drug discovery, which previously led to the discovery of rifamycins, is a valuable approach in this endeavor. Against this backdrop, we set out to investigate the in vitro antimycobacterial properties of medicinal plants from Ghana and South Africa, evaluating 36 extracts and their 252 corresponding solid phase extraction (SPE) generated fractions primarily against the non-pathogenic Mycobacterium smegmatis and Mycobacterium aurum species. The most potent fraction was further evaluated in vitro against infectious M. tuberculosis strain. Crinum asiaticum (bulb) (Amaryllidaceae) emerged as the most potent plant species with specific fractions showing exceptional, near equipotent activity against the non-pathogenic Mycobacterium species (0.39 µg/ml ≤ MIC ≤ 25 µg/ml) with one fraction being moderately active (MIC = 32.6 µg/ml) against M. tuberculosis. Metabolomic analysis led to the identification of eight compounds predicted to be active against M. smegmatis and M. aurum. In conclusion, from our comprehensive study, we generated data which provided an insight into the antimycobacterial properties of Ghanaian and South African plants. Future work will be focused on the isolation and evaluation of the compounds predicted to be active.


Asunto(s)
Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Extractos Vegetales , Plantas Medicinales , Plantas Medicinales/química , Sudáfrica , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ghana , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Antituberculosos/química , Mycobacterium/efectos de los fármacos , Mycobacterium smegmatis/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Antibacterianos/química
20.
DNA Repair (Amst) ; 139: 103693, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776712

RESUMEN

MutT proteins belong to the Nudix hydrolase superfamily that includes a diverse group of Mg2+ requiring enzymes. These proteins use a generalized substrate, nucleoside diphosphate linked to a chemical group X (NDP-X), to produce nucleoside monophosphate (NMP) and the moiety X linked with phosphate (XP). E. coli MutT (EcoMutT) and mycobacterial MutT1 (MsmMutT1) belong to the Nudix hydrolase superfamily that utilize 8-oxo-(d)GTP (referring to both 8-oxo-GTP or 8-oxo-dGTP). However, predominant products of their activities are different. While EcoMutT produces 8-oxo-(d)GMP, MsmMutT1 gives rise to 8-oxo-(d)GDP. Here, we show that the altered cleavage specificities of the two proteins are largely a consequence of the variation at the equivalent of Gly37 (G37) in EcoMutT to Lys (K65) in the MsmMutT1. Remarkably, mutations of G37K (EcoMutT) and K65G (MsmMutT1) switch their cleavage specificities to produce 8-oxo-(d)GDP, and 8-oxo-(d)GMP, respectively. Further, a time course analysis using 8-oxo-GTP suggests that MsmMutT1(K65G) hydrolyses 8-oxo-(d)GTP to 8-oxo-(d)GMP in a two-step reaction via 8-oxo-(d)GDP intermediate. Expectedly, unlike EcoMutT (G37K) and MsmMutT1, EcoMutT and MsmMutT1 (K65G) rescue an E. coli ΔmutT strain, better by decreasing A to C mutations.


Asunto(s)
Nucleótidos de Desoxiguanina , Proteínas de Escherichia coli , Escherichia coli , Mycobacterium smegmatis , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Especificidad por Sustrato , Nucleótidos de Desoxiguanina/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Sustitución de Aminoácidos , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA