Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 103(4): 754-68, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27056926

RESUMEN

PREMISE OF THE STUDY: Myrtaceous fossil capsular fruits and flowers from the northwest of Tasmania, in the Early Oligocene-aged Little Rapid River (LRR) deposit, are described. The reproductive organs are found in association with Myrtaceous leaves previously thought to belong to a fleshy-fruited genus, Xanthomyrtus at both LRR, and an Eocene Tasmanian site at Hasties, which are reassessed with fresh morphological evidence. METHODS: Standard Light Microscopy (LM) and Scanning Electron Microscopy (SEM) were used to investigate cuticular characters and an auto-montage camera system was used to take high-resolution images of fossil and extant fruits. Fossils are identified using a nearest living relative (NLR) approach. KEY RESULTS: The fossil fruits and flowers share a number of characters with genera of capsular-fruited Myrtaceae, in particular sharing several synapomorphies with species of Metrosideros subg. Metrosideros (tribe: Metrosidereae). The fossil is here described, and named Metrosideros leunigii, sp. nov. CONCLUSIONS: This research establishes the presence of Metrosideros (aff. subg. Metrosideros) in the Eocene-Oligocene (∼40-30 mya) of Tasmania, Australia. This is the first fossil record of Metrosideros in Australia, as well as the oldest conclusive fossil record, and may provide evidence for an Australian origin of the genus. It is also yet another example of extinction in the Tertiary of a group of plants on the Australian mainland that is only found today on nearby Pacific landmasses.


Asunto(s)
Fósiles , Frutas/anatomía & histología , Myrtaceae/anatomía & histología , Hojas de la Planta/anatomía & histología , Australia , Frutas/ultraestructura , Geografía , Sedimentos Geológicos , Myrtaceae/ultraestructura , Hojas de la Planta/ultraestructura , Estomas de Plantas/anatomía & histología , Estomas de Plantas/fisiología , Ríos , Agua
2.
Nat Prod Commun ; 6(7): 1045-50, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21834254

RESUMEN

In this study, we investigated the leaf anatomy and the composition of volatiles in Myrrhinium atropurpureum var. atropurpureum endemic to Rio de Janeiro restingas. Particularly, leaf secretory structures were described using light microscopy, and histochemical tests were performed from fresh leaves to localize the secondary metabolites. To observe secretory cavities, fixed leaf samples were free-hand sectioned. To evaluate lipophilic compounds and terpenoids the following reagents were employed: Sudans III and IV, Red oil O and Nile blue. Leaf volatiles were characterized by gas chromatography after hydrodistillation (HD) or simultaneous distillation-extraction (SDE). Leaf analysis showed several cavities in mesophyll that are the main sites of lipophilic and terpenoid production. Monoterpenes, which represented more than 80% of the major volatiles, were characterized mainly by alpha- and beta-pinene and 1,8-cineole. In order to provide tools for M. atropurpureum identification, the following distinguishing characteristics were revealed by the following data: 1) adaxial face clear and densely punctuated by the presence of round or ellipsoidal secretory cavities randomly distributed in the mesophyll; 2) the presence of cells overlying the upper neck cells of secretory cavities; 3) the presence of numerous paracytic stomata distributed on the abaxial leaf surface, but absent in vein regions and leaf margin; and 4) non-glandular trichomes on both leaf surfaces. Our study of the compounds produced by the secretory cavities of M. atropurpureum led us to conclude that volatile terpenoid class are the main secretory compounds and that they consist of a high concentration of monoterpenes, which may indicate the phytotherapeutic importance of this plant.


Asunto(s)
Myrtaceae/química , Aceites de Plantas/química , Terpenos/aislamiento & purificación , Brasil , Cromatografía de Gases y Espectrometría de Masas , Histocitoquímica , Microscopía Electrónica de Rastreo , Myrtaceae/ultraestructura , Hojas de la Planta/química , Hojas de la Planta/ultraestructura
3.
Plant Cell Environ ; 29(5): 1012-20, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-17087483

RESUMEN

Gossia bidwillii (Myrtaceae) is a manganese (Mn)-hyperaccumulating tree native to subtropical eastern Australia. It typically contains foliar Mn levels in excess of 1% dry weight. However, in G. bidwillii and other Mn-hyperaccumulating species, the cellular and subcellular localization of Mn has not been measured. Quantitative in vivo cryo-scanning electron microscopy (SEM)/energy dispersive X-ray analysis (EDAX) was used to localize Mn and other elements in tissue collected from mature trees growing in a natural population. Cryo-SEM showed that the leaf mesophyll is differentiated as a double-layer palisade mesophyll above spongy mesophyll. Transmission electron microscopy (TEM) revealed that the palisade and epidermal cells are highly vacuolated. EDAX data were used to estimate in situ vacuolar Mn concentrations of all cell types in fresh cryo-fixed leaf tissues. The highest average vacuolar Mn concentration of over 500 mM was found in the upper-layer palisade mesophyll, while the lowest concentration of around 100 mM was found in the spongy mesophyll. Qualitative in vivo cryo-SEM/EDAX was employed to further investigate the spatial distribution of Mn in fresh leaf tissues and young bark tissue, which was also found to have a high Mn concentration. It is concluded that Mn distribution in G. bidwillii is quantitatively different to metal distribution in other hyperaccumulating species where the highest localized concentrations of these elements occur in non-photosynthmetic tissues such as epidermal cells and associated dermal structures including trichomes and leaf hairs.


Asunto(s)
Manganeso/metabolismo , Myrtaceae/metabolismo , Microscopía por Crioelectrón , Microscopía Electrónica de Rastreo , Myrtaceae/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA