Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain ; 142(10): 2948-2964, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31501903

RESUMEN

Axon pathfinding and synapse formation are essential processes for nervous system development and function. The assembly of myelinated fibres and nodes of Ranvier is mediated by a number of cell adhesion molecules of the immunoglobulin superfamily including neurofascin, encoded by the NFASC gene, and its alternative isoforms Nfasc186 and Nfasc140 (located in the axonal membrane at the node of Ranvier) and Nfasc155 (a glial component of the paranodal axoglial junction). We identified 10 individuals from six unrelated families, exhibiting a neurodevelopmental disorder characterized with a spectrum of central (intellectual disability, developmental delay, motor impairment, speech difficulties) and peripheral (early onset demyelinating neuropathy) neurological involvement, who were found by exome or genome sequencing to carry one frameshift and four different homozygous non-synonymous variants in NFASC. Expression studies using immunostaining-based techniques identified absent expression of the Nfasc155 isoform as a consequence of the frameshift variant and a significant reduction of expression was also observed in association with two non-synonymous variants affecting the fibronectin type III domain. Cell aggregation studies revealed a severely impaired Nfasc155-CNTN1/CASPR1 complex interaction as a result of the identified variants. Immunofluorescence staining of myelinated fibres from two affected individuals showed a severe loss of myelinated fibres and abnormalities in the paranodal junction morphology. Our results establish that recessive variants affecting the Nfasc155 isoform can affect the formation of paranodal axoglial junctions at the nodes of Ranvier. The genetic disease caused by biallelic NFASC variants includes neurodevelopmental impairment and a spectrum of central and peripheral demyelination as part of its core clinical phenotype. Our findings support possible overlapping molecular mechanisms of paranodal damage at peripheral nerves in both the immune-mediated and the genetic disease, but the observation of prominent central neurological involvement in NFASC biallelic variant carriers highlights the importance of this gene in human brain development and function.


Asunto(s)
Moléculas de Adhesión Celular/genética , Enfermedades Desmielinizantes/genética , Factores de Crecimiento Nervioso/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Adulto , Alelos , Axones/metabolismo , Moléculas de Adhesión Celular/metabolismo , Niño , Preescolar , Enfermedades Desmielinizantes/metabolismo , Femenino , Frecuencia de los Genes/genética , Humanos , Lactante , Masculino , Mutación , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Fibras Nerviosas Mielínicas/fisiología , Factores de Crecimiento Nervioso/metabolismo , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo/metabolismo , Neuroglía/metabolismo , Linaje , Nervios Periféricos , Isoformas de Proteínas/metabolismo , Nódulos de Ranvier/genética , Nódulos de Ranvier/metabolismo
2.
Exp Neurol ; 306: 92-104, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29729246

RESUMEN

Myelination of the central nervous system is important for normal motor and sensory neuronal function and recent studies also link it to efficient learning and memory. Cyclin-dependent kinase 5 (Cdk5) is required for normal oligodendrocyte development, myelination and myelin repair. Here we show that conditional deletion of Cdk5 by targeting with CNP (CNP;Cdk5 CKO) results in hypomyelination and disruption of the structural integrity of Nodes of Ranvier. In addition, CNP;Cdk5 CKO mice exhibited a severe impairment of learning and memory compared to controls that may reflect perturbed neuron-glial interactions. Co-culture of cortical neurons with CNP;Cdk5 CKO oligodendrocyte lineage cells resulted in a significant reduction in the density of neuronal dendritic spines. In short term fear-conditioning studies, CNP;Cdk5 CKO mice had decreased hippocampal levels of immediate early genes such as Arc and Fos, and lower levels of p-CREB and p-cofilin suggested these pathways are affected by the levels of myelination. The novel roles of Cdk5 in oligodendrocyte lineage cells may provide insights for helping understand the cognitive changes sometimes seen in demyelinating diseases such as multiple sclerosis.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/genética , Aprendizaje/fisiología , Memoria/fisiología , Oligodendroglía/fisiología , Nódulos de Ranvier/genética , Animales , Condicionamiento Operante/fisiología , Quinasa 5 Dependiente de la Ciclina/fisiología , Espinas Dendríticas/fisiología , Miedo , Femenino , Eliminación de Gen , Hipocampo/metabolismo , Masculino , Ratones , Ratones Noqueados , Vaina de Mielina/genética , Vaina de Mielina/fisiología , Desempeño Psicomotor/fisiología
3.
PLoS Genet ; 12(11): e1006459, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27902705

RESUMEN

Axon ensheathment by specialized glial cells is an important process for fast propagation of action potentials. The rapid electrical conduction along myelinated axons is mainly due to its saltatory nature characterized by the accumulation of ion channels at the nodes of Ranvier. However, how these ion channels are transported and anchored along axons is not fully understood. We have identified N-myc downstream-regulated gene 4, ndrg4, as a novel factor that regulates sodium channel clustering in zebrafish. Analysis of chimeric larvae indicates that ndrg4 functions autonomously within neurons for sodium channel clustering at the nodes. Molecular analysis of ndrg4 mutants shows that expression of snap25 and nsf are sharply decreased, revealing a role of ndrg4 in controlling vesicle exocytosis. This uncovers a previously unknown function of ndrg4 in regulating vesicle docking and nodes of Ranvier organization, at least through its ability to finely tune the expression of the t-SNARE/NSF machinery.


Asunto(s)
Proteínas Musculares/genética , Proteínas Sensibles a N-Etilmaleimida/biosíntesis , Nódulos de Ranvier/genética , Proteína 25 Asociada a Sinaptosomas/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Axones/metabolismo , Exocitosis/genética , Regulación de la Expresión Génica , Humanos , Proteínas Musculares/metabolismo , Proteínas Sensibles a N-Etilmaleimida/genética , Neuroglía/metabolismo , Neuronas/metabolismo , Nódulos de Ranvier/metabolismo , Células de Schwann , Canales de Sodio/genética , Canales de Sodio/metabolismo , Transmisión Sináptica/genética , Proteína 25 Asociada a Sinaptosomas/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(4): 957-64, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25552556

RESUMEN

Axon initial segments (AISs) and nodes of Ranvier are sites of clustering of voltage-gated sodium channels (VGSCs) in nervous systems of jawed vertebrates that facilitate fast long-distance electrical signaling. We demonstrate that proximal axonal polarity as well as assembly of the AIS and normal morphogenesis of nodes of Ranvier all require a heretofore uncharacterized alternatively spliced giant exon of ankyrin-G (AnkG). This exon has sequence similarity to I-connectin/Titin and was acquired after the first round of whole-genome duplication by the ancestral ANK2/ANK3 gene in early vertebrates before development of myelin. The giant exon resulted in a new nervous system-specific 480-kDa polypeptide combining previously known features of ANK repeats and ß-spectrin-binding activity with a fibrous domain nearly 150 nm in length. We elucidate previously undescribed functions for giant AnkG, including recruitment of ß4 spectrin to the AIS that likely is regulated by phosphorylation, and demonstrate that 480-kDa AnkG is a major component of the AIS membrane "undercoat' imaged by platinum replica electron microscopy. Surprisingly, giant AnkG-knockout neurons completely lacking known AIS components still retain distal axonal polarity and generate action potentials (APs), although with abnormal frequency. Giant AnkG-deficient mice live to weaning and provide a rationale for survival of humans with severe cognitive dysfunction bearing a truncating mutation in the giant exon. The giant exon of AnkG is required for assembly of the AIS and nodes of Ranvier and was a transformative innovation in evolution of the vertebrate nervous system that now is a potential target in neurodevelopmental disorders.


Asunto(s)
Ancirinas , Axones/metabolismo , Evolución Molecular , Exones , Nódulos de Ranvier , Transducción de Señal , Potenciales de Acción/genética , Animales , Ancirinas/genética , Ancirinas/metabolismo , Ratones , Ratones Noqueados , Mutación , Estructura Terciaria de Proteína , Nódulos de Ranvier/genética , Nódulos de Ranvier/metabolismo , Ratas
5.
Arch Gen Psychiatry ; 69(1): 7-15, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21893642

RESUMEN

CONTEXT: Genetic, neuroimaging, and molecular neurobiological evidence support the hypothesis that the disconnectivity syndrome in schizophrenia (SZ) could arise from failures of saltatory conduction and abnormalities at the nodes of Ranvier (NOR) interface where myelin and axons interact. OBJECTIVE: To identify abnormalities in the expression of oligodendroglial genes and proteins that participate in the formation, maintenance, and integrity of the NOR in SZ. DESIGN: The messenger RNA (mRNA) expression levels of multiple NOR genes were quantified in 2 independent postmortem brain cohorts of individuals with SZ, and generalizability to protein expression was confirmed. The effect of the ANK3 genotype on the mRNA expression level was tested in postmortem human brain. Case-control analysis tested the association of the ANK3 genotype with SZ. The ANK3 genotype's influence on cognitive task performance and functional magnetic resonance imaging activation was tested in 2 independent cohorts of healthy individuals. SETTING: Research hospital. Patients  Postmortem samples from patients with SZ and healthy controls were used for the brain expression study (n = 46) and the case-control analysis (n = 272). Healthy white men and women participated in the cognitive (n = 513) and neuroimaging (n = 52) studies. MAIN OUTCOME MEASURES: The mRNA and protein levels in postmortem brain samples, genetic association with schizophrenia, cognitive performance, and blood oxygenation level-dependent functional magnetic resonance imaging. RESULTS: The mRNA expression of multiple NOR genes was decreased in schizophrenia. The ANK3 rs9804190 C allele was associated with lower ANK3 mRNA expression levels, higher risk for SZ in the case-control cohort, and poorer working memory and executive function performance and increased prefrontal activation during a working memory task in healthy individuals. CONCLUSIONS: These results point to abnormalities in the expression of genes and protein associated with the integrity of the NOR and suggest them as substrates for the disconnectivity syndrome in SZ. The association of ANK3 with lower brain mRNA expression levels implicates a molecular mechanism for its genetic, clinical, and cognitive associations with SZ.


Asunto(s)
Ancirinas/biosíntesis , Nódulos de Ranvier/genética , Esquizofrenia/genética , Alelos , Animales , Ancirinas/antagonistas & inhibidores , Ancirinas/genética , Estudios de Casos y Controles , Estudios de Cohortes , Función Ejecutiva , Femenino , Genotipo , Haloperidol/administración & dosificación , Humanos , Masculino , Memoria a Corto Plazo , Polimorfismo Genético , Nódulos de Ranvier/patología , Ratas , Ratas Sprague-Dawley , Esquizofrenia/patología
6.
J Neurosci ; 30(43): 14476-81, 2010 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-20980605

RESUMEN

Oligodendrocyte myelin glycoprotein (OMgp) is expressed by both neurons and oligodendrocytes in the CNS. It has been implicated in growth cone collapse and neurite outgrowth inhibition by signaling through the Nogo receptor and paired Ig-like receptor B (PirB). OMgp was also reported to be an extracellular matrix (ECM) protein surrounding CNS nodes of Ranvier and proposed to function as (1) an inhibitor of nodal collateral sprouting and (2) an important contributor to proper nodal and paranodal architecture. However, we show here that the anti-OMgp antiserum used in previous studies to define the functions of OMgp at nodes is not specific. Among all reported nodal ECM components, the antiserum exhibited strong cross-reactivity against versican V2 isoform, a chondroitin sulfate proteoglycan. Furthermore, the OMgp antiserum labeled OMgp-null nodes, but not nodes from versican V2-deficient mice, and preadsorption of the OMgp antiserum with recombinant versican V2 blocked nodal labeling. Analysis of CNS nodes in OMgp-null mice failed to reveal any nodal or paranodal defects, or increased nodal collateral sprouting, indicating that OMgp does not participate in CNS node of Ranvier assembly or maintenance. We successfully identified a highly specific anti-OMgp antibody and observed OMgp staining in white matter only after initiation of myelination. OMgp immunoreactivity decorated the surface of mature myelinated axons, but was excluded from compact myelin and nodes. Together, our results strongly argue against the nodal localization of OMgp and its proposed functions at nodes, and reveal OMgp's authentic localization relative to nodes and myelin.


Asunto(s)
Glicoproteína Asociada a Mielina/fisiología , Nódulos de Ranvier/fisiología , Animales , Anticuerpos Bloqueadores/farmacología , Especificidad de Anticuerpos , Axones/fisiología , Axones/ultraestructura , Western Blotting , Reacciones Cruzadas , Matriz Extracelular/fisiología , Proteínas Ligadas a GPI , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Microscopía Electrónica , Proteínas de la Mielina , Vaina de Mielina/fisiología , Glicoproteína Asociada a Mielina/genética , Glicoproteína Mielina-Oligodendrócito , Equilibrio Postural/genética , Equilibrio Postural/fisiología , Nódulos de Ranvier/genética , Versicanos/genética , Versicanos/fisiología
7.
J Neurosci ; 29(8): 2312-21, 2009 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-19244508

RESUMEN

Mouse models of human disease are helpful for understanding the pathogenesis of the disorder and ultimately for testing potential therapeutic agents. Here, we describe the engineering and characterization of a mouse carrying the I268N mutation in Egr2, observed in patients with recessively inherited Charcot-Marie-Tooth (CMT) disease type 4E, which is predicted to alter the ability of Egr2 to interact with the Nab transcriptional coregulatory proteins. Mice homozygous for Egr2(I268N) develop a congenital hypomyelinating neuropathy similar to their human counterparts. Egr2(I268N) is expressed at normal levels in developing nerve but is unable to interact with Nab proteins or to properly activate transcription of target genes critical for proper peripheral myelin development. Interestingly, Egr2(I268N/I268N) mutant mice maintain normal weight and have only mild tremor until 2 weeks after birth, at which point they rapidly develop worsening weakness and uniformly die within several days. Nerve electrophysiology revealed conduction block, and neuromuscular junctions showed marked terminal sprouting similar to that seen in animals with pharmacologically induced blockade of action potentials or neuromuscular transmission. These studies describe a unique animal model of CMT, whereby weakness is due to conduction block or neuromuscular junction failure rather than secondary axon loss and demonstrate that the Egr2-Nab complex is critical for proper peripheral nerve myelination.


Asunto(s)
Asparagina/genética , Enfermedad de Charcot-Marie-Tooth , Modelos Animales de Enfermedad , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Isoleucina/genética , Conducción Nerviosa/genética , Animales , Línea Celular Transformada , Proliferación Celular , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Enfermedades de los Nervios Craneales/etiología , Enfermedades de los Nervios Craneales/genética , Enfermedades de los Nervios Craneales/patología , Enfermedades de los Nervios Craneales/fisiopatología , Humanos , Inmunoprecipitación/métodos , Ratones , Ratones Transgénicos , Microscopía Electrónica de Transmisión/métodos , Proteínas de la Mielina/metabolismo , Proteínas de Neoplasias/metabolismo , Nódulos de Ranvier/genética , Nódulos de Ranvier/patología , Proteínas Represoras/metabolismo , Células de Schwann/fisiología , Nervio Ciático/patología , Nervio Ciático/fisiopatología , Nervio Ciático/ultraestructura
8.
PLoS Genet ; 4(12): e1000317, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19112491

RESUMEN

In many mammalian neurons, dense clusters of ion channels at the axonal initial segment and nodes of Ranvier underlie action potential generation and rapid conduction. Axonal clustering of mammalian voltage-gated sodium and KCNQ (Kv7) potassium channels is based on linkage to the actin-spectrin cytoskeleton, which is mediated by the adaptor protein ankyrin-G. We identified key steps in the evolution of this axonal channel clustering. The anchor motif for sodium channel clustering evolved early in the chordate lineage before the divergence of the wormlike cephalochordate, amphioxus. Axons of the lamprey, a very primitive vertebrate, exhibited some invertebrate features (lack of myelin, use of giant diameter to hasten conduction), but possessed narrow initial segments bearing sodium channel clusters like in more recently evolved vertebrates. The KCNQ potassium channel anchor motif evolved after the divergence of lampreys from other vertebrates, in a common ancestor of shark and humans. Thus, clustering of voltage-gated sodium channels was a pivotal early innovation of the chordates. Sodium channel clusters at the axon initial segment serving the generation of action potentials evolved long before the node of Ranvier. KCNQ channels acquired anchors allowing their integration into pre-existing sodium channel complexes at about the same time that ancient vertebrates acquired myelin, saltatory conduction, and hinged jaws. The early chordate refinements in action potential mechanisms we have elucidated appear essential to the complex neural signaling, active behavior, and evolutionary success of vertebrates.


Asunto(s)
Axones/metabolismo , Cordados/metabolismo , Evolución Molecular , Canales Iónicos/metabolismo , Nódulos de Ranvier/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Axones/química , Cordados/clasificación , Cordados/genética , Humanos , Invertebrados/química , Invertebrados/clasificación , Invertebrados/genética , Invertebrados/metabolismo , Canales Iónicos/química , Canales Iónicos/genética , Datos de Secuencia Molecular , Filogenia , Nódulos de Ranvier/química , Nódulos de Ranvier/genética , Alineación de Secuencia
9.
Mol Cell Neurosci ; 39(2): 180-92, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18621130

RESUMEN

Aggregation of voltage-gated sodium (Nav) channels in the axon initial segment (AIS) and nodes of Ranvier is essential for the generation and propagation of action potentials. From the three Nav channel isoforms (Nav1.1, Nav1.2 and Nav1.6) expressed in the adult CNS, Nav1.1 appears to play an important function since numerous mutations in its coding sequence cause epileptic syndromes. Yet, its distribution is still controversial. Here we demonstrate for the first time that in the adult CNS Nav1.1 is expressed in nodes of Ranvier throughout the mouse spinal cord and in many brain regions. We identified three populations of nodes: expressing Nav1.1, Nav1.6 or both. We also found Nav1.1 expression concentrated in a proximal AIS subcompartment in spinal cord neurons including 80% of motor neurons and in multiple brain areas. This novel distribution suggests that Nav1.1 is involved in the control of action potential generation and propagation.


Asunto(s)
Axones/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Nódulos de Ranvier/metabolismo , Canales de Sodio/metabolismo , Animales , Animales Recién Nacidos , Ancirinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Filamentos Intermediarios , Glicoproteínas de Membrana , Ratones , Neuronas Motoras/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1 , Canal de Sodio Activado por Voltaje NAV1.6 , Proteínas del Tejido Nervioso/genética , Periferinas , Nódulos de Ranvier/genética , Canales de Sodio/genética , Médula Espinal/citología , Médula Espinal/metabolismo
10.
Nat Neurosci ; 8(6): 745-51, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15895088

RESUMEN

The control of myelination by oligodendrocytes in the CNS is poorly understood. Here we show that LINGO-1 is an important negative regulator of this critical process. LINGO-1 is expressed in oligodendrocytes. Attenuation of its function by dominant-negative LINGO-1, LINGO-1 RNA-mediated interference (RNAi) or soluble human LINGO-1 (LINGO-1-Fc) leads to differentiation and increased myelination competence. Attenuation of LINGO-1 results in downregulation of RhoA activity, which has been implicated in oligodendrocyte differentiation. Conversely, overexpression of LINGO-1 leads to activation of RhoA and inhibition of oligodendrocyte differentiation and myelination. Treatment of oligodendrocyte and neuron cocultures with LINGO-1-Fc resulted in highly developed myelinated axons that have internodes and well-defined nodes of Ranvier. The contribution of LINGO-1 to myelination was verified in vivo through the analysis of LINGO-1 knockout mice. The ability to recapitulate CNS myelination in vitro using LINGO-1 antagonists and the in vivo effects seen in the LINGO-1 knockout indicate that LINGO-1 signaling may be critical for CNS myelination.


Asunto(s)
Sistema Nervioso Central/embriología , Regulación hacia Abajo/genética , Vaina de Mielina/metabolismo , Glicoproteína Asociada a Mielina/genética , Fibras Nerviosas Mielínicas/metabolismo , Oligodendroglía/metabolismo , Receptores de Superficie Celular/genética , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Técnicas de Cocultivo , Regulación hacia Abajo/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Proteínas de la Membrana , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Vaina de Mielina/genética , Vaina de Mielina/ultraestructura , Glicoproteína Asociada a Mielina/antagonistas & inhibidores , Glicoproteína Asociada a Mielina/metabolismo , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Mielínicas/ultraestructura , Proteínas del Tejido Nervioso , Oligodendroglía/efectos de los fármacos , Oligodendroglía/ultraestructura , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-fyn , Interferencia de ARN/efectos de los fármacos , Interferencia de ARN/fisiología , Nódulos de Ranvier/genética , Nódulos de Ranvier/metabolismo , Nódulos de Ranvier/ultraestructura , Ratas , Ratas Long-Evans , Receptores de Superficie Celular/antagonistas & inhibidores , Receptores de Superficie Celular/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína de Unión al GTP rhoA/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
11.
Glia ; 46(3): 274-83, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15048850

RESUMEN

In myelinated axons, voltage-gated sodium channels specifically cluster at the nodes of Ranvier, while voltage-gated potassium channels are located at the juxtaparanodes. These characteristic localizations are influenced by myelination. During development, Nav1.2 first appears in the predicted nodes during myelination, and Nav1.6 replaces it in the mature nodes. Such replacements may be important physiologically. We examined the influence of the paranodal junction on switching of sodium channel subunits using the sulfatide-deficient mouse. This mutant displayed disruption of paranodal axoglial junctions and altered nodal lengths and channel distributions. The initial switching of Nav1.2 to Nav1.6 occurred in the mutant optic nerves; however, the number of Nav1.2-positive clusters was significantly higher than in wild-type mice. Although no signs of demyelination were observed at least up to 36 weeks of age, sodium channel clusters decreased markedly with age. Interestingly, Nav1.2 stayed in some of the nodal regions, especially where the nodal lengths were elongated, while Nav1.6 tended to remain in the normal-length nodes. The results in the mutant optic nerves suggested that paranodal junction formation may be necessary for complete replacement of nodal Nav1.2 to Nav1.6 during development as well as maintenance of Nav1.6 clusters at the nodes. Such subtype abnormality was not observed in the sciatic nerve, where paranodal disruption was observed. Thus, the paranodal junction significantly influences the retention of Nav1.6 in the node, which is followed by disorganization of nodal structures. However, its importance may differ between the central and peripheral nervous system.


Asunto(s)
Axones/metabolismo , Cerebrósido Sulfatasa/deficiencia , Cerebrósido Sulfatasa/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Nódulos de Ranvier/metabolismo , Canales de Sodio/metabolismo , Secuencia de Aminoácidos , Animales , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Canal de Sodio Activado por Voltaje NAV1.6 , Proteínas del Tejido Nervioso/genética , Neuroglía/citología , Nervio Óptico/citología , Nervio Óptico/metabolismo , Nervios Periféricos/citología , Nervios Periféricos/metabolismo , Nódulos de Ranvier/genética , Canales de Sodio/genética , Sulfoglicoesfingolípidos/metabolismo
12.
Mol Cell Neurosci ; 25(1): 83-94, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14962742

RESUMEN

To elucidate the impact of myelinating Schwann cells on the molecular architecture of the node of Ranvier, we investigated the nodal expression of voltage-gated sodium channel (VGSC) isoforms and the localization of paranodal and juxtaparanodal membrane proteins in a severely affected Schwann cell mutant, the mouse deficient in myelin protein zero (P0). The abnormal myelin formation and compaction was associated with immature nodal cluster types of VGSC. Most strikingly, P0-deficient motor nerves displayed an ectopic nodal expression of the Na(v)1.8 isoform, where it is coexpressed with the ubiquitous Na(v)1.6 channel. Furthermore, Caspr was distributed asymmetrically or was even absent in the mutant nerve fibers. The potassium channel K(v)1.2 and Caspr2 were not confined to juxtaparanodes, but often protruding into the paranodes. Thus, deficiency of P0 leads to dysregulation of nodal VGSC isoforms and to altered localization of paranodal and juxtaparanodal components of the nodal complex.


Asunto(s)
Regulación de la Expresión Génica/genética , Canales Iónicos/genética , Canales Iónicos/metabolismo , Proteína P0 de la Mielina/deficiencia , Fibras Nerviosas Mielínicas/metabolismo , Canales de Potasio con Entrada de Voltaje , Nódulos de Ranvier/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Canal de Potasio Kv.1.2 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Mutantes Neurológicos , Proteína P0 de la Mielina/genética , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Fibras Nerviosas Mielínicas/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Conducción Nerviosa/genética , Canales de Potasio/genética , Canales de Potasio/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Nódulos de Ranvier/genética , Nódulos de Ranvier/patología , Bloqueadores de los Canales de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA