Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.236
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731799

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder. Dopamine (DA) neurons in the substantia nigra pars compacta, which have axonal projections to the dorsal striatum (dSTR), degenerate in PD. In contrast, DA neurons in the ventral tegmental area, with axonal projections to the ventral striatum, including the nucleus accumbens (NAcc) shell, are largely spared. This study aims to uncover the relative contributions of glycolysis and oxidative phosphorylation (OxPhos) to DA release in the striatum. We measured evoked DA release in mouse striatal brain slices using fast-scan cyclic voltammetry applied every two minutes. Blocking OxPhos resulted in a greater reduction in evoked DA release in the dSTR when compared to the NAcc shell, while blocking glycolysis caused a more significant decrease in evoked DA release in the NAcc shell than in the dSTR. Furthermore, when glycolysis was bypassed in favor of direct OxPhos, evoked DA release in the NAcc shell decreased by approximately 50% over 40 min, whereas evoked DA release in the dSTR was largely unaffected. These results demonstrate that the dSTR relies primarily on OxPhos for energy production to maintain evoked DA release, whereas the NAcc shell depends more on glycolysis. Consistently, two-photon imaging revealed higher oxidation levels of DA terminals in the dSTR than in the NAcc shell. Together, these findings partly explain the selective vulnerability of DA terminals in the dSTR to degeneration in PD.


Asunto(s)
Cuerpo Estriado , Dopamina , Glucólisis , Fosforilación Oxidativa , Animales , Dopamina/metabolismo , Ratones , Cuerpo Estriado/metabolismo , Masculino , Ratones Endogámicos C57BL , Neuronas Dopaminérgicas/metabolismo , Núcleo Accumbens/metabolismo
2.
Elife ; 132024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748470

RESUMEN

Acetylcholine is widely believed to modulate the release of dopamine in the striatum of mammals. Experiments in brain slices clearly show that synchronous activation of striatal cholinergic interneurons is sufficient to drive dopamine release via axo-axonal stimulation of nicotinic acetylcholine receptors. However, evidence for this mechanism in vivo has been less forthcoming. Mohebi, Collins and Berke recently reported that, in awake behaving rats, optogenetic activation of striatal cholinergic interneurons with blue light readily evokes dopamine release measured with the red fluorescent sensor RdLight1 (Mohebi et al., 2023). Here, we show that blue light alone alters the fluorescent properties of RdLight1 in a manner that may be misconstrued as phasic dopamine release, and that this artefactual photoactivation can account for the effects attributed to cholinergic interneurons. Our findings indicate that measurements of dopamine using the red-shifted fluorescent sensor RdLight1 should be interpreted with caution when combined with optogenetics. In light of this and other publications that did not observe large acetylcholine-evoked dopamine transients in vivo, the conditions under which such release occurs in behaving animals remain unknown.


Asunto(s)
Neuronas Colinérgicas , Dopamina , Interneuronas , Optogenética , Dopamina/metabolismo , Animales , Interneuronas/metabolismo , Interneuronas/fisiología , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/fisiología , Ratas , Optogenética/métodos , Motivación , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Acetilcolina/metabolismo
3.
CNS Neurosci Ther ; 30(5): e14737, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38702929

RESUMEN

AIMS: This study aims to investigate the pharmacological effects and the underlying mechanism of cannabidiol (CBD) on methamphetamine (METH)-induced relapse and behavioral sensitization in male mice. METHODS: The conditioned place preference (CPP) test with a biased paradigm and open-field test were used to assess the effects of CBD on METH-induced relapse and behavioral sensitization in male mice. RNA sequencing and bioinformatics analysis was employed to identify differential expressed (DE) circRNAs, miRNAs, and mRNAs in the nucleus accumbens (NAc) of mice, and the interaction among them was predicted using competing endogenous RNAs (ceRNAs) network analysis. RESULTS: Chronic administration of CBD (40 mg/kg) during the METH withdrawal phase alleviated METH (2 mg/kg)-induced CPP reinstatement and behavioral sensitization in mice, as well as mood and cognitive impairments following behavioral sensitization. Furthermore, 42 DEcircRNAs, 11 DEmiRNAs, and 40 DEmRNAs were identified in the NAc of mice. The circMeis2-miR-183-5p-Kcnj5 network in the NAc of mice is involved in the effects of CBD on METH-induced CPP reinstatement and behavioral sensitization. CONCLUSIONS: This study constructed the ceRNAs network for the first time, revealing the potential mechanism of CBD in treating METH-induced CPP reinstatement and behavioral sensitization, thus advancing the application of CBD in METH use disorders.


Asunto(s)
Cannabidiol , Metanfetamina , Ratones Endogámicos C57BL , MicroARNs , ARN Circular , ARN Mensajero , Animales , Cannabidiol/farmacología , Masculino , Metanfetamina/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Ratones , ARN Circular/genética , ARN Mensajero/metabolismo , Recurrencia , Estimulantes del Sistema Nervioso Central/farmacología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos
4.
Behav Pharmacol ; 35(4): 193-200, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38567425

RESUMEN

Prepulse inhibition (PPI) is a crucial indicator of sensorimotor gating that is often impaired in neuropsychiatric diseases. Although dopamine D1 receptor agonists have been found to disrupt PPI in mice, the underlying mechanisms are not fully understood. In this study, we aimed to identify the brain regions responsible for the PPI-disruptive effect of the D1 agonist in mice. Results demonstrated that intraperitoneal administration of the selective dopamine D1 receptor agonist SKF82958 dramatically inhibited PPI, while the dopamine D1 receptor antagonist SCH23390 enhanced PPI. Additionally, local infusion of SKF82958 into the nucleus accumbens and medial prefrontal cortex disrupted PPI, but not in the ventral hippocampus. Infusion of SCH23390 into these brain regions also failed to enhance PPI. Overall, the study suggests that the nucleus accumbens and medial prefrontal cortex are responsible for the PPI-disruptive effect of dopamine D1 receptor agonists. These findings provide essential insights into the cellular and neural circuit mechanisms underlying the disruptive effects of dopamine D1 receptor agonists on PPI and may contribute to the development of novel treatments for neuropsychiatric diseases.


Asunto(s)
Benzazepinas , Agonistas de Dopamina , Ratones Endogámicos C57BL , Núcleo Accumbens , Corteza Prefrontal , Inhibición Prepulso , Receptores de Dopamina D1 , Animales , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Agonistas de Dopamina/farmacología , Ratones , Benzazepinas/farmacología , Masculino , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Inhibición Prepulso/efectos de los fármacos , Inhibición Prepulso/fisiología , Reflejo de Sobresalto/efectos de los fármacos , Filtrado Sensorial/efectos de los fármacos , Antagonistas de Dopamina/farmacología
5.
J Affect Disord ; 356: 672-680, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657771

RESUMEN

BACKGROUND: Depression is a chronic psychiatric disorder related to diminished dopaminergic neurotransmission. Deep brain stimulation (DBS) has shown effectiveness in treating patients with treatment-refractory depression (TRD). This study aimed to evaluate the effect of DBS on dopamine D2 receptor binding in patients with TRD. METHODS: Six patients with TRD were treated with bed nucleus of the stria terminalis (BNST)-nucleus accumbens (NAc) DBS were recruited. Ultra-high sensitivity [11C]raclopride dynamic total-body positron emission tomography (PET) imaging was used to assess the brain D2 receptor binding. Each patient underwent a [11C]raclopride PET scan for 60-min under DBS OFF and DBS ON, respectively. A simplified reference tissue model was used to generate parametric images of binding potential (BPND) with the cerebellum as reference tissue. RESULTS: Depression and anxiety symptoms improved after 3-6 months of DBS treatment. Compared with two-day-nonstimulated conditions, one-day BNST-NAc DBS decreased [11C]raclopride BPND in the amygdala (15.9 %, p < 0.01), caudate nucleus (15.4 %, p < 0.0001) and substantia nigra (10.8 %, p < 0.01). LIMITATIONS: This study was limited to the small sample size and lack of a healthy control group. CONCLUSIONS: Chronic BNST-NAc DBS improved depression and anxiety symptoms, and short-term stimulation decreased D2 receptor binding in the amygdala, caudate nucleus, and substantia nigra. The findings suggest that DBS relieves depression and anxiety symptoms possibly by regulating the dopaminergic system.


Asunto(s)
Estimulación Encefálica Profunda , Trastorno Depresivo Resistente al Tratamiento , Núcleo Accumbens , Tomografía de Emisión de Positrones , Racloprida , Receptores de Dopamina D2 , Humanos , Receptores de Dopamina D2/metabolismo , Estimulación Encefálica Profunda/métodos , Masculino , Femenino , Persona de Mediana Edad , Trastorno Depresivo Resistente al Tratamiento/terapia , Trastorno Depresivo Resistente al Tratamiento/metabolismo , Trastorno Depresivo Resistente al Tratamiento/diagnóstico por imagen , Núcleo Accumbens/metabolismo , Núcleo Accumbens/diagnóstico por imagen , Adulto , Núcleos Septales/metabolismo , Núcleos Septales/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Resultado del Tratamiento
6.
Behav Brain Res ; 466: 114983, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38580200

RESUMEN

Humans and other animals exhibit aversive behavioral and emotional responses to unequal reward distributions compared with their conspecifics. Despite the significance of this phenomenon, experimental animal models designed to investigate social inequity aversion and delve into the underlying neurophysiological mechanisms are limited. In this study, we developed a rat model to determine the effects of socially equal or unequal reward and stress on emotional changes in male rats. During the training session, the rats were trained to escape when a sound cue was presented, and they were assigned to one of the following groups: all escaping rats [advantageous equity (AE)], freely moving rats alongside a restrained rat [advantageous inequity (AI)], all restrained rats [disadvantageous equity (DE)], and a rat restrained in the presence of freely moving companions [disadvantageous inequity (DI)]. During the test session, rats in the advantageous group (AE and AI) escaped after the cue sound (expected reward acquisition), whereas rats in the disadvantageous group (DE and DI) could not escape despite the cue being presented (expected reward deprivation). Emotional alteration induced by exposure to restraint stress under various social interaction circumstances was examined using an open field test. Notably, the DI group displayed reduced exploration of the center zone during the open field tests compared with the other groups, indicating heightened anxiety-like behaviors in response to reward inequity. Immunohistochemical analysis revealed increased c-Fos expression in the medial prefrontal and orbitofrontal cortices, coupled with reduced c-Fos expression in the striatum and nucleus accumbens under DI conditions, in contrast to the other experimental conditions. These findings provide compelling evidence that rats are particularly sensitive to reward inequity, shedding light on the neurophysiological basis for distinct cognitive processes that manifest when individuals are exposed to social equity and inequity situations.


Asunto(s)
Conducta Animal , Emociones , Proteínas Proto-Oncogénicas c-fos , Recompensa , Estrés Psicológico , Animales , Masculino , Ratas , Proteínas Proto-Oncogénicas c-fos/metabolismo , Emociones/fisiología , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Conducta Animal/fisiología , Conducta Social , Núcleo Accumbens/metabolismo , Corteza Prefrontal/metabolismo , Señales (Psicología) , Ratas Sprague-Dawley
7.
Behav Neurosci ; 138(2): 108-124, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38661670

RESUMEN

The cannabinoid system is being researched as a potential pharmaceutical target for a multitude of disorders. The present study examined the effect of indirect and direct cannabinoid agonists on mesolimbic dopamine release and related behaviors in C57BL/6J (B6) mice. The indirect cannabinoid agonist N-arachidonoyl serotonin (AA-5-HT) indirectly agonizes the cannabinoid system by preventing the metabolism of endocannabinoids through fatty acid amide hydrolase inhibition while also inhibiting transient receptor potential vanilloid Type 1 channels. Effects of AA-5-HT were compared with the direct cannabinoid receptor Type 1 agonist arachidonoyl-2'-chloroethylamide (ACEA). In Experiment 1, mice were pretreated with seven daily injections of AA-5-HT, ACEA, or vehicle prior to assessments of locomotor activity using open field (OF) testing and phasic dopamine release using in vivo fixed potential amperometry. Chronic exposure to AA-5-HT did not alter locomotor activity or mesolimbic dopamine functioning. Chronic exposure to ACEA decreased rearing and decreased phasic dopamine release while increasing the dopaminergic response to cocaine. In Experiment 2, mice underwent AA-5-HT, ACEA, or vehicle conditioned place preference, then saccharin preference testing, a measure commonly associated with anhedonia. Mice did not develop a conditioned place preference or aversion for AA-5-HT or ACEA, and repeated exposure to AA-5-HT or ACEA did not alter saccharin preference. Altogether, the findings suggest that neither of these drugs induce behaviors that are classically associated with abuse liability in mice; however, direct cannabinoid receptor Type 1 agonism may play more of a role in mediating mesolimbic dopamine functioning than indirect cannabinoid agonism. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Asunto(s)
Agonistas de Receptores de Cannabinoides , Dopamina , Ratones Endogámicos C57BL , Animales , Dopamina/metabolismo , Masculino , Ratones , Agonistas de Receptores de Cannabinoides/farmacología , Serotonina/metabolismo , Locomoción/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Ácidos Araquidónicos/farmacología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Cocaína/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/metabolismo , Actividad Motora/efectos de los fármacos
8.
Biomolecules ; 14(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38672476

RESUMEN

The recent approval of formulations of the endogenous neurosteroid allopregnanolone (brexanolone) and the synthetic neuroactive steroid SAGE-217 (zuranolone) to treat postpartum depression (PPD) has encouraged further research to elucidate why these potent enhancers of GABAAR function are clinically effective in this condition. Dopaminergic projections from the ventral tegmental area (VTA) to the nucleus accumbens are associated with reward/motivation and brain imaging studies report that individuals with PPD show reduced activity of this pathway in response to reward and infant engagement. However, the influence of neurosteroids on GABA-ergic transmission in the nucleus accumbens has received limited attention. Here, we investigate, in the medium spiny neurons (MSNs) of the mouse nucleus accumbens core, the effect of allopregnanolone, SAGE-217 and other endogenous and synthetic steroids of interest on fast phasic and tonic inhibition mediated by synaptic (α1/2ßγ2) and extrasynaptic (α4ßδ) GABAARs, respectively. We present evidence suggesting the resident tonic current results from the spontaneous opening of δ-GABAARs, where the steroid-enhanced tonic current is GABA-dependent. Furthermore, we demonstrate local neurosteroid synthesis in the accumbal slice preparation and reveal that GABA-ergic neurotransmission of MSNs is influenced by an endogenous neurosteroid tone. Given the dramatic fluctuations in allopregnanolone levels during pregnancy and postpartum, this neurosteroid-mediated local fine-tuning of GABAergic transmission in the MSNs will probably be perturbed.


Asunto(s)
Neuroesteroides , Núcleo Accumbens , Pregnanolona , Receptores de GABA-A , Animales , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Ratones , Receptores de GABA-A/metabolismo , Neuroesteroides/metabolismo , Pregnanolona/farmacología , Pregnanolona/metabolismo , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Ratones Endogámicos C57BL , Femenino , Masculino , Transmisión Sináptica/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos
9.
Brain Res Bull ; 211: 110935, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570076

RESUMEN

Chronic ethanol consumption can lead to increased extracellular glutamate concentrations in key reward brain regions, such as medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), and consequently leading to oxidative stress and neuroinflammation. Previous studies from our lab tested ß-lactam antibiotics and novel beta-lactam non-antibiotic, MC-100093, and showed these ß-lactam upregulated the major astrocytic glutamate transporter, GLT-1, and consequently reduced ethanol intake and normalized glutamate homeostasis. This present study tested the effects of novel synthetic ß-lactam non-antibiotic drug, MC-100093, in chronic ethanol intake and neuroinflammatory and trophic factors in subregions of the NAc (NAc core and shell) and mPFC (Prelimbic, PL; and Infralimbic, IL) of male P rats. MC-100093 treatment reduced ethanol intake after 5-week drinking regimen. Importantly, MC-100093 attenuated ethanol-induced downregulation of brain derived neurotrophic factor (BDNF) expression in these brain regions. In addition, MC-100093 attenuated ethanol-induced upregulation of pro-inflammatory cytokines such as TNF-a and HMGB1 in all these brain regions. Furthermore, MC-100093 treatment attenuated ethanol-induced increase in RAGE in these brain regions. MC-100093 prevented neuroinflammation caused by ethanol intake as well as increased neurotrophic factor in mesocorticolimbic brain regions. MC-100093 treatment reduced ethanol intake and this behavioral effect was associated with attenuation of reduced trophic factors and increased pro-inflammatory factors. MC-100093 is considered a small molecule that may have potential therapeutic effects for the treatment of the effects of chronic exposure to ethanol.


Asunto(s)
Etanol , Transportador 2 de Aminoácidos Excitadores , Núcleo Accumbens , Corteza Prefrontal , Animales , Masculino , Transportador 2 de Aminoácidos Excitadores/metabolismo , Etanol/farmacología , Ratas , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Biomarcadores/metabolismo , Consumo de Bebidas Alcohólicas/metabolismo , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Alcoholismo/tratamiento farmacológico , Alcoholismo/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
10.
Sci Adv ; 10(17): eadl6554, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38657057

RESUMEN

MDMA (3,4-methylenedioxymethamphetamine) is a psychoactive drug with powerful prosocial effects. While MDMA is sometimes termed an "empathogen," empirical studies have struggled to clearly demonstrate these effects or pinpoint underlying mechanisms. Here, we paired the social transfer of pain and analgesia-behavioral tests modeling empathy in mice-with region-specific neuropharmacology, optogenetics, and transgenic manipulations to explore MDMA's action as an empathogen. We report that MDMA, given intraperitoneally or infused directly into the nucleus accumbens (NAc), robustly enhances the social transfer of pain and analgesia. Optogenetic stimulation of 5-HT release in the NAc recapitulates the effects of MDMA, implicating 5-HT signaling as a core mechanism. Last, we demonstrate that systemic MDMA or optogenetic stimulation of NAc 5-HT inputs restores deficits in empathy-like behaviors in the Shank3-deficient mouse model of autism. These findings demonstrate enhancement of empathy-related behaviors by MDMA and implicate 5-HT signaling in the NAc as a core mechanism mediating MDMA's empathogenic effects.


Asunto(s)
Empatía , Proteínas de Microfilamentos , N-Metil-3,4-metilenodioxianfetamina , Núcleo Accumbens , Optogenética , Serotonina , Animales , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , N-Metil-3,4-metilenodioxianfetamina/farmacología , Empatía/efectos de los fármacos , Serotonina/metabolismo , Ratones , Masculino , Conducta Animal/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Trastorno Autístico/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
11.
Prog Neurobiol ; 236: 102615, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641041

RESUMEN

The gut-brain peptide ghrelin and its receptor are established as a regulator of hunger and reward-processing. However, the recently recognized ghrelin receptor inverse agonist, liver-expressed antimicrobial peptide 2 (LEAP2), is less characterized. The present study aimed to elucidate LEAP2s central effect on reward-related behaviors through feeding and its mechanism. LEAP2 was administrated centrally in mice and effectively reduced feeding and intake of palatable foods. Strikingly, LEAP2s effect on feeding was correlated to the preference of the palatable food. Further, LEAP2 reduced the rewarding memory of high preference foods, and attenuated the accumbal dopamine release associated with palatable food exposure and eating. Interestingly, LEAP2 was widely expressed in the brain, and particularly in reward-related brain areas such as the laterodorsal tegmental area (LDTg). This expression was markedly altered when allowed free access to palatable foods. Accordingly, infusion of LEAP2 into LDTg was sufficient to transiently reduce acute palatable food intake. Taken together, the present results show that central LEAP2 has a profound effect on dopaminergic reward signaling associated with food and affects several aspects of feeding. The present study highlights LEAP2s effect on reward, which may have applications for obesity and other reward-related psychiatric and neurological disorders.


Asunto(s)
Dopamina , Ingestión de Alimentos , Ratones Endogámicos C57BL , Núcleo Accumbens , Recompensa , Animales , Dopamina/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Ingestión de Alimentos/fisiología , Ratones , Conducta Alimentaria/fisiología , Proteínas Sanguíneas , Péptidos Catiónicos Antimicrobianos
12.
Science ; 384(6693): eadk6742, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38669575

RESUMEN

Drugs of abuse are thought to promote addiction in part by "hijacking" brain reward systems, but the underlying mechanisms remain undefined. Using whole-brain FOS mapping and in vivo single-neuron calcium imaging, we found that drugs of abuse augment dopaminoceptive ensemble activity in the nucleus accumbens (NAc) and disorganize overlapping ensemble responses to natural rewards in a cell type-specific manner. Combining FOS-Seq, CRISPR-perturbation, and single-nucleus RNA sequencing, we identified Rheb as a molecular substrate that regulates cell type-specific signal transduction in NAc while enabling drugs to suppress natural reward consumption. Mapping NAc-projecting regions activated by drugs of abuse revealed input-specific effects on natural reward consumption. These findings characterize the dynamic, molecular and circuit basis of a common reward pathway, wherein drugs of abuse interfere with the fulfillment of innate needs.


Asunto(s)
Homeostasis , Núcleo Accumbens , Recompensa , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Animales , Ratones , Neuronas/metabolismo , Drogas Ilícitas/efectos adversos , Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Proteína Homóloga de Ras Enriquecida en el Cerebro/genética , Masculino , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Transducción de Señal , Trastornos Relacionados con Sustancias , Análisis de la Célula Individual , Cocaína/farmacología , Calcio/metabolismo
13.
Nat Commun ; 15(1): 3661, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688901

RESUMEN

Optochemistry, an emerging pharmacologic approach in which light is used to selectively activate or deactivate molecules, has the potential to alleviate symptoms, cure diseases, and improve quality of life while preventing uncontrolled drug effects. The development of in-vivo applications for optochemistry to render brain cells photoresponsive without relying on genetic engineering has been progressing slowly. The nucleus accumbens (NAc) is a region for the regulation of slow-wave sleep (SWS) through the integration of motivational stimuli. Adenosine emerges as a promising candidate molecule for activating indirect pathway neurons of the NAc expressing adenosine A2A receptors (A2ARs) to induce SWS. Here, we developed a brain-permeable positive allosteric modulator of A2ARs (A2AR PAM) that can be rapidly photoactivated with visible light (λ > 400 nm) and used it optoallosterically to induce SWS in the NAc of freely behaving male mice by increasing the activity of extracellular adenosine derived from astrocytic and neuronal activity.


Asunto(s)
Adenosina , Núcleo Accumbens , Receptor de Adenosina A2A , Sueño de Onda Lenta , Animales , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Masculino , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2A/genética , Ratones , Adenosina/metabolismo , Adenosina/farmacología , Regulación Alostérica , Sueño de Onda Lenta/fisiología , Sueño de Onda Lenta/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Luz , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratones Endogámicos C57BL , Humanos , Agonistas del Receptor de Adenosina A2/farmacología
14.
Sci Signal ; 17(832): eadl4738, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38626009

RESUMEN

Cocaine use disorder (CUD) is a chronic neuropsychiatric condition that results from enduring cellular and molecular adaptations. Among substance use disorders, CUD is notable for its rising prevalence and the lack of approved pharmacotherapies. The nucleus accumbens (NAc), a region that is integral to the brain's reward circuitry, plays a crucial role in the initiation and continuation of maladaptive behaviors that are intrinsic to CUD. Leveraging advancements in neuroproteomics, we undertook a proteomic analysis that spanned membrane, cytosolic, nuclear, and chromatin compartments of the NAc in a mouse model. The results unveiled immediate and sustained proteomic modifications after cocaine exposure and during prolonged withdrawal. We identified congruent protein regulatory patterns during initial cocaine exposure and reexposure after withdrawal, which contrasted with distinct patterns during withdrawal. Pronounced proteomic shifts within the membrane compartment indicated adaptive and long-lasting molecular responses prompted by cocaine withdrawal. In addition, we identified potential protein translocation events between soluble-nuclear and chromatin-bound compartments, thus providing insight into intracellular protein dynamics after cocaine exposure. Together, our findings illuminate the intricate proteomic landscape that is altered in the NAc by cocaine use and provide a dataset for future research toward potential therapeutics.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Ratones , Animales , Núcleo Accumbens/metabolismo , Proteómica , Cocaína/farmacología , Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/psicología , Cromatina/metabolismo
15.
ACS Chem Neurosci ; 15(9): 1738-1754, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38613458

RESUMEN

Iboga alkaloids, also known as coronaridine congeners, have shown promise in the treatment of alcohol and opioid use disorders. The objective of this study was to evaluate the effects of catharanthine and 18-methoxycoronaridine (18-MC) on dopamine (DA) transmission and cholinergic interneurons in the mesolimbic DA system, nicotine-induced locomotor activity, and nicotine-taking behavior. Utilizing ex vivo fast-scan cyclic voltammetry (FSCV) in the nucleus accumbens core of male mice, we found that catharanthine or 18-MC differentially inhibited evoked DA release. Catharanthine inhibition of evoked DA release was significantly reduced by both α4 and α6 nicotinic acetylcholine receptors (nAChRs) antagonists. Additionally, catharanthine substantially increased DA release more than vehicle during high-frequency stimulation, although less potently than an α4 nAChR antagonist, which confirms previous work with nAChR antagonists. Interestingly, while catharanthine slowed DA reuptake measured via FSCV ex vivo, it also increased extracellular DA in striatal dialysate from anesthetized mice in vivo in a dose-dependent manner. Superfusion of catharanthine or 18-MC inhibited the firing rate of striatal cholinergic interneurons in a concentration dependent manner, which are known to potently modulate presynaptic DA release. Catharanthine or 18-MC suppressed acetylcholine currents in oocytes expressing recombinant rat α6/α3ß2ß3 or α6/α3ß4 nAChRs. In behavioral experiments using male Sprague-Dawley rats, systemic administration of catharanthine or 18-MC blocked nicotine enhancement of locomotor activity. Importantly, catharanthine attenuated nicotine self-administration in a dose-dependent manner while having no effect on food reinforcement. Lastly, administration of catharanthine and nicotine together greatly increased head twitch responses, indicating a potential synergistic hallucinogenic effect. These findings demonstrate that catharanthine and 18-MC have similar, but not identical effects on striatal DA dynamics, striatal cholinergic interneuron activity and nicotine psychomotor effects.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Dopamina , Ibogaína , Ibogaína/análogos & derivados , Nicotina , Receptores Nicotínicos , Animales , Dopamina/metabolismo , Masculino , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Nicotina/farmacología , Ibogaína/farmacología , Ratones , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratones Endogámicos C57BL , Antagonistas Nicotínicos/farmacología , Oocitos/efectos de los fármacos , Agonistas Nicotínicos/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Autoadministración , Xenopus laevis , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Relación Dosis-Respuesta a Droga , Actividad Motora/efectos de los fármacos
16.
J Neuroendocrinol ; 36(5): e13389, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599683

RESUMEN

Hunger increases the motivation for calorie consumption, often at the expense of low-taste appeal. However, the neural mechanisms integrating calorie-sensing with increased motivation for calorie consumption remain unknown. Agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus sense hunger, and the ingestion of caloric solutions promotes dopamine release in the absence of sweet taste perception. Therefore, we hypothesised that metabolic-sensing of hunger by AgRP neurons would be essential to promote dopamine release in the nucleus accumbens in response to caloric, but not non-caloric solutions. Moreover, we examined whether metabolic sensing in AgRP neurons affected taste preference for bitter solutions under conditions of energy need. Here we show that impaired metabolic sensing in AgRP neurons attenuated nucleus accumbens dopamine release in response to sucrose, but not saccharin, consumption. Furthermore, metabolic sensing in AgRP neurons was essential to distinguish nucleus accumbens dopamine response to sucrose consumption when compared with saccharin. Under conditions of hunger, metabolic sensing in AgRP neurons increased the preference for sucrose solutions laced with the bitter tastant, quinine, to ensure calorie consumption, whereas mice with impaired metabolic sensing in AgRP neurons maintained a strong aversion to sucrose/quinine solutions despite ongoing hunger. In conclusion, we demonstrate normal metabolic sensing in AgRP neurons drives the preference for calorie consumption, primarily when needed, by engaging dopamine release in the nucleus accumbens.


Asunto(s)
Proteína Relacionada con Agouti , Dopamina , Núcleo Accumbens , Sacarosa , Núcleo Accumbens/metabolismo , Animales , Dopamina/metabolismo , Proteína Relacionada con Agouti/metabolismo , Ratones , Masculino , Preferencias Alimentarias/fisiología , Ratones Endogámicos C57BL , Neuronas/metabolismo , Hambre/fisiología , Percepción del Gusto/fisiología
17.
Nat Commun ; 15(1): 2543, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514654

RESUMEN

Accumulating evidence points to dysregulations of the Nucleus Accumbens (NAc) in eating disorders (ED), however its precise contribution to ED symptomatic dimensions remains unclear. Using chemogenetic manipulations in male mice, we found that activity of dopamine D1 receptor-expressing neurons of the NAc core subregion facilitated effort for a food reward as well as voluntary exercise, but decreased food intake, while D2-expressing neurons have opposite effects. These effects are congruent with D2-neurons being more active than D1-neurons during feeding while it is the opposite during running. Chronic manipulations of each subpopulations had limited effects on energy balance. However, repeated activation of D1-neurons combined with inhibition of D2-neurons biased behavior toward activity-related energy expenditure, whilst the opposite manipulations favored energy intake. Strikingly, concomitant activation of D1-neurons and inhibition of D2-neurons precipitated weight loss in anorexia models. These results suggest that dysregulations of NAc dopaminoceptive neurons might be at the core of EDs.


Asunto(s)
Núcleo Accumbens , Receptores de Dopamina D2 , Ratones , Masculino , Animales , Núcleo Accumbens/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Neuronas/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Metabolismo Energético
18.
Dev Psychobiol ; 66(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38533486

RESUMEN

Exogenous oxytocin (OT) is widely used to induce or augment labor with little understanding of the impact on offspring development. In rodent models, including the prairie vole (Microtus ochrogaster), it has been shown that oxytocin administered to mothers can affect the nervous system of the offspring with long lasting behavioral effects especially on sociality. Here, we examined the hypothesis that perinatal oxytocin exposure could have epigenetic and transcriptomic consequences. Prairie voles were exposed to exogenous oxytocin, through injections given to the mother just prior to birth, and were studied at the time of weaning. The outcome of this study revealed increased epigenetic age in oxytocin-exposed animals compared to the saline-exposed group. Oxytocin exposure led to 900 differentially methylated CpG sites (annotated to 589 genes), and 2 CpG sites (2 genes) remained significantly different after correction for multiple comparisons. Differentially methylated CpG sites were enriched in genes known to be involved in regulation of gene expression and neurodevelopment. Using RNA-sequencing we also found 217 nominally differentially expressed genes (p<0.05) in nucleus accumbens, a brain region involved in reward circuitry and social behavior; after corrections for multiple comparisons 6 genes remained significantly differentially expressed. Finally, we found that maternal oxytocin administration led to widespread alternative splicing in the nucleus accumbens. These results indicate that oxytocin exposure during birth may have long lasting epigenetic consequences. A need for further investigation of how oxytocin administration impacts development and behavior throughout the lifespan is supported by these outcomes.


Asunto(s)
Oxitocina , Receptores de Oxitocina , Animales , Femenino , Embarazo , Masculino , Humanos , Oxitocina/metabolismo , Madres , Núcleo Accumbens/metabolismo , Conducta Social , Epigénesis Genética , Arvicolinae
19.
Sci Rep ; 14(1): 6509, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499566

RESUMEN

Cocaine disrupts dopamine (DA) and kappa opioid receptor (KOR) system activity, with long-term exposure reducing inhibiton of DA uptake by cocaine and increasing KOR system function. Single treatment therapies have not been successful for cocaine use disorder; therefore, this study focuses on a combination therapy targeting the dopamine transporter (DAT) and KOR. Sprague Dawley rats self-administered 5 days of cocaine (1.5 mg/kg/inf, max 40 inf/day, FR1), followed by 14 days on a progressive ratio (PR) schedule (0.19 mg/kg/infusion). Behavioral effects of individual and combined administration of phenmetrazine and nBNI were then examined using PR. Additionally, ex vivo fast scan cyclic voltammetry was then used to assess alterations in DA and KOR system activity in the nucleus accumbens before and after treatments. Chronic administration of phenmetrazine as well as the combination of phenmetrazine and nBNI-but not nBNI alone-significantly reduced PR breakpoints. In addition, the combination of phenmetrazine and nBNI partially reversed cocaine-induced neurodysregulations of the KOR and DA systems, indicating therapeutic benefits of targeting the DA and KOR systems in tandem. These data highlight the potential benefits of the DAT and KOR as dual-cellular targets to reduce motivation to administer cocaine and reverse cocaine-induced alterations of the DA system.


Asunto(s)
Cocaína , Receptores Opioides kappa , Ratas , Animales , Receptores Opioides kappa/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Motivación , Dopamina/farmacología , Ratas Sprague-Dawley , Fenmetrazina/farmacología , Cocaína/farmacología , Núcleo Accumbens/metabolismo , Autoadministración
20.
Alcohol Alcohol ; 59(3)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38520481

RESUMEN

AIMS: The treatment with the antibiotic rifampicin (Rif) led to a decrease in the frequency of neurodegenerative pathologies. There are suggestions that the mechanism of action of Rif may be mediated by its effect on toll-like receptor (TLR)4-dependent pathways. We evaluated the expression status of TLR4-dependent genes during abstinence from long-term alcohol treatments in the nucleus accumbens (NAc) of the rat brain, and also studied the effects of Rif to correct these changes. METHODS: The long-term alcohol treatment was performed by intragastric delivery of ethanol solution. At the end of alcohol treatment intraperitoneal injections of Rif (100 mg/kg) or saline were made. Extraction of the brain structures was performed on the 10th day of abstinence from alcohol. We used the SYBR Green qPCR method to quantitatively analyze the relative expression levels of the studied genes. RESULTS: The long-term alcohol treatment promotes an increase in the level of TLR4 mRNA and mRNA of its endogenous ligand high-mobility group protein B1 during abstinence drop alcohol in NAc of rats. The use of Rif in our study led to a decrease in the increased expression of high-mobility group protein B1, Tlr4, and proinflammatory cytokine genes (Il1ß, Il6) in the NAc of the rat brain during abstinence of long-term alcohol treatment. In addition, Rif administration increased the decreased mRNA levels of anti-inflammatory cytokines (Il10, Il11). CONCLUSION: The data obtained indicate the ability of Rif to correct the mechanisms of the TLR4 system genes in the NAc of the rat brain during alcohol abstinence.


Asunto(s)
Núcleo Accumbens , Rifampin , Animales , Ratas , Encéfalo , Etanol , Núcleo Accumbens/metabolismo , Rifampin/farmacología , ARN Mensajero/genética , Transducción de Señal , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...