Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.976
Filtrar
1.
Nat Commun ; 15(1): 3980, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730231

RESUMEN

Schizophrenia is a complex neuropsychiatric disorder with sexually dimorphic features, including differential symptomatology, drug responsiveness, and male incidence rate. Prior large-scale transcriptome analyses for sex differences in schizophrenia have focused on the prefrontal cortex. Analyzing BrainSeq Consortium data (caudate nucleus: n = 399, dorsolateral prefrontal cortex: n = 377, and hippocampus: n = 394), we identified 831 unique genes that exhibit sex differences across brain regions, enriched for immune-related pathways. We observed X-chromosome dosage reduction in the hippocampus of male individuals with schizophrenia. Our sex interaction model revealed 148 junctions dysregulated in a sex-specific manner in schizophrenia. Sex-specific schizophrenia analysis identified dozens of differentially expressed genes, notably enriched in immune-related pathways. Finally, our sex-interacting expression quantitative trait loci analysis revealed 704 unique genes, nine associated with schizophrenia risk. These findings emphasize the importance of sex-informed analysis of sexually dimorphic traits, inform personalized therapeutic strategies in schizophrenia, and highlight the need for increased female samples for schizophrenia analyses.


Asunto(s)
Núcleo Caudado , Corteza Prefontal Dorsolateral , Hipocampo , Sitios de Carácter Cuantitativo , Esquizofrenia , Caracteres Sexuales , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Femenino , Masculino , Hipocampo/metabolismo , Núcleo Caudado/metabolismo , Corteza Prefontal Dorsolateral/metabolismo , Adulto , Transcriptoma , Perfilación de la Expresión Génica , Factores Sexuales , Cromosomas Humanos X/genética , Corteza Prefrontal/metabolismo
2.
J Comp Neurol ; 532(5): e25618, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686628

RESUMEN

The evolutionary history of canids and felids is marked by a deep time separation that has uniquely shaped their behavior and phenotype toward refined predatory abilities. The caudate nucleus is a subcortical brain structure associated with both motor control and cognitive, emotional, and executive functions. We used a combination of three-dimensional imaging, allometric scaling, and structural analyses to compare the size and shape characteristics of the caudate nucleus. The sample consisted of MRI scan data obtained from six canid species (Canis lupus lupus, Canis latrans, Chrysocyon brachyurus, Lycaon pictus, Vulpes vulpes, Vulpes zerda), two canid subspecies (Canis lupus familiaris, Canis lupus dingo), as well as three felids (Panthera tigris, Panthera uncia, Felis silvestris catus). Results revealed marked conservation in the scaling and shape attributes of the caudate nucleus across species, with only slight deviations. We hypothesize that observed differences in caudate nucleus size and structure for the domestic canids are reflective of enhanced cognitive and emotional pathways that possibly emerged during domestication.


Asunto(s)
Canidae , Núcleo Caudado , Felidae , Imagen por Resonancia Magnética , Animales , Núcleo Caudado/anatomía & histología , Núcleo Caudado/diagnóstico por imagen , Felidae/anatomía & histología , Felidae/fisiología , Canidae/anatomía & histología , Imagen por Resonancia Magnética/métodos , Masculino , Conducta Animal/fisiología , Femenino , Especificidad de la Especie , Encéfalo/anatomía & histología
3.
Nat Commun ; 15(1): 3342, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688917

RESUMEN

The polygenic architecture of schizophrenia implicates several molecular pathways involved in synaptic function. However, it is unclear how polygenic risk funnels through these pathways to translate into syndromic illness. Using tensor decomposition, we analyze gene co-expression in the caudate nucleus, hippocampus, and dorsolateral prefrontal cortex of post-mortem brain samples from 358 individuals. We identify a set of genes predominantly expressed in the caudate nucleus and associated with both clinical state and genetic risk for schizophrenia that shows dopaminergic selectivity. A higher polygenic risk score for schizophrenia parsed by this set of genes predicts greater dopamine synthesis in the striatum and greater striatal activation during reward anticipation. These results translate dopamine-linked genetic risk variation into in vivo neurochemical and hemodynamic phenotypes in the striatum that have long been implicated in the pathophysiology of schizophrenia.


Asunto(s)
Cuerpo Estriado , Dopamina , Esquizofrenia , Humanos , Dopamina/metabolismo , Dopamina/biosíntesis , Esquizofrenia/genética , Esquizofrenia/metabolismo , Masculino , Femenino , Cuerpo Estriado/metabolismo , Adulto , Núcleo Caudado/metabolismo , Transducción de Señal , Persona de Mediana Edad , Hipocampo/metabolismo , Herencia Multifactorial , Predisposición Genética a la Enfermedad , Corteza Prefontal Dorsolateral/metabolismo , Recompensa
4.
Sci Rep ; 14(1): 9243, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649395

RESUMEN

A crucial step in the clinical adaptation of an AI-based tool is an external, independent validation. The aim of this study was to investigate brain atrophy in patients with confirmed, progressed Huntington's disease using a certified software for automated volumetry and to compare the results with the manual measurement methods used in clinical practice as well as volume calculations of the caudate nuclei based on manual segmentations. Twenty-two patients were included retrospectively, consisting of eleven patients with Huntington's disease and caudate nucleus atrophy and an age- and sex-matched control group. To quantify caudate head atrophy, the frontal horn width to intercaudate distance ratio and the intercaudate distance to inner table width ratio were obtained. The software mdbrain was used for automated volumetry. Manually measured ratios and automatically measured volumes of the groups were compared using two-sample t-tests. Pearson correlation analyses were performed. The relative difference between automatically and manually determined volumes of the caudate nuclei was calculated. Both ratios were significantly different between the groups. The automatically and manually determined volumes of the caudate nuclei showed a high level of agreement with a mean relative discrepancy of - 2.3 ± 5.5%. The Huntington's disease group showed significantly lower volumes in a variety of supratentorial brain structures. The highest degree of atrophy was shown for the caudate nucleus, putamen, and pallidum (all p < .0001). The caudate nucleus volume and the ratios were found to be strongly correlated in both groups. In conclusion, in patients with progressed Huntington's disease, it was shown that the automatically determined caudate nucleus volume correlates strongly with measured ratios commonly used in clinical practice. Both methods allowed clear differentiation between groups in this collective. The software additionally allows radiologists to more objectively assess the involvement of a variety of brain structures that are less accessible to standard semiquantitative methods.


Asunto(s)
Núcleo Caudado , Aprendizaje Profundo , Enfermedad de Huntington , Humanos , Enfermedad de Huntington/patología , Enfermedad de Huntington/diagnóstico por imagen , Masculino , Femenino , Persona de Mediana Edad , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/patología , Estudios Retrospectivos , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Atrofia/patología , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Programas Informáticos , Tamaño de los Órganos , Procesamiento de Imagen Asistido por Computador/métodos
5.
Mov Disord ; 39(5): 855-862, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38465778

RESUMEN

BACKGROUND: Intrastriatal delivery of potential therapeutics in Huntington's disease (HD) requires sufficient caudate and putamen volumes. Currently, volumetric magnetic resonance imaging is rarely done in clinical practice, and these data are not available in large research cohorts such as Enroll-HD. OBJECTIVE: The objective of this study was to investigate whether predictive models can accurately classify HD patients who exceed caudate and putamen volume thresholds required for intrastriatal therapeutic interventions. METHODS: We obtained and merged data for 1374 individuals across three HD cohorts: IMAGE-HD, PREDICT-HD, and TRACK-HD/TRACK-ON. We imputed missing data for clinical variables with >72% non-missing values and used the model-building algorithm BORUTA to identify the 10 most important variables. A random forest algorithm was applied to build a predictive model for putamen volume >2500 mm3 and caudate volume >2000 mm3 bilaterally. Using the same 10 predictors, we constructed a logistic regression model with predictors significant at P < 0.05. RESULTS: The random forest model with 1000 trees and minimal terminal node size of 5 resulted in 83% area under the curve (AUC). The logistic regression model retaining age, CAG repeat size, and symbol digit modalities test-correct had 85.1% AUC. A probability cutoff of 0.8 resulted in 5.4% false positive and 66.7% false negative rates. CONCLUSIONS: Using easily obtainable clinical data and machine learning-identified initial predictor variables, random forest, and logistic regression models can successfully identify people with sufficient striatal volumes for inclusion cutoffs. Adopting these models in prescreening could accelerate clinical trial enrollment in HD and other neurodegenerative disorders when volume cutoffs are necessary enrollment criteria. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Núcleo Caudado , Enfermedad de Huntington , Imagen por Resonancia Magnética , Putamen , Humanos , Enfermedad de Huntington/diagnóstico por imagen , Masculino , Femenino , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Adulto , Putamen/diagnóstico por imagen , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/patología , Anciano , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/patología , Estudios de Cohortes
6.
Brain Res ; 1833: 148852, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494099

RESUMEN

INTRODUCTION: The purpose of this study was to examine N-acetyl aspartate (NAA)/creatine (Cr) and glutamate, glutamine, and gamma-aminobutyric acid complex (Glx)/Cr levels in patients with obsessive compulsive disorder (OCD) and healthy controls' orbitofrontal cortex (OFC) and caudate nucleus (CN) by proton magnetic resonance spectroscopy (1H-MRS) method and to investigate their relationship with oxidative stress markers glutathione peroxidase (GPx) and superoxide dismutase (SOD). METHODS: This study included patients with OCD (n = 25) and healthy controls (n = 25) ranging in age from 18 to 65. We used the ELISA method to evaluate serum SOD and GPx levels. Levels of NAA/Cr and Glx/Cr in the orbitofrontal cortex and caudate nucleus were measured using the 1H-MRS method. RESULTS: Our study did not detect statistically significant differences in the orbitofrontal cortex Glx/Cr and NAA/Cr levels between the OCD patients and the control group. OCD patients exhibited a decrease in NAA/Cr levels, consistent with impaired neuronal integration, and an increase in Glx/Cr levels, consistent with hyperactivation, in the caudate nucleus compared to the control group. We observed a negative correlation between NAA/Cr levels in the caudate nucleus and the levels of SOD and GPx. CONCLUSIONS: Our study is the first to assess CN and OFC together in OCD patients using 3 T MR, investigating the relationship between neurometabolite concentrations and oxidative stress parameters. The negative correlation we observed between NAA/Cr levels and SOD and GPx in the caudate nucleus suggests that increased oxidative stress in this brain region in OCD patients may contribute to impaired neuronal integration and functionality.


Asunto(s)
Ácido Aspártico , Ácido Aspártico/análogos & derivados , Creatina , Trastorno Obsesivo Compulsivo , Estrés Oxidativo , Espectroscopía de Protones por Resonancia Magnética , Superóxido Dismutasa , Humanos , Trastorno Obsesivo Compulsivo/metabolismo , Estrés Oxidativo/fisiología , Adulto , Masculino , Femenino , Espectroscopía de Protones por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven , Ácido Aspártico/metabolismo , Adolescente , Superóxido Dismutasa/metabolismo , Creatina/metabolismo , Glutatión Peroxidasa/metabolismo , Núcleo Caudado/metabolismo , Núcleo Caudado/diagnóstico por imagen , Biomarcadores/metabolismo , Ácido Glutámico/metabolismo , Glutamina/metabolismo , Anciano , Ácido gamma-Aminobutírico/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Corteza Prefrontal/metabolismo , Corteza Prefrontal/diagnóstico por imagen
7.
J Huntingtons Dis ; 13(1): 77-90, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38489194

RESUMEN

Background: The Huntington's Disease Integrated Staging System (HD-ISS) defined disease onset using volumetric cut-offs for caudate and putamen derived from FreeSurfer 6 (FS6). The impact of the latest software update (FS7) on volumes remains unknown. The Huntington's Disease Young Adult Study (HD-YAS) is appropriately positioned to explore differences in FS bias when detecting early atrophy. Objective: Explore the relationships and differences between raw caudate and putamen volumes, calculated total intracranial volumes (cTICV), and adjusted caudate and putamen volumes, derived from FS6 and FS7, in HD-YAS. Methods: Images from 123 participants were segmented and quality controlled. Relationships and differences between volumes were explored using intraclass correlation (ICC) and Bland-Altman analysis. Results: Across the whole cohort, ICC for raw caudate and putamen was 0.99, cTICV 0.93, adjusted caudate 0.87, and adjusted putamen 0.86 (all p < 0.0005). Compared to FS6, FS7 calculated: i) larger raw caudate (+0.8%, p < 0.00005) and putamen (+1.9%, p < 0.00005), with greater difference for larger volumes; and ii) smaller cTICV (-5.1%, p < 0.00005), with greater difference for smaller volumes. The systematic and proportional difference in cTICV was greater than raw volumes. When raw volumes were adjusted for cTICV, these effects compounded (adjusted caudate +7.0%, p < 0.00005; adjusted putamen +8.2%, p < 0.00005), with greater difference for larger volumes. Conclusions: As new software is released, it is critical that biases are explored since differences have the potential to significantly alter the findings of HD trials. Until conversion factors are defined, the HD-ISS must be applied using FS6. This should be incorporated into the HD-ISS online calculator.


Asunto(s)
Enfermedad de Huntington , Humanos , Adulto Joven , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/patología , Núcleo Caudado/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Cuerpo Estriado , Atrofia/patología
8.
eNeuro ; 11(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38471779

RESUMEN

Self-ordered sequencing is an important executive function involving planning and executing a series of steps to achieve goal-directed outcomes. The lateral frontal cortex is implicated in this behavior, but downstream striatal outputs remain relatively unexplored. We trained marmosets on a three-stimulus self-ordered spatial sequencing task using a touch-sensitive screen to explore the role of the caudate nucleus and putamen in random and fixed response arrays. By transiently blocking glutamatergic inputs to these regions, using intrastriatal CNQX microinfusions, we demonstrate that the caudate and putamen are both required for, but contribute differently to, flexible and fixed sequencing. CNQX into either the caudate or putamen impaired variable array accuracy, and infusions into both simultaneously elicited greater impairment. We demonstrated that continuous perseverative errors in variable array were caused by putamen infusions, likely due to interference with the putamen's established role in monitoring motor feedback. Caudate infusions, however, did not affect continuous errors, but did cause an upward trend in recurrent perseveration, possibly reflecting interference with the caudate's established role in spatial working memory and goal-directed planning. In contrast to variable array performance, while both caudate and putamen infusions impaired fixed array responding, the combined effects were not additive, suggesting possible competing roles. Infusions into either region individually, but not simultaneously, led to continuous perseveration. Recurrent perseveration in fixed arrays was caused by putamen, but not caudate, infusions. These results are consistent overall with a role of caudate in planning and flexible responding and the putamen in more rigid habitual or automatic responding.


Asunto(s)
Callithrix , Putamen , Animales , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Cuerpo Estriado , Núcleo Caudado/fisiología
9.
Sci Rep ; 14(1): 3731, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355810

RESUMEN

Corticostriatal regions play a pivotal role in visuomotor learning. However, less research has been done on how fMRI activity in their subregions is related to task performance, which is provided as visual feedback during motor learning. To address this, we conducted an fMRI experiment in which participants acquired a complex de novo motor skill using continuous or binary visual feedback related to performance. We found a highly selective response related to performance in the entire striatum in both conditions and a relatively higher response in the caudate nucleus for the binary feedback condition. However, the ventromedial prefrontal cortex (vmPFC) response was significant only for the continuous feedback condition. Furthermore, we also found functional distinction of the striatal subregions in random versus goal-directed motor control. These findings underscore the substantial effects of the visual feedback indicating performance on distinct corticostriatal responses, thereby elucidating its significance in reinforcement-based motor learning.


Asunto(s)
Cuerpo Estriado , Aprendizaje , Humanos , Aprendizaje/fisiología , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/fisiología , Destreza Motora/fisiología , Núcleo Caudado , Motivación , Imagen por Resonancia Magnética
10.
Neuropsychopharmacology ; 49(6): 1042-1049, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38409282

RESUMEN

The stomach-derived hormone ghrelin plays not only a role in feeding, starvation, and survival, but it has been suggested to also be involved in the stress response, in neuropsychiatric conditions, and in alcohol and drug use disorders. Mechanisms related to reward processing might mediate ghrelin's broader effects on complex behaviors, as indicated by animal studies and mostly correlative human studies. Here, using a within-subject double-blind placebo-controlled design with intravenous ghrelin infusion in healthy volunteers (n = 30), we tested whether ghrelin alters sensitivity to reward and punishment in a reward learning task. Parameters were derived from a computational model of participants' task behavior. The reversal learning task with monetary rewards was performed during functional brain imaging to investigate ghrelin effects on brain signals related to reward prediction errors. Compared to placebo, ghrelin decreased punishment sensitivity (t = -2.448, p = 0.021), while reward sensitivity was unaltered (t = 0.8, p = 0.43). We furthermore found increased prediction-error related activity in the dorsal striatum during ghrelin administration (region of interest analysis: t-values ≥ 4.21, p-values ≤ 0.044). Our results support a role for ghrelin in reward processing that extends beyond food-related rewards. Reduced sensitivity to negative outcomes and increased processing of prediction errors may be beneficial for food foraging when hungry but could also relate to increased risk taking and impulsivity in the broader context of addictive behaviors.


Asunto(s)
Núcleo Caudado , Ghrelina , Castigo , Recompensa , Humanos , Masculino , Ghrelina/farmacología , Ghrelina/administración & dosificación , Método Doble Ciego , Adulto , Adulto Joven , Femenino , Núcleo Caudado/efectos de los fármacos , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/metabolismo , Imagen por Resonancia Magnética , Aprendizaje Inverso/efectos de los fármacos , Aprendizaje Inverso/fisiología , Retroalimentación Psicológica/efectos de los fármacos , Retroalimentación Psicológica/fisiología
11.
Brain Res Bull ; 208: 110899, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340778

RESUMEN

BACKGROUND: Apathy is a common neuropsychiatric manifestations in Parkinson's disease (PD), but neural network mechanisms still remain elusive. We aim to investigate the topological alteration of the brain structural network in PD with apathy. METHOD: In the present study, a total of 47 apathetic PD (aPD) patients, 37 non-apathetic PD (naPD) patients, and 40 healthy controls (HCs) were enrolled. Diffusion tensor imaging (DTI) in conjunction with graph-theoretic approaches were used to explore the alterations of topological properties of the WM structural network arising from apathy in PD. One-way analysis of covariance and post hoc analyses were performed to explore differences among the three groups. Correlations were ascertained to examine relationships between the Starkstein Apathy Scale (AS) scores and significantly different network metrics among the three groups. RESULTS: Both aPD and naPD patients remained small-world topology. However, compared with the naPD patients, aPD patients showed increased clustering coefficient (Cp) at the global level. At the regional level, aPD exhibited decreased nodal properties, mainly in the right dorsolateral prefrontal cortex (DLPFC), the right caudate nucleus (CAU), the right hippocampus, and the right superior parietal gyrus. Further, AS scores were negatively correlated with degree centrality of the right DLPFC (r = -0.254, p = 0.020) and the right CAU ( r = -0.357, p = 0.001) in the pooled patients with PD. CONCLUSIONS: The findings suggested that apathy in PD presented relatively optimized global topological properties of the brain structural network and disrupted topological organization of the regional network, particularly involving the fronto-striatal-limbic circuits. The altered topological properties of abnormal brain regions might be used to understand the physiopathologic mechanism of the neural network in aPD patients.


Asunto(s)
Apatía , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Imagen de Difusión Tensora , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Núcleo Caudado , Imagen por Resonancia Magnética
12.
Physiol Int ; 111(1): 47-62, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38294528

RESUMEN

Previous results show that halothane gas anaesthesia has a suppressive effect on the visually evoked single-cell activities in the feline caudate nucleus (CN). In this study, we asked whether the low-frequency neuronal signals, the local field potentials (LFP) are also suppressed in the CN of anaesthetized animals.To answer this question, we compared the LFPs recorded from the CN of two halothane-anaesthetized (1.0%), paralyzed, and two awake, behaving cats during static and dynamic visual stimulation. The behaving animals were trained to perform a visual fixation task.Our results denoted a lower proportion of significant power changes to visual stimulation in the CN of the anesthetized cats in each frequency range (from delta to beta) of the LFPs, except gamma. These differences in power changes were more obvious in static visual stimulation, but still, remarkable differences were found in dynamic stimulation, too. The largest differences were found in the alpha and beta frequency bands for static stimulation. Concerning dynamic stimulation, the differences were the biggest in the theta, alpha and beta bands.Similar to the single-cell activities, remarkable differences were found between the visually evoked LFP changes in the CN of the anaesthetized, paralyzed and awake, behaving cats. The halothane gas anaesthesia and the immobilization suppressed the significant LFP power alterations in the CN to both static and dynamic stimulation. These results suggest the priority of the application of behaving animals even in the analysis of the visually evoked low-frequency electric signals, the LFPs recorded from the CN.


Asunto(s)
Núcleo Caudado , Vigilia , Gatos , Animales , Núcleo Caudado/fisiología , Vigilia/fisiología , Halotano , Estimulación Luminosa/métodos , Neuronas/fisiología
13.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38244562

RESUMEN

Theoretical models suggest that executive functions rely on both domain-general and domain-specific processes. Supporting this view, prior brain imaging studies have revealed that executive activations converge and diverge within broadly characterized brain networks. However, the lack of precise anatomical mappings has impeded our understanding of the interplay between domain-general and domain-specific processes. To address this challenge, we used the high-resolution multimodal magnetic resonance imaging approach of the Human Connectome Project to scan participants performing 3 canonical executive tasks: n-back, rule switching, and stop signal. The results reveal that, at the individual level, different executive activations converge within 9 domain-general territories distributed in frontal, parietal, and temporal cortices. Each task exhibits a unique topography characterized by finely detailed activation gradients within domain-general territory shifted toward adjacent resting-state networks; n-back activations shift toward the default mode, rule switching toward dorsal attention, and stop signal toward cingulo-opercular networks. Importantly, the strongest activations arise at multimodal neurobiological definitions of network borders. Matching results are seen in circumscribed regions of the caudate nucleus, thalamus, and cerebellum. The shifting peaks of local gradients at the intersection of task-specific networks provide a novel mechanistic insight into how partially-specialized networks interact with neighboring domain-general territories to generate distinct executive functions.


Asunto(s)
Conectoma , Función Ejecutiva , Humanos , Función Ejecutiva/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Núcleo Caudado , Atención/fisiología , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología
14.
Behav Brain Res ; 461: 114859, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216057

RESUMEN

Mindfulness training has been shown to improve psychological health and general well-being. However, it is unclear which brain and personality systems may be affected by this practice for improving adaptive behavior and quality of life. The present study explores the effects of a 5-week mindfulness-based intervention (MBI) at the neuroanatomical level and its relationship with dispositional mindfulness and impulsivity. Sixty-six risky drivers were quasi-randomly assigned to a mindfulness training group (MT) or a control group (N). Participants underwent magnetic resonance imaging and completed the Five Facet Mindfulness Questionnaire (FFMQ) and the UPPS-P impulsivity scale twice, at baseline and after receiving the MBI. We observed that MBI changes dispositional mindfulness in the non-reactivity and observing facets. Further, we observed that the magnitude of change in impulsivity was associated with the change in dispositional mindfulness. Whole-brain voxel-wise analysis revealed that the volume of the right caudate nucleus of the MT group (n = 27) showed a reduction compared to that of the control group (n = 33), which increased in terms of the pre-post measurement (MT=-1.76 mm3; N = 6.31 mm3). We also observed that reduced caudate nucleus volume correlated with decreased positive urgency in the MT group. Taken together, our results show that MBI improves the skills of observing and non-reactivity to inner experience, while producing changes in the structure of the caudate nucleus. These structural changes are associated with a reduction in impulsivity levels, decreasing the tendency to act rashly in situations that generate positive emotions and thus facilitating more adaptive behavior.


Asunto(s)
Atención Plena , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Núcleo Caudado/diagnóstico por imagen , Calidad de Vida , Encuestas y Cuestionarios
15.
J Neurosci ; 44(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37963761

RESUMEN

Performance monitoring that supports ongoing behavioral adjustments is often examined in the context of either choice confidence for perceptual decisions (i.e., "did I get it right?") or reward expectation for reward-based decisions (i.e., "what reward will I receive?"). However, our understanding of how the brain encodes these distinct evaluative signals remains limited because they are easily conflated, particularly in commonly used two-alternative tasks with symmetric rewards for correct choices. Previously we used a motion-discrimination task with asymmetric rewards to identify neural substrates of forming reward-biased perceptual decisions in the caudate nucleus (part of the striatum in the basal ganglia) and the frontal eye field (FEF, in prefrontal cortex). Here we leveraged this task design to partially decouple estimates of accuracy and reward expectation and examine their impacts on subsequent decisions and their representations in those two brain areas. We identified distinguishable representations of these two evaluative signals in individual caudate and FEF neurons, with regional differences in their distribution patterns and time courses. We observed that well-trained monkeys (both sexes) used both evaluative signals, infrequently but consistently, to adjust their subsequent decisions. We found further that these behavioral adjustments had reliable relationships with the neural representations of both evaluative signals in caudate, but not FEF. These results suggest that the cortico-striatal decision network may use diverse evaluative signals to monitor and adjust decision-making behaviors, adding to our understanding of the different roles that the FEF and caudate nucleus play in a diversity of decision-related computations.


Asunto(s)
Núcleo Caudado , Motivación , Masculino , Femenino , Animales , Núcleo Caudado/fisiología , Toma de Decisiones/fisiología , Lóbulo Frontal/fisiología , Recompensa
16.
Eur J Pain ; 28(2): 244-251, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37587725

RESUMEN

BACKGROUND: Musculoskeletal (MSK) pain affects over 80% of People with Parkinson's (PD, PwP) and may, in part, be dopaminergic in origin, as dopaminergic medication often leads to its relief. METHODS: PwP who underwent striatal dopamine transporter visualization with a radiopharmaceutical DaTscan™ (123 I-Ioflupane Injection) using a single-photon emission computed tomography (SPECT) as a part of their clinical-diagnostic work up were enrolled in the "Non-motor International Longitudinal Study" (NILS; UK National Institute for Health Research Clinical Research Network Number 10084) and included in this cross-sectional analysis. The association between specific DaTscan binding ratios for each striatum, the caudate nucleus and putamen and clinical ratings for MSK pain (assessed using the King's Parkinson's Disease Pain Scale (KPPS)) were analysed. RESULTS: 53 PwP (30.2% female; age: 63.79 ± 11.31 years; disease duration (DD): 3.32 (0.31-14.41) years; Hoehn & Yahr stage (H&Y): 2 (1-4); Levodopa Equivalent Daily Dose (LEDD): 543.08 ± 308.94 mg) were assessed and included in this analysis. MSK pain was highly prevalent (71.7% of all participants, mean KPPS Item 1 score 5.34 ± 4.76) and did not correlate with the motor symptoms burden (SCOPA-Motor total score; p = 0.783) but showed a significant correlation with quality of life (PDQ-8, rs = 0.290, p = 0.035). z-scores for the caudate nucleus (Exp (B) = 0.367, 95% CI for Exp (B) 0.148-0.910, p = 0.031) and striatum (Exp (B) = 0.338, 95% CI for Exp (B) 0.123-0.931, p = 0.036), adjusted for DD, H&Y and LEDD, were significant determinants of MSK pain. CONCLUSIONS: Our findings suggest an association between MSK pain in PwP and the severity of dopaminergic deficiency in the caudate nucleus. SIGNIFICANCE: In People with Parkinson's, musculoskeletal pain does not arise simply as a direct sequel to motor symptoms-instead, it is linked to the severity of dopaminergic depletion in the caudate nucleus.


Asunto(s)
Dolor Musculoesquelético , Enfermedad de Parkinson , Humanos , Femenino , Persona de Mediana Edad , Anciano , Masculino , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/metabolismo , Estudios Longitudinales , Estudios Transversales , Dolor Musculoesquelético/diagnóstico por imagen , Dolor Musculoesquelético/complicaciones , Calidad de Vida , Dopamina/metabolismo , Levodopa/uso terapéutico
17.
Acta Neurol Belg ; 124(1): 151-160, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37580639

RESUMEN

OBJECTIVE: We examined whether mean magnetic susceptibility values from deep gray matter structures in patients with progressive supranuclear palsy (PSP) differed from those in patients with Parkinson's disease (PD) and healthy volunteers, and correlated with the PSP rating scale. METHODS: Head of caudate nucleus, putamen, globus pallidus, substantia nigra and red nucleus were the regions of interest. Mean susceptibility values from these regions in PSP patients were estimated using quantitative susceptibility mapping. Correlations with clinical severity of disease as measured by the PSP rating scale were examined. The mean susceptibility values were also compared with those from healthy volunteers and age- and disease duration-matched patients with PD. RESULTS: Data from 26 healthy volunteers, 26 patients with PD and 27 patients with PSP, were analysed. Patients with PSP had higher mean susceptibility values from all regions of interest when compared to both the other groups. The PSP rating scale scores correlated strongly with mean susceptibility values from the red nucleus and moderately with those from the putamen and substantia nigra. The scores did not correlate with mean susceptibility values from the caudate nucleus or globus pallidus. In patients with PD, the motor deficits correlated moderately with mean susceptibility values from substantia nigra. CONCLUSIONS: In patients with PSP, mean susceptibility values indicating the severity of mineralization of basal ganglia and related structures correlate with disease severity, the correlation of red nucleus being the strongest. Further studies are warranted to explore whether mean susceptibility values could serve as biomarkers for PSP.


Asunto(s)
Enfermedad de Parkinson , Parálisis Supranuclear Progresiva , Humanos , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Sustancia Negra/diagnóstico por imagen , Núcleo Caudado , Gravedad del Paciente , Imagen por Resonancia Magnética
18.
Clin Nucl Med ; 49(2): 154-156, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38049965

RESUMEN

ABSTRACT: Frontotemporal dementia is a clinical syndrome that is characterized by a progressive deterioration in behavior, personality, and/or language, with relative preservation of memory, and its phenotype and molecular basis are heterogeneous. We present a case of a 62-year-old female patient who underwent 18 F-FDG PET/CT and 18 F-FP-CIT PET/CT for differential diagnosis of psychiatric disease and types of dementia. 18 F-FDG PET/CT image showed a compatible finding for frontotemporal dementia, and 18 F-FP-CIT PET/CT image showed dominantly decreased dopamine transporter activity in the bilateral caudate nucleus.


Asunto(s)
Demencia Frontotemporal , Tomografía Computarizada por Tomografía de Emisión de Positrones , Femenino , Humanos , Persona de Mediana Edad , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/metabolismo , Demencia Frontotemporal/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Tropanos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo
19.
Steroids ; 201: 109344, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37979822

RESUMEN

The striatal brain regions encompassing the nucleus accumbens core (NAcc), shell (NAcs) and caudate-putamen (CPu) regulate cognitive functions including motivated behaviors, habit, learning, and sensorimotor action, among others. Sex steroid hormone sensitivity and sex differences have been documented in all of these functions in both normative and pathological contexts, including anxiety, depression and addiction. The neurotransmitter glutamate has been implicated in regulating these behaviors as well as striatal physiology, and there are likewise documented sex differences in glutamate action upon the striatal output neurons, the medium spiny neurons (MSNs). Here we review the available data regarding the role of steroid sex hormones such as 17ß-estradiol (estradiol), progesterone, and testosterone in rapidly modulating MSN glutamatergic synapse properties, presented in the context of the estrous cycle as appropriate. Estradiol action upon glutamatergic synapse properties in female NAcc MSNs is most comprehensively discussed. In the female NAcc, MSNs exhibit development period-specific sex differences and estrous cycle variations in glutamatergic synapse properties as shown by multiple analyses, including that of miniature excitatory postsynaptic currents (mEPSCs). Estrous cycle-differences in NAcc MSN mEPSCs can be mimicked by acute exposure to estradiol or an ERα agonist. The available evidence, or lack thereof, is also discussed concerning estrogen action upon MSN glutamatergic synapse in the other striatal regions as well as the underexplored roles of progesterone and testosterone. We conclude that there is strong evidence regarding estradiol action upon glutamatergic synapse function in female NAcs MSNs and call for more research regarding other hormones and striatal regions.


Asunto(s)
Núcleo Accumbens , Progesterona , Femenino , Humanos , Masculino , Encéfalo , Estradiol/farmacología , Ciclo Estral , Glutamatos , Núcleo Accumbens/fisiología , Putamen/química , Sinapsis , Testosterona , Núcleo Caudado/química , Núcleo Caudado/fisiología
20.
Neuroimage Clin ; 41: 103555, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38134742

RESUMEN

BACKGROUND: This study was designed to investigate the relationship of irisin with the severity of Parkinson's disease (PD) and dopamine (DOPA) uptake in patients with PD and to understand the role of irisin in PD. METHODS: The plasma levels of irisin and α-syn were measured by enzyme-linked immunosorbent assay (ELISA). Motor and nonmotor symptoms were assessed with the relevant scales. DOPA uptake was measured with DOPA positron emission tomography (PET)/magnetic resonance imaging (MRI). RESULTS: The plasma levels of α-syn and irisin in patients with PD gradually increased and decreased, respectively, with the progression of the disease. There was a negative correlation between plasma α-syn and irisin levels in patients with PD. The level of irisin in plasma was negatively correlated with Unified Parkinson's Disease Rating Scale (UPDRS)-III scores and positively correlated with Montreal Cognitive Assessment (MoCA) scores. The striatal/occipital lobe uptake ratios (SORs) of the ipsilateral and contralateral caudate nucleus and anterior and posterior putamen in the high-irisin group were significantly higher than those in the low-irisin group, and irisin levels in the caudate nucleus and anterior and posterior putamen contralateral to the affected limb were lower than those on the ipsilateral side. The level of irisin was positively correlated with the SORs of the ipsilateral and contralateral caudate nucleus and putamen in PD patients. CONCLUSIONS: Irisin plays a neuroprotective role by decreasing the level of α-syn. Irisin is negatively correlated with the severity of motor symptoms and cognitive impairment. More importantly, irisin can improve DOPA uptake in the striatum of patients with PD, especially on the side contralateral to the affected limb.


Asunto(s)
Enfermedad de Parkinson , Humanos , Núcleo Caudado , Cuerpo Estriado/diagnóstico por imagen , Dihidroxifenilalanina , Dopamina , Fibronectinas , Enfermedad de Parkinson/diagnóstico por imagen , Gravedad del Paciente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...