Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Eur J Pharmacol ; 913: 174625, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34758353

RESUMEN

The present study examined contribution of the transient receptor potential vanilloid 1 channel (TRPV1) to the chronic orofacial pain. Bilateral partial nerve ligation (PNL) of the mental nerve, a branch of trigeminal nerve, was performed to induce neuropathic pain. The withdrawal threshold in response to mechanical stimulation of the lower lip skin was substantially reduced after the surgery in the PNL rats while it remained unchanged in the sham rats. This reduction in the PNL rats was alleviated by pregabalin injected intraperitoneally (10 mg/kg) and intracisternally (10, 30, 100 µg). Furthermore, an intracisternal injection of AMG9810, an antagonist of TRPV1, (1.5, 5.0 µg) attenuated the reduction of withdrawal threshold. Spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs) were recorded from the spinal trigeminal subnucleus caudalis (Vc) neurons in the brainstem slice, which receive the orofacial nociceptive signals. In the PNL rats, superfusion of capsaicin (0.03, 0.1 µM) enhanced their frequency without effect on the amplitude and the highest concentration (0.3 µM) increased both the frequency and amplitude. In the sham rats, only 0.3 µM capsaicin increased their frequency. Thus, capsaicin-induced facilitation of sEPSCs and mEPSCs in the PNL rats was significantly stronger than that in the sham rats. AMG9810 (0.1 µM) attenuated the capsaicin's effect. Capsaicin was ineffective on the trigeminal tract-evoked EPSCs in the PNL and sham rats. These results suggest that the chronic orofacial pain in the PNL model results from facilitation of the spontaneous excitatory synaptic transmission in the Vc region through TRPV1 at least partly.


Asunto(s)
Dolor Crónico/patología , Dolor Facial/patología , Neuralgia/patología , Canales Catiónicos TRPV/metabolismo , Núcleo Caudal del Trigémino/metabolismo , Animales , Capsaicina/administración & dosificación , Capsaicina/toxicidad , Dolor Crónico/inducido químicamente , Dolor Crónico/tratamiento farmacológico , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Dolor Facial/inducido químicamente , Dolor Facial/tratamiento farmacológico , Humanos , Masculino , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Transmisión Sináptica/efectos de los fármacos , Canales Catiónicos TRPV/antagonistas & inhibidores , Núcleo Caudal del Trigémino/citología , Núcleo Caudal del Trigémino/efectos de los fármacos
2.
Am J Chin Med ; 49(6): 1437-1448, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34247560

RESUMEN

Linalool, a major odorous constituent in essential oils extracted from lavender, is known to have a wide range of physiological effects on humans including pain management. The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is involved in transmission of orofacial nociceptive responses through thin myelinated A[Formula: see text] and unmyelinated C primary afferent fibers. Up to date, the orofacial antinociceptive mechanism of linalool concerning SG neurons of the Vc has not been completely clarified yet. To fill this knowledge gap, whole-cell patch-clamp technique was used in this study to examine how linalool acted on SG neurons of the Vc in mice. Under a high chloride pipette solution, non-desensitizing and repeatable linalool-induced inward currents were preserved in the presence of tetrodotoxin (a voltage-gated Na[Formula: see text]channel blocker), CNQX (a non-NMDA glutamate receptor antagonist), and DL-AP5 (an NMDA receptor antagonist). However, linalool-induced inward currents were partially suppressed by picrotoxin (a GABA[Formula: see text] receptor antagonist) or strychnine (a glycine receptor antagonist). These responses were almost blocked in the presence of picrotoxin and strychnine. It was also found that linalool exhibited potentiation with GABA- and glycine-induced responses. Taken together, these data show that linalool has GABA- and glycine-mimetic effects, suggesting that it can be a promising target molecule for orofacial pain management by activating inhibitory neurotransmission in the SG area of the Vc.


Asunto(s)
Monoterpenos Acíclicos/farmacología , Glicina/metabolismo , Manejo del Dolor/métodos , Sustancia Gelatinosa/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Núcleo Caudal del Trigémino/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones
3.
J Headache Pain ; 21(1): 101, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32799798

RESUMEN

BACKGROUND: Although migraine is one of the most common primary headaches, its therapy is still limited in many cases. The use of animal models is crucial in the development of novel therapeutic strategies, but unfortunately, none of them show all aspects of the disease, therefore, there is a constant need for further improvement in this field. The application of inflammatory agents on the dura mater is a widely accepted method to mimic neurogenic inflammation in rodents, which plays a key role in the pathomechanism of migraine. Complete Freund's Adjuvant (CFA), and a mixture of inflammatory mediators, called inflammatory soup (IS) are often used for this purpose. METHODS: To examine the activation pattern that is caused by chemical stimulation of dura mater, we applied CFA or IS over the right parietal lobe. After 2 h and 4 h (CFA groups), or 2.5 h and 4 h (IS groups), animals were perfused, and c-Fos immunoreactive cells were counted in the caudal trigeminal nucleus. To explore every pitfall, we examined whether our surgical procedure (anesthetic drug, stereotaxic apparatus, local lidocaine) can alter the results under the same experimental settings. c-Fos labeled cells were counted in the second-order neuron area based on the somatotopic organization of the trigeminal nerve branches. RESULTS: We could not find any difference between the CFA and physiological saline group neither 2 h, nor 4 h after dural stimulation. IS caused significant difference after both time points between IS treated and control group, and between treated (right) and control (left) side. Stereotaxic frame usage had a substantial effect on the obtained results. CONCLUSIONS: Counting c-Fos immunoreactive cells based on somatotopic organization of the trigeminal nerve helped to examine the effect of chemical stimulation of dura in a more specific way. As a result, the use of IS over the parietal lobe caused activation in the area of the ophthalmic nerve. To see this effect, the use of lidocaine anesthesia is indispensable. In conclusion, application of IS on the dura mater induces short-term, more robust c-Fos activation than CFA, therefore it might offer a better approach to model acute migraine headache in rodents.


Asunto(s)
Duramadre/efectos de los fármacos , Núcleo Caudal del Trigémino/efectos de los fármacos , Animales , Adyuvante de Freund , Cefalea , Inflamación , Lidocaína/farmacología , Masculino , Trastornos Migrañosos/tratamiento farmacológico , Neuronas , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Estimulación Química , Nervio Trigémino
4.
Neurobiol Dis ; 134: 104624, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31629892

RESUMEN

BACKGROUND: Fatty-acid amide hydrolase (FAAH) is an intracellular serine hydrolase that catalyzes the cleavage of endogenous fatty-acid amides, including the endocannabinoid anandamide (AEA). We previously reported that the peripherally restricted FAAH inhibitor URB937, which selectively increases AEA levels outside the central nervous system, reduces hyperalgesia and c-Fos expression in the trigeminal nucleus caudalis (TNC) and the locus coeruleus in an animal model of migraine based on nitroglycerin (NTG) administration. AIM: To further investigate the relevance of FAAH inhibition in the NTG animal model of migraine by testing the effects of the globally active FAAH inhibitor URB597. METHODS: Our experimental approach involved mapping neuronal c-Fos protein expression, measurement of AEA levels in brain areas and in trigeminal ganglia, evaluation of pain-related behavior and quantification of molecular mediators in rats that received URB597 (2 mg/kg i.p.) either before or after NTG administration (10 mg/kg, i.p.). RESULTS: Pre-treatment with URB597 significantly reduced c-Fos immunoreactivity in the TNC and inhibited NTG-induced hyperalgesia in the orofacial formalin test. This behavioral response was associated with a decrease in neuronal nitric oxide synthase, calcitonin gene-related peptide and cytokine gene expression levels in central and peripheral structures. Administration of URB597 after NTG had no such effect. CONCLUSIONS: The findings suggest that global FAAH inhibition may offer a therapeutic approach to the prevention, but not the abortive treatment, of migraine attacks. Further studies are needed to elucidate the exact cellular and molecular mechanisms underlying the protective effects of FAAH inhibition.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Benzamidas/farmacología , Carbamatos/farmacología , Trastornos Migrañosos/prevención & control , Núcleo Caudal del Trigémino/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Masculino , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/enzimología , Nitroglicerina/toxicidad , Ratas , Ratas Sprague-Dawley , Vasodilatadores/toxicidad
5.
J Headache Pain ; 20(1): 43, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31035923

RESUMEN

BACKGROUND: Migraine is a neurovascular primary headache disorder, which causes significant socioeconomic problems worldwide. The pathomechanism of disease is enigmatic, but activation of the trigeminovascular system (TS) appears to be essential during the attack. Migraine research of recent years has focused on neuropeptides, such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide 1-38 (PACAP1-38) as potential pathogenic factors and possible therapeutic offensives. The goal of present study was to investigate the simultaneous expression of CGRP and precursor of PACAP1-38 (preproPACAP) in the central region of the TS in a time-dependent manner following TS activation in rats. METHODS: The right whisker pad of rats was injected with 50 µl Complete Freund's Adjuvant (CFA) or saline. A mechanical allodynia test was performed with von Frey filaments before and after treatment. Transcardial perfusion of the animals was initiated 24, 48, 72 and 120 h after injection, followed by the dissection of the nucleus trigeminus caudalis (TNC). After preparation, the samples were stored at - 80 °C until further use. The relative optical density of CGRP and preproPACAP was analyzed by Western blot. One-way ANOVA and Kruskal-Wallis followed by Tukey post hoc test were used to evaluate the data. Regression analysis was applied to explore the correlation between neuropeptides expression and hyperalgesia. RESULTS: Orofacial CFA injection resulted in significant CGRP and preproPACAP release in the TNC 24, 48, 72 and 120 h after the treatment. The level of neuropeptides reached its maximum at 72 h after CFA injection, corresponding to the peak of facial allodynia. Negative, linear correlation was detected between the expression level of neuropeptides and value of mechanonociceptive threshold. CONCLUSION: This is the first study which suggests that the expression of CGRP and preproPACAP simultaneously increases in the central region of activated TS and it influences the formation of mechanical hyperalgesia. Our results contribute to a better understanding of migraine pathogenesis and thereby to the development of more effective therapeutic approaches.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/biosíntesis , Dolor Facial/metabolismo , Adyuvante de Freund/toxicidad , Trastornos Migrañosos/metabolismo , Fragmentos de Péptidos/biosíntesis , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/biosíntesis , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Dolor Facial/inducido químicamente , Adyuvante de Freund/administración & dosificación , Expresión Génica , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Masculino , Trastornos Migrañosos/inducido químicamente , Fragmentos de Péptidos/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Ratas , Ratas Sprague-Dawley , Núcleo Caudal del Trigémino/efectos de los fármacos , Núcleo Caudal del Trigémino/metabolismo , Vibrisas/efectos de los fármacos , Vibrisas/metabolismo
6.
Pain ; 160(2): 385-394, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30371556

RESUMEN

Migraine is a common disabling neurological condition that is associated with several premonitory symptoms that can occur days before the headache onset. The most commonly reported premonitory symptom is marked fatigue that has been shown to be highly predictive of an ensuing migraine attack. The locus coeruleus (LC) is a key nucleus involved in arousal that has also been shown to impact pain processing. It provides one of the major sources of noradrenaline to the dorsal horn of the spinal cord and neocortex. Given the clinical association between migraine, sleep-wake regulation, and fatigue, we sought to determine whether LC modulation could impact migraine-related phenotypes in several validated preclinical models of migraine. To determine its role in migraine-related pain, we recorded dural nociceptive-evoked responses of neurons in the trigeminocervical complex, which receives trigeminal primary afferents from the durovascular complex. In addition, we explored the susceptibility to cortical spreading depression initiation, the presumed underlying phenomenon of migraine aura. Our experiments reveal a potent role for LC disruption in the differential modulation of migraine-related phenotypes, inhibiting dural-evoked activation of wide dynamic neurons in the trigeminocervical complex while increasing cortical spreading depression susceptibility. This highlights the potential divergent impact of LC disruption in migraine physiology, which may help explain the complex interactions between dysfunctional arousal mechanisms and migraine.


Asunto(s)
Locus Coeruleus/fisiopatología , Trastornos Migrañosos/patología , Trastornos Migrañosos/fisiopatología , Animales , Bencilaminas/farmacología , Depresión de Propagación Cortical/efectos de los fármacos , Depresión de Propagación Cortical/fisiología , Modelos Animales de Enfermedad , Dopamina beta-Hidroxilasa/metabolismo , Estimulación Eléctrica , Masculino , Neocórtex/fisiopatología , Inhibidores de la Captación de Neurotransmisores/uso terapéutico , Ratas , Ratas Sprague-Dawley , Médula Espinal/fisiopatología , Núcleo Caudal del Trigémino/efectos de los fármacos , Núcleo Caudal del Trigémino/patología
7.
Cephalalgia ; 38(3): 452-465, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28952321

RESUMEN

Introduction Research in development of new migraine therapeutics is hindered by the lack of suitable, predictive animal models. Cilostazol provokes headache in healthy humans and migraineurs by increasing intracellular cAMP levels. We aimed to investigate whether cilostazol could provoke headache-like behaviours and c-fos expression in rats. In order to evaluate the predictive validity of the model, we examined the response to the migraine specific drug sumatriptan. Methods The effect of cilostazol (125 mg/kg p.o.) in female Sprague Dawley rats was evaluated on a range of spontaneous behavioural parameters, light sensitivity and mechanical sensitivity thresholds. We also measured c-fos expression in the trigeminal nucleus caudalis. Results Cilostazol increased light sensitivity and grooming behaviour. These manifestations were not inhibited by sumatriptan. Cilostazol also induced c-fos expression in the trigeminal nucleus caudalis. Furthermore, trigeminal - but not hind paw hyperalgesia was observed. Conclusion The altered behaviours are suggestive of cilostazol induced headache with migraine-like features, but not specific. The presence of head specific hyperalgesia and the c-fos response in the trigeminal nucleus caudalis imply that the model involves trigeminal nociception. The model will be useful for studying mechanisms related to the cAMP pathway in headache, but its predictive properties appear to be more limited due to the lack of response to sumatriptan.


Asunto(s)
Cilostazol/toxicidad , Trastornos Migrañosos/inducido químicamente , Proteínas Proto-Oncogénicas c-fos/biosíntesis , Núcleo Caudal del Trigémino/efectos de los fármacos , Vasodilatadores/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/fisiopatología , Ratas , Ratas Sprague-Dawley , Núcleo Caudal del Trigémino/metabolismo , Núcleo Caudal del Trigémino/fisiopatología
8.
Cephalalgia ; 38(6): 1057-1070, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28738691

RESUMEN

Background A common characteristic of migraine-inducing substances is that they cause headache and no pain in other areas of the body. Few studies have compared pain mechanisms in the trigeminal and spinal systems and, so far, no major differences have been noted. We compared signalling molecules in the trigeminal and spinothalamic system after infusion of the migraine-provoking substance glyceryltrinitrate. Method A catheter was placed in the femoral vein of rats and one week later glyceryltrinitrate 4 µg/kg/min was infused for 20 min. Protein expression in the dura mater, trigeminal ganglion, nucleus caudalis, dorsal root ganglion and the dorsal horn of the thoracic spinal cord was analysed at different time points using western blotting and immunohistochemistry. Results Glyceryltrinitrate caused a threefold increase in expression of phosphorylated extracellular signal-regulated kinases at 30 min in the dura mater and nucleus caudalis ( P < 0.05) and at 2 h in the trigeminal ganglion with very few expressions in the dorsal root ganglion. In the nucleus caudalis, expression of phosphorylated extracellular signal-regulated kinases and Cam KII increased 2.6-fold and 3.2-fold, respectively, at 2 h after glycerytrinitrate infusion ( P < 0.01). p-CREB/ATF-1 upregulation was observed only at 30 min ( P < 0.05) in the nucleus caudalis. None of these markers showed increased expression in the regions of thoracic spinal cord dorsal horn. Conclusion The dura, trigeminal ganglion and nucleus caudalis are activated shortly after glycerytrinitrate infusion with long-lasting expression of phosphorylated extracellular signal-regulated kinases observed in the nucleus caudalis. These activations were not observed at the spinal level.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/biosíntesis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/biosíntesis , Quinasas MAP Reguladas por Señal Extracelular/biosíntesis , Núcleo Caudal del Trigémino/efectos de los fármacos , Ganglio del Trigémino/efectos de los fármacos , Animales , Duramadre/efectos de los fármacos , Masculino , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/fisiopatología , Nitroglicerina/toxicidad , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Núcleo Caudal del Trigémino/metabolismo , Ganglio del Trigémino/metabolismo , Regulación hacia Arriba , Vasodilatadores/toxicidad
9.
Eur J Pain ; 22(3): 583-591, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29134730

RESUMEN

BACKGROUND: Although botulinum toxin type A (BT-A) is approved for chronic migraine treatment, its site and mechanism of action are still elusive. Recently our group discovered that suppression of CGRP release from dural nerve endings might account for antimigraine action of pericranially injected BT-A. We demonstrated that central antinociceptive effect of BT-A in sciatic region involves endogenous opioid system as well. Here we investigated possible interaction of BT-A with endogenous opioid system within the trigeminal region. METHODS: In orofacial formalin test we investigated the influence of centrally acting opioid antagonist naltrexone (2 mg/kg, s.c.) versus peripherally acting methylnaltrexone (2 mg/kg, s.c.) on BT-A's (5 U/kg, s.c. into whisker pad) or morphine's (6 mg/kg, s.c.) antinociceptive effect and the effect on dural neurogenic inflammation (DNI). DNI was assessed by Evans blue-plasma protein extravasation. RESULTS: Naltrexone abolished the effect of BT-A on pain and dural plasma protein extravasation, whereas peripherally acting methylnaltrexone did not change either BT-A's effect on pain or its effect on dural extravasation. Naltrexone abolished the antinociceptive and anti-inflammatory effects of morphine, as well. However, methylnaltrexone decreased the antinociceptive effect of morphine only partially in the second phase of the test and had no significant effect on morphine-mediated reduction in DNI. CONCLUSIONS: Morphine acts on pain in trigeminal region both peripherally and centrally, whereas the effect on dural plasma protein extravasation seems to be only centrally mediated. However, the interaction of BT-A with endogenous opioid system, with consequent inhibition of nociceptive transmission as well as the DNI, occurs primarily centrally. SIGNIFICANCE: Botulinum toxin type A (BT-A)'s axonal transport and potential transcytosis suggest that its antinociceptive effect might involve diverse neurotransmitters at different sites of trigeminal system. Here we discovered that the reduction in pain and accompanying DNI involves the interaction of BT-A with central endogenous opioid system (probably at the level of trigeminal nucleus caudalis).


Asunto(s)
Toxinas Botulínicas Tipo A/farmacología , Duramadre/efectos de los fármacos , Trastornos Migrañosos/tratamiento farmacológico , Fármacos Neuromusculares/farmacocinética , Nocicepción/efectos de los fármacos , Analgésicos Opioides/farmacología , Animales , Antiinflamatorios/uso terapéutico , Toxinas Botulínicas Tipo A/uso terapéutico , Masculino , Morfina/farmacología , Naltrexona/análogos & derivados , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Inflamación Neurogénica , Fármacos Neuromusculares/uso terapéutico , Dolor/tratamiento farmacológico , Dimensión del Dolor , Compuestos de Amonio Cuaternario/farmacología , Ratas , Ratas Wistar , Nervio Ciático , Núcleo Caudal del Trigémino/efectos de los fármacos , Nervio Trigémino
10.
Cephalalgia ; 38(4): 674-689, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28457145

RESUMEN

Background The blood-brain barrier (BBB) has been hypothesized to play a role in migraine since the late 1970s. Despite this, limited investigation of the BBB in migraine has been conducted. We used the inflammatory soup rat model of trigeminal allodynia, which closely mimics chronic migraine, to determine the impact of repeated dural inflammatory stimulation on BBB permeability. Methods The sodium fluorescein BBB permeability assay was used in multiple brain regions (trigeminal nucleus caudalis (TNC), periaqueductal grey, frontal cortex, sub-cortex, and cortex directly below the area of dural activation) during the episodic and chronic stages of repeated inflammatory dural stimulation. Glial activation was assessed in the TNC via GFAP and OX42 immunoreactivity. Minocycline was tested for its ability to prevent BBB disruption and trigeminal sensitivity. Results No astrocyte or microglial activation was found during the episodic stage, but BBB permeability and trigeminal sensitivity were increased. Astrocyte and microglial activation, BBB permeability, and trigeminal sensitivity were increased during the chronic stage. These changes were only found in the TNC. Minocycline treatment prevented BBB permeability modulation and trigeminal sensitivity during the episodic and chronic stages. Discussion Modulation of BBB permeability occurs centrally within the TNC following repeated dural inflammatory stimulation and may play a role in migraine.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Permeabilidad Capilar/efectos de los fármacos , Mediadores de Inflamación/toxicidad , Núcleo Caudal del Trigémino/fisiopatología , Neuralgia del Trigémino/fisiopatología , Animales , Barrera Hematoencefálica/patología , Modelos Animales de Enfermedad , Duramadre/efectos de los fármacos , Duramadre/patología , Inflamación/inducido químicamente , Masculino , Trastornos Migrañosos/fisiopatología , Ratas , Ratas Sprague-Dawley , Núcleo Caudal del Trigémino/efectos de los fármacos
11.
Mol Pain ; 13: 1744806917724715, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28741430

RESUMEN

Abstract: Neuropathic pain induced by chemotherapy drugs such as oxaliplatin is a dose-limiting side effect in cancer treatment. The mechanisms underlying chemotherapy-induced neuropathic pain are not fully understood. KCNQ2 channels are low-threshold voltage-gated K+ channels that play a role in controlling neuronal excitability. Downregulation of KCNQ2 channels has been proposed to be an underlying mechanism of sensory hypersensitivity that leads to neuropathic pain. However, it is currently unknown whether KCNQ channels may be downregulated by chemotherapy drugs in trigeminal ganglion neurons to contribute to the pathogenesis of chemotherapy-induced orofacial neuropathic pain. In the present study, mechanical sensitivity in orofacial regions is measured using the operant behavioral test in rats treated with oxaliplatin. Operant behaviors in these animals show the gradual development of orofacial neuropathic pain that manifests with orofacial mechanical allodynia. Immunostaining shows strong KCNQ2 immunoreactivity in small-sized V2 trigeminal ganglion neurons in controls, and the numbers of KCNQ2 immunoreactivity positive V2 trigeminal ganglion neurons are significantly reduced in oxaliplatin-treated animals. Immunostaining is also performed in brainstem and shows strong KCNQ2 immunoreactivity at the trigeminal afferent central terminals innervating the caudal spinal trigeminal nucleus (Vc) in controls, but the KCNQ2 immunoreactivity intensity is significantly reduced in oxaliplatin-treated animals. We further show with the operant behavioral test that oxaliplatin-induced orofacial mechanical allodynia can be alleviated by the KCNQ2 potentiator retigabine. Taken together, these findings suggest that KCNQ2 downregulation may be a cause of oxaliplatin-induced orofacial neuropathic pain and KCNQ2 potentiators may be useful for alleviating the neuropathic pain.


Asunto(s)
Carbamatos/farmacología , Dolor Facial/tratamiento farmacológico , Canal de Potasio KCNQ2/efectos de los fármacos , Neuralgia/tratamiento farmacológico , Fenilendiaminas/farmacología , Ganglio del Trigémino/efectos de los fármacos , Animales , Regulación hacia Abajo , Dolor Facial/patología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/patología , Masculino , Neuralgia/patología , Neuronas/efectos de los fármacos , Compuestos Organoplatinos/farmacología , Oxaliplatino , Ratas Sprague-Dawley , Núcleo Caudal del Trigémino/efectos de los fármacos , Núcleo Caudal del Trigémino/patología , Ganglio del Trigémino/patología
12.
Phytother Res ; 31(6): 899-905, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28488307

RESUMEN

Migraine is a common neurological disorder with a serious impact on quality of life. The aim of this study was to explore the effect of baicalin on nitroglycerin-induced migraine rats. We carried out a behavioral research within 2 h post-nitroglycerin injection, and blood samples were drawn for measurements of nitric oxide (NO), calcitonin gene-related peptide, and endothelin (ET) levels. Immunohistochemistry was adopted to detect the activation of C-fos immunoreactive neurons in periaqueductal gray. The number, area size, and integrated optical density of C-fos positive cells were measured using Image-Pro Plus. As a result, baicalin administration (0.22 mm/kg) alleviated pain responses of migraine rats. It profoundly decreased NO and calcitonin gene-related peptide levels, increased ET levels, and rebuilt the NO/ET balance in migraine rats. Besides, baicalin pretreatment significantly reduced the number, the stained area size, and integrated optical density value of C-fos positive cells. In brief, this paper supports the possibility of baicalin as a potential migraine pharmacotherapy. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Flavonoides/farmacología , Trastornos Migrañosos/tratamiento farmacológico , Nitroglicerina/efectos adversos , Núcleo Caudal del Trigémino/efectos de los fármacos , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Endotelinas/metabolismo , Femenino , Masculino , Trastornos Migrañosos/inducido químicamente , Neuronas/efectos de los fármacos , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley
13.
Turk J Med Sci ; 47(1): 343-347, 2017 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-28263512

RESUMEN

BACKGROUND/AIM: Metoclopramide is an effective and commonly used medication in acute migraine treatment but an experimental evidence base is lacking. We aimed to investigate the antimigraine effect of metoclopramide in a migraine model and whether the analgesic effect of metoclopramide was likely to be D2 receptor-mediated. MATERIALS AND METHODS: Cortical spreading depression (CSD) was used to model migraine in adult male Wistar rats. Five CSDs were induced by pinprick. Metoclopramide (two different doses), raclopride, or 0.9% saline were administered 30 min before CSD induction. Two hours after the experiments, brain tissues were examined for c-fos activation. RESULTS: In metoclopramide groups brain stem c-fos expression was significantly lower than in the CSD side of the saline group (P = 0.002). In the raclopride group, ipsilateral brain stem c-fos expression was also lower than in the saline group (P = 0.002). No difference in c-fos expression in the ipsilateral trigeminal nucleus caudalis between the raclopride and metoclopramide groups was observed (P > 0.05). CONCLUSION: Metoclopramide is shown to suppress trigeminovascular activation for the first time, providing an experimental basis for its role in migraine. The analgesic effect of metoclopramide is likely to be mediated by D2 receptors since raclopride, a selective D2 receptor antagonist, suppresses trigeminovascular activation similarly.


Asunto(s)
Metoclopramida/farmacología , Trastornos Migrañosos/fisiopatología , Núcleo Caudal del Trigémino/efectos de los fármacos , Animales , Química Encefálica/efectos de los fármacos , Depresión de Propagación Cortical/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Proteínas Proto-Oncogénicas c-fos/análisis , Proteínas Proto-Oncogénicas c-fos/metabolismo , Racloprida/farmacología , Ratas , Ratas Wistar
14.
Brain Res ; 1664: 87-94, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28322750

RESUMEN

Facial allodynia is a migraine symptom that is generally considered to represent a pivotal point in migraine progression. Treatment before development of facial allodynia tends to be more successful than treatment afterwards. As such, understanding the underlying mechanisms of facial allodynia may lead to a better understanding of the mechanisms underlying migraine. Migraine facial allodynia is modeled by applying inflammatory soup (histamine, bradykinin, serotonin, prostaglandin E2) over the dura. Whether glial and/or immune activation contributes to such pain is unknown. Here we tested if trigeminal nucleus caudalis (Sp5C) glial and/or immune cells are activated following supradural inflammatory soup, and if putative glial/immune inhibitors suppress the consequent facial allodynia. Inflammatory soup was administered via bilateral indwelling supradural catheters in freely moving rats, inducing robust and reliable facial allodynia. Gene expression for microglial/macrophage activation markers, interleukin-1ß, and tumor necrosis factor-α increased following inflammatory soup along with robust expression of facial allodynia. This provided the basis for pursuing studies of the behavioral effects of 3 diverse immunomodulatory drugs on facial allodynia. Pretreatment with either of two compounds broadly used as putative glial/immune inhibitors (minocycline, ibudilast) prevented the development of facial allodynia, as did treatment after supradural inflammatory soup but prior to the expression of facial allodynia. Lastly, the toll-like receptor 4 (TLR4) antagonist (+)-naltrexone likewise blocked development of facial allodynia after supradural inflammatory soup. Taken together, these exploratory data support that activated glia and/or immune cells may drive the development of facial allodynia in response to supradural inflammatory soup in unanesthetized male rats.


Asunto(s)
Encefalitis/inmunología , Hiperalgesia/inmunología , Microglía/inmunología , Minociclina/administración & dosificación , Piridinas/administración & dosificación , Núcleo Caudal del Trigémino/inmunología , Animales , Duramadre/efectos de los fármacos , Encefalitis/complicaciones , Hiperalgesia/inducido químicamente , Hiperalgesia/complicaciones , Hiperalgesia/prevención & control , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Microglía/metabolismo , Trastornos Migrañosos/complicaciones , Ratas Sprague-Dawley , Núcleo Caudal del Trigémino/efectos de los fármacos
15.
J. appl. oral sci ; 24(6): 597-606, Nov.-Dec. 2016. graf
Artículo en Inglés | LILACS, BBO - Odontología | ID: biblio-841153

RESUMEN

ABSTRACT Objectives The aim of this study was to explore the effect of capsaicin on expression patterns of calcitonin gene-related peptide (CGRP) in the trigeminal ganglion (TG) and trigeminal subnucleus caudalis (Vc) following experimental tooth movement. Material and Methods Male Sprague-Dawley rats were used in this study and divided into small-dose capsaicin+force group, large-dose capsaicin+force group, saline+force group, and no force group. Closed coil springs were used to mimic orthodontic forces in all groups except for the no force group, in which springs were inactivated. Capsaicin and saline were injected into periodontal tissues. Rats were euthanized at 0 h, 12 h, 1 d, 3 d, 5 d, and 7 d following experimental tooth movement. Then, TG and Vc were obtained for immunohistochemical staining and western blotting against CGRP. Results Immunohistochemical results indicated that CGRP positive neurons were located in the TG, and CGRP immunoreactive fibers were distributed in the Vc. Immunohistochemical semiquantitative analysis and western blotting analysis demonstrated that CGRP expression levels both in TG and Vc were elevated at 12 h, 1 d, 3 d, 5 d, and 7 d in the saline + force group. However, both small-dose and large-dose capsaicin could decrease CGRP expression in TG and Vc at 1 d and 3 d following experimental tooth movement, as compared with the saline + force group. Conclusions These results suggest that capsaicin could regulate CGRP expression in TG and Vc following experimental tooth movement in rats.


Asunto(s)
Animales , Masculino , Técnicas de Movimiento Dental/métodos , Núcleo Caudal del Trigémino/efectos de los fármacos , Capsaicina/farmacología , Péptido Relacionado con Gen de Calcitonina/efectos de los fármacos , Ganglio del Trigémino/efectos de los fármacos , Fármacos del Sistema Sensorial/farmacología , Valores de Referencia , Factores de Tiempo , Núcleo Caudal del Trigémino/química , Dolor Facial , Inmunohistoquímica , Cloruro de Sodio , Distribución Aleatoria , Péptido Relacionado con Gen de Calcitonina/análisis , Western Blotting , Ganglio del Trigémino/química , Reproducibilidad de los Resultados , Ratas Sprague-Dawley
16.
J Headache Pain ; 17(1): 99, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27778243

RESUMEN

BACKGROUND: Antioxidants have been proven to weaken hyperalgesia in neuropathic pain. Endogenous antioxidant defense system may have a role in the prevention of hyperalgesia in migraine. In this study, we aimed to evaluate the role of nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE) pathway in regulating the activation of the trigeminovascular system (TGVS) and hypersensitivity in nitroglycerin (NTG)-induced hyperalgesia rats. METHODS: The expression levels of Nrf2, HO, HO1, and NQO1 in the trigeminal nucleus caudalis (TNC) were detected by western blot. Immunofluorescence was used to demonstrate the cell-specific localization of Nrf2 in TNC. Sulforaphane, a Nrf2 activator, was administered to NTG-induced rats. Then, the number of c-Fos- and nNOS-immunoreactive neurons in TNC was evaluated using immunofluorescence, and c-Fos and nNOS protein levels were quantified using western blot. Von Frey hair testing was used to evaluate the tactile thresholds of rats at different time points in different groups. RESULTS: Total cellular and nuclear levels of the proteins Nrf2, HO1, and NQO1 were elevated in TNC after NTG injection, and Nrf2 was found to be located in the nucleus and cytoplasm of the neurons. Sulforaphane pretreatment significantly increased the nuclear Nrf2, HO1, and NQO1 levels in TNC. In addition, sulforaphane exposure effectively inhibited the expression of nNOS and c-Fos, reduced the number of nNOS and c-Fos immunoreactive neurons in TNC, and attenuated the tactile thresholds induced by NTG injection. CONCLUSION: Oxidative stress was involved in nitroglycerin-induced hyperalgesia. Activation of the Nrf2/ARE pathway inhibited the activation of TGVS and prevented the induction of hyperalgesia. Sulforaphane might therefore be an effective agent for hyperalgesia. Further studies are needed to discover the underlying mechanisms of the process.


Asunto(s)
Elementos de Respuesta Antioxidante/efectos de los fármacos , Hiperalgesia/metabolismo , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Neuronas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/efectos de los fármacos , Núcleo Caudal del Trigémino/efectos de los fármacos , Animales , Anticarcinógenos/farmacología , Hemo Oxigenasa (Desciclizante)/efectos de los fármacos , Hemo Oxigenasa (Desciclizante)/metabolismo , Hiperalgesia/inducido químicamente , Isotiocianatos/farmacología , Masculino , Trastornos Migrañosos/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/metabolismo , Óxido Nítrico Sintasa de Tipo I/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo I/metabolismo , Nitroglicerina/farmacología , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Sulfóxidos , Núcleo Caudal del Trigémino/metabolismo , Vasodilatadores/farmacología
17.
J Headache Pain ; 17: 49, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27150105

RESUMEN

BACKGROUND: As a complex nervous system disease, migraine causes severe healthy and social issues worldwide. Valproate (VPA) is a widely used treatment agent against seizures and bipolar disorder, and its function to alleviate damage due to migraine has also been verified in clinical investigations. However, the mechanism underlying the protective effect of VPA against migraine remains poorly revealed. In the current study, the major purpose was to uncover the mechanism which drove VPA to antagonize migraine. METHODS: Nitroglycerin (NTG) was employed to induce a migraine model in rats and the migraine animals were exposed to treatment of VPA of different doses. Thereafter, the levels of indicators related to oxidative stress were measured and used to evaluate the anti-oxidant potential of VPA. The expression of calcitonin gene-related peptide (CGRP) and c-Fos was also quantified with ELISA and immunohistochemistry, respectively. Western blotting and electrophoretic mobility shift assays (EMSA) were conducted to explore the effect of VPA treatment on NF-кB pathway. RESULTS: NTG induced the activation of oxidative stress and led to migraine in model animals, but pre-treatment with VPA attenuated the damage due to migraine attack in brain tissues. The level of lipid peroxidation was significantly reduced while the prodcution of anti-oxidant factors was restored. Furthermore, expressions of CGRP and c-Fos, which represented the neuronal activation, were also down-regulated by VPA. The results of western blotting and EMSA demonstrated that the above mentioned effect of VPA acted through the inhibition of NF-кB pathway. CONCLUSIONS: Although controversies on the effect of VPA on NF-кB pathway existed, our study revealed an alternative mechanism of VPA in protecting against migraine, which would promote the development of therapeutic strategies of migraine.


Asunto(s)
Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , FN-kappa B/antagonistas & inhibidores , Núcleo Caudal del Trigémino/efectos de los fármacos , Ácido Valproico/farmacología , Animales , Western Blotting , Péptido Relacionado con Gen de Calcitonina/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Ensayo de Cambio de Movilidad Electroforética , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Masculino , Trastornos Migrañosos/inducido químicamente , Nitroglicerina , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas
18.
Mol Pain ; 122016.
Artículo en Inglés | MEDLINE | ID: mdl-27118769

RESUMEN

BACKGROUND: Dry mouth is known to cause severe pain in the intraoral structures, and many dry mouth patients have been suffering from intraoral pain. In development of an appropriate treatment, it is crucial to study the mechanisms underlying intraoral pain associated with dry mouth, yet the detailed mechanisms are not fully understood. To evaluate the mechanisms underlying pain related to dry mouth, the dry-tongue rat model was developed. Hence, the mechanical or heat nocifensive reflex, the phosphorylated extracellular signal-regulated kinase and phosphorylated GluR1-IR immunohistochemistries, and the single neuronal activity were examined in the trigeminal spinal subnucleus caudalis of dry-tongue rats. RESULTS: The head-withdrawal reflex threshold to mechanical, but not heat, stimulation of the tongue was significantly decreased on day 7 after tongue drying. The mechanical, but not heat, responses of trigeminal spinal subnucleus caudalis nociceptive neurons were significantly enhanced in dry-tongue rats compared to sham rats on day 7. The number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells was also significantly increased in the trigeminal spinal subnucleus caudalis following noxious stimulation of the tongue in dry-tongue rats compared to sham rats on day 7. The decrement of the mechanical head-withdrawal reflex threshold (HWT) was reversed during intracisternal administration of the mitogen-activated protein kinase kinase 1 inhibitor, PD98059. The trigeminal spinal subnucleus caudalis neuronal activities and the number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells following noxious mechanical stimulation of dried tongue were also significantly decreased following intracisternal administration of PD98059 compared to vehicle-administrated rats. Increased number of the phosphorylated GluR1-IR cells was observed in the trigeminal spinal subnucleus caudalis of dry-tongue rats, and the number of phosphorylated GluR1-IR cells was significantly reduced in PD98059-administrated rats compared to the vehicle-administrated tongue-dry rats. CONCLUSIONS: These findings suggest that the pERK-pGluR1 cascade is involved in central sensitization of trigeminal spinal subnucleus caudalis nociceptive neurons, thus resulting in tongue mechanical hyperalgesia associated with tongue drying.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neuronas/metabolismo , Dolor/complicaciones , Receptores AMPA/metabolismo , Lengua/patología , Núcleo Caudal del Trigémino/metabolismo , Xerostomía/complicaciones , Animales , Flavonoides/administración & dosificación , Flavonoides/farmacología , Masculino , Neuronas/efectos de los fármacos , Nocicepción/efectos de los fármacos , Dolor/metabolismo , Dolor/fisiopatología , Umbral del Dolor/efectos de los fármacos , Fosforilación/efectos de los fármacos , Ratas Sprague-Dawley , Reflejo/efectos de los fármacos , Factores de Tiempo , Núcleo Caudal del Trigémino/efectos de los fármacos , Xerostomía/metabolismo , Xerostomía/fisiopatología
19.
J Oral Facial Pain Headache ; 30(1): 61-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26817034

RESUMEN

AIMS: To investigate whether the protective effect of testosterone on the development of temporomandibular joint (TMJ) nociception in male rats is mediated by the activation of central opioid mechanisms. METHODS: Experiments were performed on 156 male Wistar rats. A pharmacologic approach was used to assess the ability of opioid receptor antagonists infused into the dorsal portion of the brainstem and adjacent to the caudal component (subnucleus caudalis) of the spinal trigeminal nucleus to block the protective effect of testosterone in male rats. The TMJ injection of 0.5% formalin was used as a nociceptive stimulus. One-way or two-way ANOVA was used for data analyses. RESULTS: The injection of 0.5% formalin into the TMJ induced a significant nociceptive behavior in gonadectomized male rats (P < .05), but not in naïve, sham, and testosterone-replaced gonadectomized rats, confirming that testosterone prevents the development of TMJ nociception. The injection of either the nonselective opioid receptor antagonist naloxone (15 µg) or the simultaneous injection of the µ-opioid receptor antagonist Cys2, Tyr3, Orn5, Pen7amide (CTOP, 30 µg) and the κ-opioid receptor antagonist Nor-Binaltorphimine (Nor-BNI, 90 µg) significantly increased the 0.5% formalin-induced behavioral response in sham and testosterone-replaced gonadectomized rats (P < .05) but had no effect in gonadectomized rats. However, the injection of each selective opioid receptor antagonist alone or the simultaneous injection of µ- or κ- and δ-opioid receptor antagonists had no effect. CONCLUSION: These findings indicate that the protective effect of endogenous testosterone on the development of TMJ nociception in male rats is mediated by the activation of central opioid mechanisms. Furthermore, the coactivation of central µ- and κ-opioid receptors is necessary for testosterone to protect male rats from developing TMJ nociception.


Asunto(s)
Nocicepción/fisiología , Receptores Opioides kappa/fisiología , Receptores Opioides mu/fisiología , Articulación Temporomandibular/fisiología , Testosterona/fisiología , Animales , Tronco Encefálico/efectos de los fármacos , Dolor Facial/prevención & control , Formaldehído/efectos adversos , Masculino , Naloxona/farmacología , Naltrexona/análogos & derivados , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología , Nocicepción/efectos de los fármacos , Dolor Nociceptivo/inducido químicamente , Orquiectomía , Ratas , Ratas Wistar , Receptores Opioides kappa/antagonistas & inhibidores , Receptores Opioides mu/antagonistas & inhibidores , Somatostatina/análogos & derivados , Somatostatina/farmacología , Trastornos de la Articulación Temporomandibular/prevención & control , Testosterona/farmacología , Núcleo Caudal del Trigémino/efectos de los fármacos
20.
J Appl Oral Sci ; 24(6): 597-606, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28076465

RESUMEN

Objectives: The aim of this study was to explore the effect of capsaicin on expression patterns of calcitonin gene-related peptide (CGRP) in the trigeminal ganglion (TG) and trigeminal subnucleus caudalis (Vc) following experimental tooth movement. Material and Methods: Male Sprague-Dawley rats were used in this study and divided into small-dose capsaicin+force group, large-dose capsaicin+force group, saline+force group, and no force group. Closed coil springs were used to mimic orthodontic forces in all groups except for the no force group, in which springs were inactivated. Capsaicin and saline were injected into periodontal tissues. Rats were euthanized at 0 h, 12 h, 1 d, 3 d, 5 d, and 7 d following experimental tooth movement. Then, TG and Vc were obtained for immunohistochemical staining and western blotting against CGRP. Results: Immunohistochemical results indicated that CGRP positive neurons were located in the TG, and CGRP immunoreactive fibers were distributed in the Vc. Immunohistochemical semiquantitative analysis and western blotting analysis demonstrated that CGRP expression levels both in TG and Vc were elevated at 12 h, 1 d, 3 d, 5 d, and 7 d in the saline + force group. However, both small-dose and large-dose capsaicin could decrease CGRP expression in TG and Vc at 1 d and 3 d following experimental tooth movement, as compared with the saline + force group. Conclusions: These results suggest that capsaicin could regulate CGRP expression in TG and Vc following experimental tooth movement in rats.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/efectos de los fármacos , Capsaicina/farmacología , Fármacos del Sistema Sensorial/farmacología , Técnicas de Movimiento Dental/métodos , Núcleo Caudal del Trigémino/efectos de los fármacos , Ganglio del Trigémino/efectos de los fármacos , Animales , Western Blotting , Péptido Relacionado con Gen de Calcitonina/análisis , Dolor Facial , Inmunohistoquímica , Masculino , Distribución Aleatoria , Ratas Sprague-Dawley , Valores de Referencia , Reproducibilidad de los Resultados , Cloruro de Sodio , Factores de Tiempo , Núcleo Caudal del Trigémino/química , Ganglio del Trigémino/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...