Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 107(3): 538-551.e7, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32502461

RESUMEN

Pain is a source of substantial discomfort. Abnormal activity in both the zona incerta (ZI) and posterior complex of the thalamus (Po) are implicated in neuropathic pain, but their exact roles remain unclear. In particular, the precise cell types and molecular mechanisms of the ZI-Po circuit that regulate nociception are largely uncharacterized. Here, we found that parvalbumin (PV)-positive neuronal projections from the ventral ZI (ZIv) to the Po (ZIv-Po) are critical for promoting nocifensive behaviors, whereas selectively inhibiting ZIv-Po activity reduces nocifensive withdrawal responses. Furthermore, cannabinoid type 1 receptors (CB1Rs) are expressed specifically at ZIv-Po axon terminals in this circuit, and cannabinoids attenuate nocifensive responses through presynaptic inhibition. Selective inhibition of the ZIv-Po circuit or administration of cannabinoids into the Po are sufficient to ameliorate pathological pain. These findings identify the critical role of the ZIv-Po circuit and its modulation by endocannabinoids in controlling nocifensive behaviors.


Asunto(s)
Neuronas/fisiología , Nocicepción/fisiología , Dolor/fisiopatología , Núcleos Talámicos Posteriores/fisiología , Receptor Cannabinoide CB1/metabolismo , Zona Incerta/fisiología , Animales , Conducta Animal , Endocannabinoides , Ratones , Inhibición Neural , Vías Nerviosas , Neuronas/metabolismo , Dolor/metabolismo , Parvalbúminas , Núcleos Talámicos Posteriores/citología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Zona Incerta/citología
2.
Front Neural Circuits ; 11: 69, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29021744

RESUMEN

Rodents move rhythmically their facial whiskers and compute differences between signals predicted and those resulting from the movement to infer information about objects near their head. These computations are carried out by a large network of forebrain structures that includes the thalamus and the primary somatosensory (S1BF) and motor (M1wk) cortices. Spatially and temporally precise mechanorreceptive whisker information reaches the S1BF cortex via the ventroposterior medial thalamic nucleus (VPM). Other whisker-related information may reach both M1wk and S1BF via the axons from the posterior thalamic nucleus (Po). However, Po axons may convey, in addition to direct sensory signals, the dynamic output of computations between whisker signals and descending motor commands. It has been proposed that this input may be relevant for adjusting cortical responses to predicted vs. unpredicted whisker signals, but the effects of Po input on M1wk and S1BF function have not been directly tested or compared in vivo. Here, using electrophysiology, optogenetics and pharmacological tools, we compared in adult rats M1wk and S1BF in vivo responses in the whisker areas of the motor and primary somatosensory cortices to passive multi-whisker deflection, their dependence on Po activity, and their changes after a brief intense activation of Po axons. We report that the latencies of the first component of tactile-evoked local field potentials in M1wk and S1BF are similar. The evoked potentials decrease markedly in M1wk, but not in S1BF, by injection in Po of the GABAA agonist muscimol. A brief high-frequency electrical stimulation of Po decreases the responsivity of M1wk and S1BF cells to subsequent whisker stimulation. This effect is prevented by the local application of omega-agatoxin, suggesting that it may in part depend on GABA release by fast-spiking parvalbumin (PV)-expressing cortical interneurons. Local optogenetic activation of Po synapses in different cortical layers also diminishes M1wk and S1BF responses. This effect is most pronounced in the superficial layers of both areas, known to be the main source and target of their reciprocal cortico-cortical connections.


Asunto(s)
Corteza Motora/fisiología , Núcleos Talámicos Posteriores/fisiología , Corteza Somatosensorial/fisiología , Percepción del Tacto/fisiología , Animales , Femenino , Masculino , Microelectrodos , Corteza Motora/citología , Corteza Motora/efectos de los fármacos , Vías Nerviosas/citología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Optogenética , Estimulación Física , Núcleos Talámicos Posteriores/citología , Núcleos Talámicos Posteriores/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Corteza Somatosensorial/citología , Corteza Somatosensorial/efectos de los fármacos , Percepción del Tacto/efectos de los fármacos , Vibrisas/fisiología
3.
J Comp Neurol ; 525(18): 3821-3839, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28863230

RESUMEN

The rodent orbitofrontal cortex is involved in a variety of cognitive and behavioral functions that require thalamic input to be successfully expressed. Although the thalamic nucleus submedius (Sm) is a major source of afferents to the orbitofrontal cortex, thalamocortical projection from the Sm has not been fully elucidated. In the present study, we first divided the rat Sm into dorsal and ventral parts according to the distribution of vesicular glutamate transporter 2-immunoreactive varicosities, which were somatosensory afferents from the brain stem. Subsequently we investigated dendritic and axonal arborizations of individual dorsal and ventral Sm neurons by visualizing the processes with Sindbis virus vectors expressing membrane-targeted fluorescent proteins. The number of dendritic processes of ventral Sm neurons was greater than that of dorsal Sm neurons. In the cerebral cortex, all the reconstructed Sm neurons sent axons primarily to layers 2-5. Interestingly, dorsal Sm neurons formed a single axon arbor exclusively within the ventrolateral orbital area, whereas ventral Sm neurons made two axon arbors in the lateral orbital and ventral orbital areas simultaneously. The spread of each axon arbor was 500-1000 µm in diameter in the direction tangential to the cortical surface. These results indicate that the dorsal and ventral Sm comprise two distinct thalamocortical pathways. The dorsal Sm pathway relay somatosensory information to the ventrolateral orbital area and may be involved in emotional and aversive aspects of nociceptive information processing, whereas the ventral Sm pathway seems to co-activate distant orbitofrontal cortical areas, and may link their functions under certain circumstances.


Asunto(s)
Vías Nerviosas/fisiología , Neuronas/fisiología , Núcleos Talámicos Posteriores/citología , Corteza Prefrontal/citología , Núcleos Talámicos Ventrales/citología , Animales , Biotina/análogos & derivados , Biotina/metabolismo , Toxina del Cólera/metabolismo , Dextranos/metabolismo , Vectores Genéticos/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Técnicas de Trazados de Vías Neuroanatómicas , Ratas , Ratas Sprague-Dawley , Virus Sindbis/genética , Transducción Genética
4.
J Physiol ; 594(7): 1911-29, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26842995

RESUMEN

KEY POINTS: The lateral posterior and posterior thalamic nuclei have been implicated in aspects of visually guided behaviour and reflex responses to light, including those dependent on melanopsin photoreception. Here we investigated the extent and basic properties of visually evoked activity across the mouse lateral posterior and posterior thalamus. We show that a subset of retinal projections to these regions derive from melanopsin-expressing retinal ganglion cells and find many cells that exhibit melanopsin-dependent changes in firing. We also show that subsets of cells across these regions integrate signals from both eyes in various ways and that, within the lateral posterior thalamus, visual responses are retinotopically ordered. ABSTRACT: In addition to the primary thalamocortical visual relay in the lateral geniculate nuclei, a number of other thalamic regions contribute to aspects of visual processing. Thus, the lateral posterior thalamic nuclei (LP/pulvinar) appear important for various functions including determining visual saliency, visually guided behaviours and, alongside dorsal portions of the posterior thalamic nuclei (Po), multisensory processing of information related to aversive stimuli. However, despite the growing importance of mice as a model for understanding visual system organisation, at present we know very little about the basic visual response properties of cells in the mouse LP or Po. Prompted by earlier suggestions that melanopsin photoreception might be important for certain functions of these nuclei, we first employ specific viral tracing to show that a subset of retinal projections to the LP derive from melanopsin-expressing retinal ganglion cells. We next use multielectrode electrophysiology to demonstrate that LP and dorsal Po cells exhibit a variety of responses to simple visual stimuli including two distinct classes that express melanopsin-dependent changes in firing (together comprising ∼25% of neurons we recorded). We also show that subgroups of LP/Po cells integrate signals from both eyes in various ways and that, within the LP, visual responses are retinotopically ordered. Together our data reveal a diverse population of visually responsive neurons across the LP and dorsal Po whose properties align with some of the established functions of these nuclei and suggest new possible routes through which melanopsin photoreception could contribute to reflex light responses and/or higher order visual processing.


Asunto(s)
Potenciales Evocados Visuales , Núcleos Talámicos Laterales/fisiología , Núcleos Talámicos Posteriores/fisiología , Células Ganglionares de la Retina/metabolismo , Animales , Núcleos Talámicos Laterales/citología , Ratones , Ratones Endogámicos C57BL , Núcleos Talámicos Posteriores/citología , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Vías Visuales/citología , Vías Visuales/fisiología
5.
J Comp Neurol ; 524(5): 963-85, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26287809

RESUMEN

Birds are almost always said to have two visual pathways from the retina to the telencephalon: thalamofugal terminating in the Wulst, and tectofugal terminating in the entopallium. Often ignored is a second tectofugal pathway that terminates in the nidopallium medial to and separate from the entopallium (e.g., Gamlin and Cohen [1986] J Comp Neurol 250:296-310). Using standard tract-tracing and electroanatomical techniques, we extend earlier evidence of a second tectofugal pathway in songbirds (Wild [1994] J Comp Neurol 349:512-535), by showing that visual projections to nucleus uvaeformis (Uva) of the posterior thalamus in zebra finches extend farther rostrally than to Uva, as generally recognized in the context of the song control system. Projections to "rUva" resulted from injections of biotinylated dextran amine into the lateral pontine nucleus (PL), and led to extensive retrograde labeling of tectal neurons, predominantly in layer 13. Injections in rUva also resulted in extensive retrograde labeling of predominantly layer 13 tectal neurons, retrograde labeling of PL neurons, and anterograde labeling of PL. It thus appears that some tectal neurons could project to rUva and PL via branched axons. Ascending projections of rUva terminated throughout a visually responsive region of the intermediate nidopallium (NI) lying between the nucleus interface medially and the entopallium laterally. Lastly, as shown by Clarke in pigeons ([1977] J Comp Neurol 174:535-552), we found that PL projects to caudal cerebellar folia.


Asunto(s)
Pinzones/fisiología , Tegmento Pontino/fisiología , Núcleos Talámicos Posteriores/fisiología , Techo del Mesencéfalo/fisiología , Estimulación Acústica/métodos , Animales , Femenino , Pinzones/anatomía & histología , Masculino , Estimulación Luminosa/métodos , Tegmento Pontino/citología , Núcleos Talámicos Posteriores/citología , Pájaros Cantores , Techo del Mesencéfalo/citología , Vías Visuales/citología
6.
J Neurophysiol ; 114(3): 1652-76, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26180115

RESUMEN

Tactile information processing in the rodent primary somatosensory cortex (S1) is layer specific and involves modulations from both thalamocortical and cortico-cortical loops. However, the extent to which these loops influence the dynamics of the primary somatosensory cortex while animals execute tactile discrimination remains largely unknown. Here, we describe neural dynamics of S1 layers across the multiple epochs defining a tactile discrimination task. We observed that neuronal ensembles within different layers of the S1 cortex exhibited significantly distinct neurophysiological properties, which constantly changed across the behavioral states that defined a tactile discrimination. Neural dynamics present in supragranular and granular layers generally matched the patterns observed in the ventral posterior medial nucleus of the thalamus (VPM), whereas the neural dynamics recorded from infragranular layers generally matched the patterns from the posterior nucleus of the thalamus (POM). Selective inactivation of contralateral S1 specifically switched infragranular neural dynamics from POM-like to those resembling VPM neurons. Meanwhile, ipsilateral M1 inactivation profoundly modulated the firing suppression observed in infragranular layers. This latter effect was counterbalanced by contralateral S1 block. Tactile stimulus encoding was layer specific and selectively affected by M1 or contralateral S1 inactivation. Lastly, causal information transfer occurred between all neurons in all S1 layers but was maximal from infragranular to the granular layer. These results suggest that tactile information processing in the S1 of awake behaving rodents is layer specific and state dependent and that its dynamics depend on the asynchronous convergence of modulations originating from ipsilateral M1 and contralateral S1.


Asunto(s)
Discriminación en Psicología , Núcleos Talámicos Posteriores/fisiología , Corteza Somatosensorial/fisiología , Percepción del Tacto , Animales , Femenino , Neuronas/citología , Núcleos Talámicos Posteriores/citología , Ratas , Ratas Long-Evans , Corteza Somatosensorial/citología
7.
Brain Res ; 1418: 52-63, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21924706

RESUMEN

Recent morphological and physiological studies have suggested a strong relationship between the suprageniculate nucleus (Sg) of the posterior thalamus and the input structure of the basal ganglia, the caudate nucleus (CN) of the feline brain. Accordingly, to clarify if there is a real functional relationship between Sg and CN during visual information processing, we investigated the temporal relations of simultaneously recorded neuronal spike trains of these two structures, looking for any significant cross-correlation between the spiking of the simultaneously recorded neurons. For the purposes of statistical analysis, we used the shuffle and jittering resampling methods. Of the recorded 288 Sg-CN neuron pairs, 26 (9.2%) showed significantly correlated spontaneous activity. Nineteen pairs (6.7%) showed correlated activity during stationary visual stimulation, while 21 (7.4%) pairs during stimulus movement. There was no overlap between the neuron pairs that showed cross-correlated spontaneous activity and the pairs that synchronized their activity during visual stimulation. Thus visual stimulation seems to have been able to synchronize, and also, by other neuron pairs, desynchronize the activity of CN and Sg. In about half of the cases, the activation of Sg preceded the activation of CN by a few milliseconds, while in the other half, CN was activated earlier. Our results provide the first piece of evidence for the existence of a functional cooperation between Sg and CN. We argue that either a monosynaptic bidirectional direct connection should exist between these structures, or a common input comprising of parallel pathways synchronizing them.


Asunto(s)
Potenciales de Acción/fisiología , Núcleo Caudado/citología , Neuronas/fisiología , Núcleos Talámicos Posteriores/citología , Vías Visuales/fisiología , Animales , Gatos , Femenino , Masculino , Estimulación Luminosa/métodos , Tiempo de Reacción , Estadística como Asunto
8.
Brain Pathol ; 21(3): 279-97, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21029241

RESUMEN

Chemokines are implicated in the neuroinflammation of several chronic neurodegenerative disorders. However, the precise role of chemokines in neurodegeneration is unknown. Thiamine deficiency (TD) causes abnormal oxidative metabolism in the brain as well as a well-defined microglia activation and neurodegeneration in the submedial thalamus nucleus (SmTN), which are common features of neurodegenerative diseases. We evaluated the role of chemokines in neurodegeneration and the underlying mechanism in a TD model. Among the chemokines examined, TD selectively induced neuronal expression of monocyte chemoattractant protein-1 (MCP-1) in the SmTN prior to microglia activation and neurodegeneration. The conditioned medium collected from TD-induced neurons caused microglia activation. With a neuron/microglia co-culture system, we showed that MCP-1-induced neurotoxicity required the presence of microglia, and exogenous MCP-1 was able to activate microglia and stimulated microglia to produce cytokines. A MCP-1 neutralizing antibody inhibited MCP-1-induced microglia activation and neuronal death in culture and in the thalamus. MCP-1 knockout mice were resistant to TD-induced neuronal death in SmTN. TD selectively induced the accumulation of reactive oxygen species in neurons, and antioxidants blocked TD-induced MCP-1 expression. Together, our results indicated an induction of neuronal MCP-1 during mild impairment of oxidative metabolism caused by microglia recruitment/activation, which exacerbated neurodegeneration.


Asunto(s)
Quimiocina CCL2/metabolismo , Microglía/fisiología , Degeneración Nerviosa/metabolismo , Neuronas/metabolismo , Núcleos Talámicos Posteriores/metabolismo , Deficiencia de Tiamina/metabolismo , Animales , Muerte Celular/fisiología , Quimiocina CCL2/genética , Quimiocinas/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/inmunología , Degeneración Nerviosa/patología , Neuronas/patología , Oxidación-Reducción , Núcleos Talámicos Posteriores/citología , Núcleos Talámicos Posteriores/patología , Especies Reactivas de Oxígeno/metabolismo , Deficiencia de Tiamina/inmunología
9.
J Comp Neurol ; 518(18): 3679-700, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20653029

RESUMEN

Evidence indicates that visual stimuli influence cells in the primary auditory cortex. To evaluate potential sources of this visual input and how they enter into the circuitry of the auditory cortex, we examined axonal terminations in the primary auditory cortex from nonprimary extrastriate visual cortex (V2M, V2L) and from the multimodal thalamic suprageniculate nucleus (SG). Gross biocytin/biotinylated dextran amine (BDA) injections into the SG or extrastriate cortex labeled inputs terminating primarily in superficial and deep layers. SG projects primarily to layers I, V, and VI while V2M and V2L project primarily to layers I and VI, with V2L also targeting layers II/III. Layer I inputs differ in that SG terminals are concentrated superficially, V2L are deeper, and V2M are equally distributed throughout. Individual axonal reconstructions document that single axons can 1) innervate multiple layers; 2) run considerable distances in layer I; and 3) run preferentially in the dorsoventral direction similar to isofrequency axes. At the electron microscopic level, SG and V2M terminals 1) are the same size regardless of layer; 2) are non-gamma-aminobutyric acid (GABA)ergic; 3) are smaller than ventral medial geniculate terminals synapsing in layer IV; 4) make asymmetric synapses onto dendrites/spines that 5) are non-GABAergic and 6) are slightly larger in layer I. Thus, both areas provide a substantial feedback-like input with differences that may indicate potentially different roles.


Asunto(s)
Corteza Auditiva/citología , Vías Nerviosas/anatomía & histología , Núcleos Talámicos Posteriores/citología , Corteza Visual/citología , Animales , Axones/ultraestructura , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Masculino , Neuronas/ultraestructura , Ratas , Ratas Long-Evans , Sinapsis/ultraestructura , Ácido gamma-Aminobutírico/metabolismo
10.
J Comp Neurol ; 518(15): 3149-68, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20533365

RESUMEN

VGLUT1 and VGLUT2 have been reported to show complementary distributions in most brain regions and have been assumed to define distinct functional elements. In the present study, we first investigated the expression of VGLUT1 and VGLUT2 in the trigeminal sensory nuclear complex of the rat by dual-fluorescence in situ hybridization. Although VGLUT1 and/or VGLUT2 mRNA signals were detected in all the nuclei, colocalization was found only in the principal sensory trigeminal nucleus (Vp). About 64% of glutamatergic Vp neurons coexpressed VGLUT1 and VGLUT2, and the others expressed either VGLUT1 or VGLUT2, indicating that Vp neurons might be divided into three groups. We then injected retrograde tracer into the thalamic regions, including the posteromedial ventral nucleus (VPM) and posterior nuclei (Po), and observed that the majority of both VGLUT1- and VGLUT2-expressing Vp neurons were retrogradely labeled with the tracer. We further performed anterograde labeling of Vp neurons and observed immunoreactivies for anterograde tracer, VGLUT1, and VGLUT2 in the VPM and Po. Most anterogradely labeled axon terminals showed immunoreactivities for both VGLUT1 and VGLUT2 in the VPM and made asymmetric synapses with dendritic profiles of VPM neurons. On the other hand, in the Po, only a few axon terminals were labeled with anterograde tracer, and they were positive only for VGLUT2. The results indicated that Vp neurons expressing VGLUT1 and VGLUT2 project to the VPM, but not to the Po, although the functional differences of three distinct populations of Vp neurons, VGLUT1-, VGLUT2-, and VGLUT1/VGLUT2-expressing ones, remain unsettled.


Asunto(s)
Red Nerviosa/metabolismo , Tálamo/metabolismo , Nervio Trigémino/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/biosíntesis , Proteína 2 de Transporte Vesicular de Glutamato/biosíntesis , Animales , Recuento de Células , Toxina del Cólera/metabolismo , Citometría de Flujo , Inmunohistoquímica , Masculino , Microscopía Electrónica , Microscopía Fluorescente , Red Nerviosa/química , Núcleos Talámicos Posteriores/citología , Núcleos Talámicos Posteriores/metabolismo , Terminales Presinápticos/metabolismo , Sondas ARN , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Estilbamidinas , Tálamo/citología , Nervio Trigémino/citología , Núcleos Talámicos Ventrales/química , Núcleos Talámicos Ventrales/metabolismo
11.
Cereb Cortex ; 20(10): 2265-76, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20453248

RESUMEN

This is the first article in a series of 3 studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). S1 receives 2 major types of TC inputs, lemiscal and paralemniscal. Lemiscal axons arise from the ventral posteromedial nucleus (VPM) of the thalamus, whereas paralemniscal fibers originate in the posteromedial nucleus (POm). While these 2 TC projections are largely complementary in L4, overlap in other cortical layers is still a matter of debate. VPM and POm axons were specifically labeled in the same rat by virus-mediated expression of different fluorescent proteins. We show that columnar and septal projection patterns are maintained throughout most of the cortical depth with a lower degree of separation in infragranular layers, where TC axons form bands along rows. Finally, we present anatomical dimensions of "TC projection domains" for a standard column in S1.


Asunto(s)
Axones/fisiología , Núcleos Talámicos Posteriores/citología , Células Receptoras Sensoriales/fisiología , Corteza Somatosensorial/anatomía & histología , Núcleos Talámicos Ventrales/citología , Vibrisas/inervación , Análisis de Varianza , Animales , Animales Recién Nacidos , Axones/ultraestructura , Recuento de Células/métodos , Dependovirus/fisiología , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Proteínas Luminiscentes/genética , Microscopía Confocal/métodos , Vías Nerviosas/fisiología , Terminales Presinápticos/fisiología , Ratas , Proteína Fluorescente Roja
12.
Neurosci Res ; 66(1): 7-13, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19755134

RESUMEN

The suprageniculate nucleus (Sg) of the feline thalamus, which subserves largely unimodal sensory and orientation behavior, receives input from the deep layers of the superior colliculus (SC), and projects to the suprasylvian cortical areas, such as the anterior ectosylvian visual area and the insular visual area (IVA), which contain visually responsive neurons. Through a double tract-tracing procedure involving the injection of wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) into the IVA and the injection of kainic acid into the SC, this study sought to determine the nature of the synaptic relationship between the SC afferents and the thalamo-cortical projection neurons. WGA-HRP injections labeled numerous neurons in the Sg, while kainic acid injections destroyed many tectothalamic terminals in the Sg. The distributions of the WGA-HRP-labeled neurons and the degenerated axon terminals overlapped in the dorsal part of the Sg. Electron microscopic observations demonstrated that the degenerated axon terminals made synaptic contacts with the dendrites of the WGA-HRP-labeled neurons in this overlapping region of the Sg. These results provide the first anatomical evidence that the Sg may play a role in the key relay of visual information from the SC to the IVA, within an identified extrageniculo-cortical pathway.


Asunto(s)
Corteza Cerebral/anatomía & histología , Neuronas/metabolismo , Núcleos Talámicos Posteriores/citología , Colículos Superiores/citología , Sinapsis/fisiología , Animales , Mapeo Encefálico , Gatos/anatomía & histología , Ácido Kaínico/farmacología , Microscopía Electrónica de Transmisión/métodos , Neuronas/citología , Sinapsis/ultraestructura , Vías Visuales/fisiología , Aglutinina del Germen de Trigo-Peroxidasa de Rábano Silvestre Conjugada/metabolismo
13.
Behav Brain Res ; 203(1): 88-96, 2009 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-19397934

RESUMEN

Chronic stress induces dendritic atrophy in the inferior colliculus (IC, auditory mesencephalon) and impairs auditory avoidance conditioning. The aim of this study was to determine in Golgi preparations and in cued fear conditioning whether stress affects other auditory components, like the thalamic medial geniculate nucleus (MG) or the posterior thalamic nucleus (PO), in Sprague-Dawley rats. Chronic restraint stress produced a significant dendritic atrophy in the MG (stress: 407+/-55 microm; control: 808+/-120 microm; p<0.01) but did not affect auditory fear conditioning. The last result was in apparent contrast with the fact that stress impairs both the acquisition of auditory avoidance conditioned responses and the dendritic structure in two major nuclei of the auditory system. In order to analyze this disagreement, we investigated whether the stress-related freezing to tone occurring in the fear conditioning protocol corresponded to a conditioned or an unconditioned fear response, using changes in tone instead of light throughout conditioning trials. Chronic stress significantly enhanced visual fear conditioning in stressed animals compared to controls (stress: 58.9+/-8.42%, control: 23.31+/-8.01%; p<0.05), but this fear enhancement was related to unconditioned fear. Conversely, chronic stress did not affect the morphology of the PO (subserving both auditory and somatosensory information) or the corresponding auditory and somatosensory unconditioned responses (acoustic startle response and escape behavior). Our results suggest that the auditory conditioned stimulus can be processed in part independently of the IC and MG in the stressed animals, and sent to the amygdala via the PO inducing unconditioned fear. Comparable alterations could be produced in major depression.


Asunto(s)
Percepción Auditiva/fisiología , Condicionamiento Clásico/fisiología , Dendritas/fisiología , Cuerpos Geniculados/fisiopatología , Neuronas/fisiología , Estrés Psicológico/fisiopatología , Estimulación Acústica , Animales , Reacción de Fuga , Miedo , Reacción Cataléptica de Congelación , Cuerpos Geniculados/citología , Masculino , Neuronas/citología , Estimulación Luminosa , Núcleos Talámicos Posteriores/citología , Núcleos Talámicos Posteriores/fisiopatología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Reflejo de Sobresalto , Restricción Física , Percepción Visual/fisiología
14.
J Neurophysiol ; 100(4): 2026-37, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18701750

RESUMEN

The primate posterior thalamus has been proposed to contribute to pain sensation, but its precise role is unclear. This is in part because spinothalamic tract (STT) neurons that project to the posterior thalamus have received little attention. In this study, antidromic mapping was used to identify individual STT neurons with axons that projected specifically to the posterior thalamus in Macaca fascicularis. Each axon was located by antidromic activation at low stimulus amplitudes (<30 microA) and was then surrounded distally by a grid of stimulating points in which 500-microA stimuli were unable to activate the axon antidromically, thereby indicating the termination zone. Several nuclei within the posterior thalamus were targets of STT neurons: the posterior nucleus, suprageniculate nucleus, magnocellular part of the medial geniculate nucleus, and limitans nucleus. STT neurons projecting to the ventral posterior inferior nucleus were also studied. Twenty-five posterior thalamus-projecting STT neurons recorded in lumbar spinal cord were characterized by their responses to mechanical, thermal, and chemical stimuli. Sixteen of 25 neurons were recorded in the marginal zone and the balance was located within the deep dorsal horn. Thirteen neurons were classified as wide dynamic range and 12 as high threshold. One-third of STT neurons projecting to posterior thalamus responded to noxious heat (50 degrees C). Two-thirds of those tested responded to cooling. Seventy-one percent responded to an intradermal injection of capsaicin. These data indicate that the primate STT transmits noxious and innocuous mechanical, thermal, and chemical information to multiple posterior thalamic nuclei.


Asunto(s)
Neuronas/fisiología , Núcleos Talámicos Posteriores/fisiología , Tractos Espinotalámicos/citología , Tractos Espinotalámicos/fisiología , Potenciales de Acción/fisiología , Animales , Axones/fisiología , Mapeo Encefálico , Capsaicina/farmacología , Frío , Interpretación Estadística de Datos , Estimulación Eléctrica , Electrofisiología , Calor , Macaca fascicularis , Técnicas de Placa-Clamp , Estimulación Física , Células del Asta Posterior/fisiología , Núcleos Talámicos Posteriores/citología , Estimulación Química
15.
J Comp Neurol ; 509(3): 239-58, 2008 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-18496871

RESUMEN

The thalamocortical projection to the rodent barrel cortex consists of inputs from the ventral posterior medial (VPM) and posterior medial (POm) nuclei that terminate in largely nonoverlapping territories in and outside of layer IV. This projection in both rats and mice has been used extensively to study development and plasticity of highly organized synaptic circuits. Whereas the VPM pathway has been well characterized in both rats and mice, organization of the POm pathway has only been described in rats, and no studies have focused exclusively on the development of the POm projection. Here, using transport of Phaseolus vulgaris leucoagglutinin(PHA-L) or carbocyanine dyes, we characterize the POm thalamocortical innervation of adult mouse barrel cortex and describe its early postnatal development in both mice and rats. In adult mice, POm inputs form a dense plexus in layer Va that extends uniformly underneath layer IV barrels and septa. Innervation of layer IV is very sparse; a clear septal innervation pattern is evident only at the layer IV/Va border. This pattern differs subtly from that described previously in rats. Developmentally, in both species, POm axons are present in barrel cortex at birth. In mice, they occupy layer IV as it differentiates, whereas in rats, POm axons do not enter layer IV until 1-2 days after its emergence from the cortical plate. In both species, arbors undergo progressive and directed growth. However, no layer IV septal innervation pattern emerges until several days after the cytoarchitectonic appearance of barrels and well after the emergence of whisker-related clusters of VPM thalamocortical axons. The mature pattern resolves earlier in rats than in mice. Taken together, these data reveal anatomical differences between mice and rats in the development and organization of POm inputs to barrel cortex, with implications for species differences in the nature and plasticity of lemniscal and paralemniscal information processing.


Asunto(s)
Vías Nerviosas/crecimiento & desarrollo , Núcleos Talámicos Posteriores/crecimiento & desarrollo , Corteza Somatosensorial/crecimiento & desarrollo , Animales , Femenino , Inmunohistoquímica , Masculino , Ratones , Microscopía Confocal , Vías Nerviosas/citología , Núcleos Talámicos Posteriores/citología , Ratas , Ratas Sprague-Dawley , Corteza Somatosensorial/citología , Especificidad de la Especie , Vibrisas/inervación
16.
J Comp Neurol ; 501(1): 95-120, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17206603

RESUMEN

Connections of representations of the teeth and tongue in primary somatosensory cortex (area 3b) and adjoining cortex were revealed in owl, squirrel, and marmoset monkeys with injections of fluorescent tracers. Injection sites were identified by microelectrode recordings from neurons responsive to touch on the teeth or tongue. Patterns of cortical label were related to myeloarchitecture in sections cut parallel to the surface of flattened cortex, and to coronal sections of the thalamus processed for cytochrome oxidase (CO). Cortical sections revealed a caudorostral series of myelin dense ovals (O1-O4) in area 3b that represent the periodontal receptors of the contralateral teeth, the contralateral tongue, the ipsilateral teeth, and the ipsilateral tongue. The ventroposterior medial subnucleus, VPM, and the ventroposterior medial parvicellular nucleus for taste, VPMpc, were identified in the thalamic sections. Injections placed in the O1 oval representing teeth labeled neurons in VPM, while injections in O2 representing the tongue labeled neurons in both VPMpc and VPM. These injections also labeled adjacent part of areas 3a and 1, and locations in the lateral sulcus and frontal lobe. Callosally, connections of the ovals were most dense with corresponding ovals. Injections in the area 1 representation of the tongue labeled neurons in VPMpc and VPM, and ipsilateral area 3b ovals, area 3a, opercular cortex, and cortex in the lateral sulcus. Contralaterally, labeled neurons were mostly in area 1. The results implicate portions of areas 3b, 3a, and 1 in the processing of tactile information from the teeth and tongue, and possibly taste information from the tongue.


Asunto(s)
Platirrinos/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Lengua/fisiología , Diente/fisiología , Animales , Mapeo Encefálico , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Cuerpo Calloso/fisiología , Complejo IV de Transporte de Electrones/metabolismo , Electrofisiología , Femenino , Colorantes Fluorescentes , Inmunohistoquímica , Masculino , Boca/fisiología , Vías Nerviosas/fisiología , Platirrinos/anatomía & histología , Núcleos Talámicos Posteriores/citología , Núcleos Talámicos Posteriores/metabolismo , Corteza Somatosensorial/anatomía & histología , Tálamo/enzimología
17.
J Neurosci ; 26(39): 9860-72, 2006 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-17005850

RESUMEN

Substantial evidence indicates that the locus ceruleus (LC)-norepinephrine (NE) projection system regulates behavioral state and state-dependent processing of sensory information. Tonic LC discharge (0.1-5.0 Hz) is correlated with levels of arousal and demonstrates an optimal firing rate during good performance in a sustained attention task. In addition, studies have shown that locally applied NE or LC stimulation can modulate the responsiveness of neurons, including those in the thalamus, to nonmonoaminergic synaptic inputs. Many recent investigations further indicate that within sensory relay circuits of the thalamus both general and specific features of sensory information are represented within the collective firing patterns of like-modality neurons. However, no studies have examined the impact of NE or LC output on the discharge properties of ensembles of functionally related cells in intact, conscious animals. Here, we provide evidence linking LC neuronal discharge and NE efflux with LC-mediated modulation of single-neuron and neuronal ensemble representations of sensory stimuli in the ventral posteriomedial thalamus of waking rats. As such, the current study provides evidence that output from the LC across a physiologic range modulates single thalamic neuron responsiveness to synaptic input and representation of sensory information across ensembles of thalamic neurons in a manner that is consistent with the well documented actions of LC output on cognition.


Asunto(s)
Locus Coeruleus/fisiología , Red Nerviosa/fisiología , Neuronas/fisiología , Núcleos Talámicos Posteriores/fisiología , Sensación/fisiología , Núcleos Talámicos Ventrales/fisiología , Animales , Electrodos Implantados , Masculino , Microdiálisis , Norepinefrina/fisiología , Núcleos Talámicos Posteriores/citología , Ratas , Ratas Long-Evans , Núcleos Talámicos Ventrales/citología , Vibrisas/inervación , Vibrisas/fisiología , Vigilia
18.
J Histochem Cytochem ; 54(5): 539-48, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16344324

RESUMEN

An adenovirus vector was generated using a neuron-specific promoter synapsin I and enhanced green fluorescent protein (EGFP) reporter (AdSynEGFP). In addition, two modifications were identified that resulted in robust and reliable retrograde transport and EGFP expression after injection of the virus into three different brain regions in adult rats (medial prefrontal cortex, posterior thalamic nuclear group, and CA1). These are postinjection survival times of 14 days and addition of high concentrations of NaCl (>or=600 mM) to the injection buffer. These modifications resulted in obvious improvement in the intensity of the EGFP signal and in the number of labeled cells. Use of anti-EGFP in immunofluorescence or immunoperoxidase processing further enhanced the signal so that Golgi-like filling of dendritic spines and axon collaterals was routinely achieved. Effectiveness of the AdSynEGFP for Golgi-like filling was confirmed in one rhesus monkey with injections in visual area V4. Because of the long-term viability of the infected neurons (at least up to 28 days in rats and 22 days in monkey), this AdSynEGFP is suitable for use in microcircuitry studies in combination with other fluorescently tagged elements, including anterogradely labeled extrinsic projections. The native EGFP signal (without antibody enhancement) may be sufficient for studies involving cultured cells or slices.


Asunto(s)
Adenoviridae/genética , Encéfalo/metabolismo , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Neuronas/fisiología , Animales , Axones/metabolismo , Encéfalo/citología , Genes Reporteros , Vectores Genéticos/administración & dosificación , Proteínas Fluorescentes Verdes/biosíntesis , Hipocampo/citología , Hipocampo/metabolismo , Inmunohistoquímica , Macaca mulatta , Núcleos Talámicos Posteriores/citología , Núcleos Talámicos Posteriores/metabolismo , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Regiones Promotoras Genéticas , Ratas , Ratas Wistar , Especificidad de la Especie , Sinapsinas/genética
19.
Neuroscience ; 138(1): 197-220, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16361065

RESUMEN

The subparafascicular nucleus and the subparafascicular area are the major sites of synthesis of the recently discovered neuropeptide, tuberoinfundibular peptide of 39 residues (TIP39). Better knowledge of the neuronal inputs to the subparafascicular area and nucleus will facilitate investigation of the functions of TIP39. Thus, we have injected the retrograde tracer cholera toxin B subunit into the rostral, middle, and caudal parts of the rat subparafascicular nucleus. We report that the afferent projections to the subparafascicular nucleus and area include the medial prefrontal, insular, and ectorhinal cortex, the subiculum, the lateral septum, the anterior amygdaloid area, the medial amygdaloid nucleus, the caudal paralaminar area of the thalamus, the lateral preoptic area, the anterior, ventromedial, and posterior hypothalamic nuclei, the dorsal premamillary nucleus, the zona incerta and Forel's fields, the periaqueductal gray, the deep layers of the superior colliculus, cortical layers of the inferior colliculus, the cuneiform nucleus, the medial paralemniscal nucleus, and the parabrachial nuclei. Most of these regions project to all parts of the subparafascicular nucleus. However, the magnocellular subparafascicular neurons, which occupy the middle part of the subparafascicular nucleus, may not receive projections from the medial prefrontal and insular cortex, the medial amygdaloid nucleus, the lateral preoptic area, and the parabrachial nuclei. In addition, double labeling of cholera toxin B subunit and TIP39 revealed a remarkable similarity between input regions of the subparafascicular area and the brain TIP39 system. Neurons within regions that contain TIP39 cell bodies as well as regions that contain TIP39 fibers project to the subparafascicular area. Overall, the afferent connections of the subparafascicular nucleus and area suggest its involvement in central reproductive, visceral, nociceptive, and auditory regulation.


Asunto(s)
Encéfalo/fisiología , Neuronas Aferentes/fisiología , Núcleos Talámicos Posteriores/fisiología , Vías Aferentes/fisiología , Animales , Encéfalo/citología , Toxina del Cólera , Inmunohistoquímica , Masculino , Fibras Nerviosas/fisiología , Neuropéptidos/metabolismo , Núcleos Talámicos Posteriores/citología , Ratas , Ratas Sprague-Dawley
20.
Prog Brain Res ; 149: 31-40, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16226574

RESUMEN

The highly segregated organization of the vibrissal system of rodents offers a unique opportunity to address key issues about thalamic operations in primary sensory and second order thalamic nuclei. In this short review, evidence showing that reticular thalamic neurons and relay cells with receptive fields on the same vibrissa form topographically closed loop connections has been summarized. Within whisker-related thalamic modules, termed barreloids, reticular axons synapse onto the cell bodies and dendrites of residing neurons as well as onto the distal dendrites of neurons that are located in adjacent barreloids. This arrangement provides a substrate for a mechanism of lateral inhibition whereby the spread of dendritic trees among surrounding barreloids determines whisker-specific patterns of lateral inhibition. The relay of sensory inputs in the posterior group, a second order nucleus associated with the vibrissal system is also examined. It is shown that in lightly anesthetized rats posterior group cells are tonically inhibited by GABAergic neurons of the ventral division of zona incerta. These observations suggest that a mechanism of disinhibition controls transmission of sensory signals in the posterior group nucleus. We further propose that disinhibition operates in a top-down manner, via motor instructions sent by cortex to brainstem and spinal cord. In this way posterior group nucleus would forward to the cerebral cortex sensory information that is contingent upon its action.


Asunto(s)
Núcleos Talámicos Intralaminares/fisiología , Núcleos Talámicos Posteriores/fisiología , Tacto/fisiología , Núcleos Talámicos Ventrales/fisiología , Vibrisas/fisiología , Vías Aferentes/fisiología , Animales , Dendritas/fisiología , Dendritas/ultraestructura , Núcleos Talámicos Intralaminares/citología , Modelos Animales , Inhibición Neural/fisiología , Núcleos Talámicos Posteriores/citología , Terminales Presinápticos/fisiología , Ratas , Núcleos Talámicos Ventrales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...