Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.472
Filtrar
1.
Sci Rep ; 14(1): 11562, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773237

RESUMEN

Predisposing factors underlying familial aggregation of non-syndromic gliomas are still to be uncovered. Whole-exome sequencing was performed in four Finnish families with brain tumors to identify rare predisposing variants. A total of 417 detected exome variants and 102 previously reported glioma-related variants were further genotyped in 19 Finnish families with brain tumors using targeted sequencing. Rare damaging variants in GALNT13, MYO10 and AR were identified. Two families carried either c.553C>T (R185C) or c.1214T>A (L405Q) on GALNT13. Variant c.553C>T is located on the substrate-binding site of GALNT13. AR c.2180G>T (R727L), which is located on a ligand-binding domain of AR, was detected in two families, one of which also carried a GALNT13 variant. MYO10 c.4448A>G (N1483S) was detected in two families and c.1511C>T (A504V) variant was detected in one family. Both variants are located on functional domains related to MYO10 activity in filopodia formation. In addition, affected cases in six families carried a known glioma risk variant rs55705857 in CCDC26 and low-risk glioma variants. These novel findings indicate polygenic inheritance of familial glioma in Finland and increase our understanding of the genetic contribution to familial glioma susceptibility.


Asunto(s)
Predisposición Genética a la Enfermedad , Glioma , N-Acetilgalactosaminiltransferasas , Linaje , Humanos , Finlandia , Glioma/genética , Glioma/patología , Femenino , Masculino , N-Acetilgalactosaminiltransferasas/genética , Polipéptido N-Acetilgalactosaminiltransferasa , Mutación de Línea Germinal , Adulto , Persona de Mediana Edad , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Secuenciación del Exoma
2.
Nat Commun ; 15(1): 4162, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755139

RESUMEN

The multibasic furin cleavage site at the S1/S2 boundary of the spike protein is a hallmark of SARS-CoV-2 and plays a crucial role in viral infection. However, the mechanism underlying furin activation and its regulation remain poorly understood. Here, we show that GalNAc-T3 and T7 jointly initiate clustered O-glycosylations in the furin cleavage site of the SARS-CoV-2 spike protein, which inhibit furin processing, suppress the incorporation of the spike protein into virus-like-particles and affect viral infection. Mechanistic analysis reveals that the assembly of the spike protein into virus-like particles relies on interactions between the furin-cleaved spike protein and the membrane protein of SARS-CoV-2, suggesting a possible mechanism for furin activation. Interestingly, mutations in the spike protein of the alpha and delta variants of the virus confer resistance against glycosylation by GalNAc-T3 and T7. In the omicron variant, additional mutations reverse this resistance, making the spike protein susceptible to glycosylation in vitro and sensitive to GalNAc-T3 and T7 expression in human lung cells. Our findings highlight the role of glycosylation as a defense mechanism employed by host cells against SARS-CoV-2 and shed light on the evolutionary interplay between the host and the virus.


Asunto(s)
COVID-19 , Furina , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Glicosilación , Furina/metabolismo , Furina/genética , COVID-19/virología , COVID-19/metabolismo , Células HEK293 , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Animales , Chlorocebus aethiops , Polipéptido N-Acetilgalactosaminiltransferasa
3.
Endocr J ; 71(4): 335-343, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38556320

RESUMEN

Bone secrets the hormone, fibroblast growth factor 23 (FGF23), as an endocrine organ to regulate blood phosphate level. Phosphate is an essential mineral for the human body, and around 85% of phosphate is present in bone as a constituent of hydroxyapatite, Ca10(PO4)6(OH)2. Because hypophosphatemia induces rickets/osteomalacia, and hyperphosphatemia results in ectopic calcification, blood phosphate (inorganic form) level must be regulated in a narrow range (2.5 mg/dL to 4.5 me/dL in adults). However, as yet it is unknown how bone senses changes in blood phosphate level, and how bone regulates the production of FGF23. Our previous data indicated that high extracellular phosphate phosphorylates FGF receptor 1 (FGFR1) in an unliganded manner, and its downstream intracellular signaling pathway regulates the expression of GALNT3. Furthermore, the post-translational modification of FGF23 protein via a gene product of GALNT3 is the main regulatory mechanism of enhanced FGF23 production due to high dietary phosphate. Therefore, our research group proposes that FGFR1 works as a phosphate-sensing receptor at least in the regulation of FGF23 production and blood phosphate level, and phosphate behaves as a first messenger. Phosphate is involved in various effects, such as stimulation of parathyroid hormone (PTH) synthesis, vascular calcification, and renal dysfunction. Several of these responses to phosphate are considered as phosphate toxicity. However, it is not clear whether FGFR1 is involved in these responses to phosphate. The elucidation of phosphate-sensing mechanisms may lead to the identification of treatment strategies for patients with abnormal phosphate metabolism.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Fosfatos , Humanos , Fosfatos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Transducción de Señal , Huesos/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Hiperfosfatemia/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
4.
Methods Mol Biol ; 2763: 237-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38347415

RESUMEN

Mucin-type O-glycosylation is one of the most common posttranslational modifications of proteins. The abnormal expression of various polypeptide GalNAc-transferases (GALNTs) which initiate and define sites of O-glycosylation is linked to many cancers and other diseases. Many current O-glycosylation prediction programs utilize O-glycoproteomics data obtained without using the transferase isoform(s) responsible for the glycosylation. With 20 different GALNTs in humans, having the ability to predict and interpret O-glycosylation sites in terms of specific GALNT isoforms is invaluable.To fill this gap, ISOGlyP (isoform-specific O-glycosylation prediction) has been developed. Using position-specific enhancement values generated based on GalNAc-T isoform-specific amino acid preferences, ISOGlyP predicts the propensity that a site would be glycosylated by a specific transferase. ISOGlyP gave an overall prediction accuracy of 70% against in vivo data, which is comparable to that of the NetOGlyc4.0 predictor. Additionally, ISOGlyP can identify the known effects of long- and short-range prior glycosylation and can generate potential peptide sequences selectively glycosylated by specific isoforms. ISOGlyP is freely available for use at https://ISOGlyP.utep.edu . The code is also available on GitHub ( https://github.com/jonmohl/ISOGlyP ).


Asunto(s)
N-Acetilgalactosaminiltransferasas , Polipéptido N-Acetilgalactosaminiltransferasa , Humanos , Glicosilación , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Péptidos/química , Isoformas de Proteínas/metabolismo
5.
Int J Biol Sci ; 20(4): 1297-1313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385080

RESUMEN

Bone metastasis caused the majority death of prostate cancer (PCa) but the mechanism remains poorly understood. In this present study, we show that polypeptide N-acetylgalactosaminyltransferase 12 (GALNT12) suppresses bone-specific metastasis of PCa. GALNT12 suppresses proliferation, migration, invasion and cell division ability of PCa cells by activating the BMP pathway. Mechanistic investigations showed that GALNT12 augments the O-glycosylation of BMPR1A then actives the BMP pathway. Activated BMP signaling inhibits the expression of integrin αVß3 to reduce the bone-specific seeding of PCa cells. Furthermore, activated BMP signaling remolds the immune microenvironment by suppressing the STAT3 pathway. Our results of this study illustrate the role and mechanism of GALNT12 in the process of bone metastasis of PCa and identify GALNT12 as a potential therapeutic target for metastatic PCa.


Asunto(s)
Neoplasias Óseas , N-Acetilgalactosaminiltransferasas , Neoplasias de la Próstata , Masculino , Humanos , Glicosilación , Línea Celular Tumoral , Transducción de Señal/genética , Neoplasias de la Próstata/metabolismo , Neoplasias Óseas/metabolismo , Microambiente Tumoral , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo
6.
Gene ; 908: 148253, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38341004

RESUMEN

OBJECTIVE: This study endeavored to explore the relationship between exosome-derived lncRNA Double Homeobox A Pseudogene 8 (DUXAP8) and Chondroitin Polymerizing Factor 2 (CHPF2), and their roles in the pathogenesis of intracranial aneurysm (IA). METHODS: The shared targeted molecules (DUXAP8 and CHPF2) were detected via GSE122897 and GSE75436 datasets. A total of 312 patients with IAs were incorporated into this study. Exosomes were isolated from serum samples, and their identity was confirmed using Western blotting for exosomal markers (CD9, CD63 and ALIX). Inflammatory responses in IA tissues were evaluated using Hematoxylin-Eosin staining. CHPF2 protein concentration and the expression levels of DUXAP8 and CHPF2 mRNA in exosomal samples were assessed using Immunochemistry (IHC), Western Blotting, and qRT-PCR, respectively. Cell-based assays involving Human Umbilical Vein Endothelial Cells (HuvECs), including transfection with exosomal DUXAP8, Western Blotting, qRT-PCR, and Cell Counting Kit-8, were conducted. Receiver Operating Characteristic (ROC) curves were derived using SPSS. RESULTS: DUXAP8 level affects the level of CHPF2. DUXAP8 expression within exosomes was associated with increased CD9, CD63, ALIX and CHPF2 levels during IA development and inflammatory stress. In HuvECs, transfection with exosomes carrying DUXAP8 siRNA resulted in reduced CHPF2 expression, whereas DUXAP8 mimic increased CHPF2 concentrations. The Area Under the ROC Curve (AUC) for exosomal DUXAP8 expression and CHPF2 levels, and aneurysm size was 0.768 (95% CI, 0.613 to 0.924), 0.937 (95% CI, 0.853 to 1.000), and 0.943 (95% CI, 0.860, 1.000), respectively. CONCLUSION: Exosome-derived DUXAP8 promotes IA progression by affecting CHPF2 expression.


Asunto(s)
Exosomas , Aneurisma Intracraneal , N-Acetilgalactosaminiltransferasas , ARN Largo no Codificante , Humanos , Exosomas/genética , Exosomas/metabolismo , Genes Homeobox , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Aneurisma Intracraneal/genética , Aneurisma Intracraneal/metabolismo , MicroARNs/metabolismo , Seudogenes , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , N-Acetilgalactosaminiltransferasas/metabolismo
7.
Int J Biol Macromol ; 263(Pt 2): 130347, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401583

RESUMEN

Polypeptide N-acetylgalactosamine transferase 9 (GALNT9) catalyzes the initial step of mucin-type O-glycosylation via linking N-acetylgalactosamine (GalNAc) to serine/threonine in a protein. To unravel the association of GALNT9 with Parkinson's disease (PD), a progressive neurodegenerative disorder, GALNT9 levels were evaluated in the patients with PD and mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and statistically analyzed based on the GEO datasets of GSE114918 and GSE216281. Glycoproteins with exposing GalNAc were purified using lectin affinity chromatography and identified by LC-MS/MS. The influence of GALNT9 on cells was evaluated via introducing a GALNT9-specific siRNA into SH-SY5Y cells. Consequently, GALNT9 deficiency was found to occur under PD conditions. GALNT9 silencing contributed to a causative factor in PD pathogenesis via reducing the levels of intracellular dopamine, tyrosine hydroxylase and soluble α-synuclein, and promoting α-synuclein aggregates. MS identification revealed 14 glycoproteins. 5 glycoproteins, including ACO2, ATP5B, CKB, CKMT1A, ALDOC, were associated with energy metabolism. GALNT9 silencing resulted in mitochondrial dysfunctions via increasing ROS accumulation, mitochondrial membrane depolarization, mPTPs opening, Ca2+ releasing and activation of the CytC-related apoptotic pathway. The dysfunctional mitochondria then triggered mitophagy, possibly intermediated by adenine nucleotide translocase 1. Our study suggests that GALNT9 is potentially developed into an auxiliary diagnostic index and therapeutic target of PD.


Asunto(s)
Enfermedades Mitocondriales , N-Acetilgalactosaminiltransferasas , Neuroblastoma , Enfermedad de Parkinson , Humanos , Ratones , Animales , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/química , Acetilgalactosamina/química , Transferasas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Péptidos , Glicoproteínas , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Creatina Quinasa
8.
Sci Adv ; 10(9): eadj8829, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416819

RESUMEN

N-acetylgalactosaminyl-transferases (GalNAc-Ts) initiate mucin-type O-glycosylation, an abundant and complex posttranslational modification that regulates host-microbe interactions, tissue development, and metabolism. GalNAc-Ts contain a lectin domain consisting of three homologous repeats (α, ß, and γ), where α and ß can potentially interact with O-GalNAc on substrates to enhance activity toward a nearby acceptor Thr/Ser. The ubiquitous isoenzyme GalNAc-T1 modulates heart development, immunity, and SARS-CoV-2 infectivity, but its substrates are largely unknown. Here, we show that both α and ß in GalNAc-T1 uniquely orchestrate the O-glycosylation of various glycopeptide substrates. The α repeat directs O-glycosylation to acceptor sites carboxyl-terminal to an existing GalNAc, while the ß repeat directs O-glycosylation to amino-terminal sites. In addition, GalNAc-T1 incorporates α and ß into various substrate binding modes to cooperatively increase the specificity toward an acceptor site located between two existing O-glycans. Our studies highlight a unique mechanism by which dual lectin repeats expand substrate specificity and provide crucial information for identifying the biological substrates of GalNAc-T1.


Asunto(s)
Mucinas , N-Acetilgalactosaminiltransferasas , Mucinas/química , Mucinas/metabolismo , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/química , N-Acetilgalactosaminiltransferasas/metabolismo , Lectinas , Especificidad por Sustrato , Estructura Terciaria de Proteína , Polipéptido N-Acetilgalactosaminiltransferasa , Azúcares
9.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396954

RESUMEN

Runx2 (runt related transcription factor 2) is an essential transcription factor for osteoblast proliferation and differentiation. Uridine diphosphate (UDP)-N-acetylgalactosamine (GalNAc): polypeptide GalNAc-transferase 3 (Galnt3) prevents proteolytic processing of fibroblast growth factor 23 (Fgf23), which is a hormone that regulates the serum level of phosphorus. Runx2 and Galnt3 were expressed in osteoblasts and osteocytes, and Fgf23 expression was restricted to osteocytes in bone. Overexpression and knock-down of Runx2 upregulated and downregulated, respectively, the expressions of Galnt3 and Fgf23, and Runx2 directly regulated the transcriptional activity of Galnt3 in reporter assays. The expressions of Galnt3 and Fgf23 in osteoblast-specific Runx2 knockout (Runx2fl/flCre) mice were about half those in Runx2fl/fl mice. However, the serum levels of phosphorus and intact Fgf23 in Runx2fl/flCre mice were similar to those in Runx2fl/fl mice. The trabecular bone volume was increased during aging in both male and female Galnt3-/- mice, but the osteoid was reduced. The markers for bone formation and resorption in Galnt3-/- mice were similar to the control in both sexes. Galnt3-/- mice exhibited hyperphosphatemia and hypercalcemia, and the intact Fgf23 was about 40% that of wild-type mice. These findings indicated that Runx2 regulates the expressions of Galnt3 and Fgf23 and that Galnt3 decelerates the mineralization of osteoid by stabilizing Fgf23.


Asunto(s)
Calcificación Fisiológica , Calcinosis , N-Acetilgalactosaminiltransferasas , Osteoblastos , Animales , Femenino , Masculino , Ratones , Calcinosis/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Factores de Crecimiento de Fibroblastos/metabolismo , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Osteoblastos/metabolismo , Fósforo , Polipéptido N-Acetilgalactosaminiltransferasa
10.
Acta Parasitol ; 69(1): 583-590, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38240996

RESUMEN

AIM: To explore associations between phenotypic traits and polymorphisms in the DRB1 and GALNT6 gene in Nellore, Deccani and Kenguri sheep naturally infected with Haemonchus contortus. MATERIALS AND METHODS: Blood and faecal samples were collected to evaluate fecal worm egg counts (FEC), packed cell volume (PCV), hemoglobin (Hb), eosinophilia and for DNA isolation. RESULTS: Animals were grouped into susceptible and resistant groups based on EPG counts. FEC and circulating eosinophilia were higher in a susceptible group. Log FEC was negatively correlated (P < 0.01) with PCV, and Hb estimates. The second exon of DRB1 and intron variant of GALNTL6 genes were amplified from DNA samples of resistant and susceptible sheep. Characterization of Ovar-DRB1 amplicon by RFLP revealed two genotypes ('bb' and 'ab'). The genotype frequencies differed significantly between both groups (P < 0.05). The 'bb' genotypes had higher (P < 0.05) log FEC value than 'ab' genotypes and 'b' allele was linked with susceptibility to haemonchosis in sheep. The mean FEC of Nellore sheep was high indicating susceptibility of the breed and also in which the frequency of 'b' allele was more compared to the other two breeds. OVAR-DRB1 genotypes associated with FEC did not affect PCV and Hb. PCR-RFLP assay developed to determine the genotypes with respect to SNP rs424521894 of GALNTL6 revealed monomorphic nature at the locus in the breeds studied. CONCLUSION: MHC polymorphism could be used as a genetic marker for the selection of sheep resistant to H. contortus. However, a more intensive study, involving controlled infections and other GALNTL6 SNPs may be enforced to make any decisive assertion.


Asunto(s)
Predisposición Genética a la Enfermedad , Hemoncosis , Haemonchus , N-Acetilgalactosaminiltransferasas , Polimorfismo de Nucleótido Simple , Enfermedades de las Ovejas , Animales , Ovinos , Hemoncosis/veterinaria , Hemoncosis/parasitología , Hemoncosis/genética , Enfermedades de las Ovejas/parasitología , Enfermedades de las Ovejas/genética , Haemonchus/genética , N-Acetilgalactosaminiltransferasas/genética , India , Genotipo , Heces/parasitología , Recuento de Huevos de Parásitos/veterinaria , Polipéptido N-Acetilgalactosaminiltransferasa
11.
J Exp Clin Cancer Res ; 42(1): 248, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749638

RESUMEN

BACKGROUND: The most common site of metastasis in colorectal cancer (CRC) is the liver and liver metastases occur in more than 50% of patients during diagnosis or treatment. The occurrence of metastasis depends on a series of events known as the invasive-metastasis cascade. Currently, the underlying genes and pathways regulating metastasis initiation in the liver microenvironment are unknown. METHODS: We performed systematic CRISPR/Cas9 screening using an in vivo mouse model of CRC liver metastasis to identify key regulators of CRC metastasis. We present the full results of this screen,which included a list of genes that promote or repress CRC liver colonization. By silencing these genes individually, we found that chondroitin sulfate synthase 1 (CHSY1) may be involved in CRC metastasis. We verified the function of CHSY1 and its involvement in liver metastasis of CRC through in vivo and in vitro experiments. RESULT: The results of TCGA and CRISPR/Cas9 showed that CHSY1 was overexpressed in CRC primary and liver metastasis tissues and indicated a worse clinical prognosis. In vitro and in vivo experiments confirmed that CHSY1 facilitated the liver metastasis of CRC and CHSY1 induced CD8+ T cell exhaustion and upregulated PD-L1 expression. The metabolomic analysis indicated that CHSY1 promoted CD8+ T cell exhaustion by activating the succinate metabolism pathway leading to liver metastasis of CRC. Artemisinin as a CHSY1 inhibitor reduced liver metastasis and enhanced the effect of anti-PD1 in CRC. PLGA-loaded Artemisinin and ICG probe reduced liver metastasis and increased the efficiency of anti-PD1 treatment in CRC. CONCLUSION: CHSY1 could promote CD8+ T cell exhaustion through activation of the succinate metabolic and PI3K/AKT/HIF1A pathway, leading to CRC liver metastasis. The combination of CHSY1 knockdown and anti-PD1 contributes to synergistic resistance to CRC liver metastasis. Artemisinin significantly inhibits CHSY1 activity and in combination with anti-PD1 could synergistically treat CRC liver metastases. This study provides new targets and specific strategies for the treatment of CRC liver metastases, bringing new hope and benefits to patients.


Asunto(s)
Artemisininas , Neoplasias Colorrectales , Neoplasias Hepáticas , N-Acetilgalactosaminiltransferasas , Humanos , Animales , Ratones , Detección Precoz del Cáncer , Sistemas CRISPR-Cas , Fosfatidilinositol 3-Quinasas , Agotamiento de Células T , Neoplasias Hepáticas/genética , Linfocitos T CD8-positivos , Neoplasias Colorrectales/genética , Microambiente Tumoral , Glucuronosiltransferasa , Enzimas Multifuncionales
12.
Glycobiology ; 33(10): 817-836, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37555669

RESUMEN

A large family of polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) initiate mucin type O-glycosylation transferring α-GalNAc from a UDP-GalNAc donor to the hydroxyl groups of Ser and Thr residues of peptides and proteins, thereby defining sites of O-glycosylation. Mutations and differential expression of several GalNAc-Ts are associated with many disease states including cancers. The mechanisms by which these isozymes choose their targets and their roles in disease are not fully understood. We previously showed that the GalNAc-Ts possess common and unique specificities for acceptor type, peptide sequence and prior neighboring, and/or remote substrate GalNAc glycosylation. In the present study, the role of flanking charged residues was investigated using a library of charged peptide substrates containing the central -YAVTPGP- acceptor sequence. Eleven human and one bird GalNAc-T were initially characterized revealing a range of preferences for net positive, net negative, or unique combinations of flanking N- and/or C-terminal charge, correlating to each isozyme's different electrostatic surface potential. It was further found that isoforms with high sequence identity (>70%) within a subfamily can possess vastly different charge specificities. Enzyme kinetics, activities obtained at elevated ionic strength, and molecular dynamics simulations confirm that the GalNAc-Ts differently recognize substrate charge outside the common +/-3 residue binding site. These electrostatic interactions impact how charged peptide substrates bind/orient on the transferase surface, thus modulating their activities. In summary, we show the GalNAc-Ts utilize more extended surfaces than initially thought for binding substrates based on electrostatic, and likely other hydrophobic/hydrophilic interactions, furthering our understanding of how these transferases select their target.


Asunto(s)
Mucinas , N-Acetilgalactosaminiltransferasas , Humanos , Glicosilación , Mucinas/metabolismo , Isoenzimas/química , Péptidos/química , N-Acetilgalactosaminiltransferasas/metabolismo , Especificidad por Sustrato , Polipéptido N-Acetilgalactosaminiltransferasa
13.
Mol Biol Rep ; 50(10): 8589-8601, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37644368

RESUMEN

BACKGROUND: We aimed to evaluate the various clinicopathodemographical, epidemiological, and molecular contributors to cumulatively worldwide metastatic colorectal cancer (CRC) in CRC patients from a highly populated area in northeastern Iran to pinpoint metastasis risk. METHODS: A retrospective clinical material-based cohort including a total of 6260 registered CRC patients, of whom 3829 underwent surgery, from regional university hospitals, during 2006-2016, were analyzed for the clinicopathodemographical aspects of age, sex, stage of CRC, history of smoking, type 2 diabetes (T2D), hypertension, body mass index (BMI), familial/occupational status, post-surgery survival period and mRNA/protein expression of mucin stabilizer (B3GALNT2), mucin I (MUC1), key cell cycle molecules (i.e., P53 and Ki67), and MMR-related genes. Factors were set to estimate the risk of metastatic CRC and mortality. RESULTS: Predominant adenocarcinomatous CRCs were found in colon. Post-surgery survival period of metastatic CRC patients was remarkably longer in patients aged > 50 compared to those aged < 50 years, and worse in females than males. B3GALNT2high, MUChigh, P53low, and Ki67high mRNA/protein expression in the metastatic stage III CRC along with T2D and hypertension were associated with increased metastasis/mortality, with more worsening in males, older, BMI > 25, urban residing, and employed individuals, indicative of non-genetic attributable factors. CONCLUSION: B3GALNT2, MUC1, and "Ki67" can be used as promising biomarkers for prognosis and early diagnosis of increasingly/predominantly non-genetic/environmental originated metastatic CRCs.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Diabetes Mellitus Tipo 2 , N-Acetilgalactosaminiltransferasas , Femenino , Masculino , Humanos , Mucinas/genética , Antígeno Ki-67/genética , Estudios Retrospectivos , Proteína p53 Supresora de Tumor , Ciclo Celular , Neoplasias Colorrectales/genética
14.
Redox Biol ; 64: 102782, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37315345

RESUMEN

Rostral ventrolateral medulla (RVLM) is thought to serve as a major vasomotor center that participates in controlling the progression of stress-induced hypertension (SIH). Circular RNAs (circRNAs) perform important functions in the regulation of diverse physiological and pathological processes. However, information concerning the functions of RVLM circRNAs on SIH remains limited. RNA sequencing was performed to profile circRNA expression in RVLMs from SIH rats, which were induced by electric foot shocks and noises. The functions of circRNA Galntl6 in reducing blood pressure (BP) and its potential molecular mechanisms on SIH were investigated via various experiments, such as Western blot and intra-RVLM microinjection. A total of 12,242 circRNA transcripts were identified, among which circRNA Galntl6 was dramatically downregulated in SIH rats. The upregulation of circRNA Galntl6 in RVLM effectively decreased the BP, sympathetic outflow, and neuronal excitability in SIH rats. Mechanistically, circRNA Galntl6 directly sponged microRNA-335 (miR-335) and restrained it to reduce oxidative stress. Reintroduction of miR-335 observably reversed the circRNA Galntl6-induced attenuation of oxidative stress. Furthermore, Lig3 can be a direct target of miR-335. MiR-335 inhibition substantially increased the expression of Lig3 and suppressed oxidative stress, and these favorable effects were blocked by Lig3 knockdown. CircRNA Galntl6 is a novel factor that impedes SIH development, and the circRNA Galntl6/miR-335/Lig3 axis represents one of the possible mechanisms. These findings demonstrated circRNA Galntl6 as a possibly useful target for the prevention of SIH.


Asunto(s)
Hipertensión , MicroARNs , Animales , Ratas , Presión Sanguínea , Hipertensión/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , N-Acetilgalactosaminiltransferasas/genética , Estrés Oxidativo/fisiología , ARN Circular/genética , ARN Circular/metabolismo , ARN Circular/farmacología , Regulación hacia Arriba
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(7): 802-806, 2023 Jul 10.
Artículo en Chino | MEDLINE | ID: mdl-37368380

RESUMEN

OBJECTIVE: To explore the genetic basis for a Chinese pedigree affected with recurrent fetal hydrocephalus. METHODS: A couple who had presented at the Affiliated Hospital of Putian College on March 3, 2021 was selected as the study subject. Following elective abortion, fetal tissue and peripheral blood samples were respectively obtained from the abortus and the couple, and were subjected to whole exome sequencing. Candidate variants were verified by Sanger sequencing. RESULTS: The fetus was found to harbor compound heterozygous variants of the B3GALNT2 gene, namely c.261-2A>G and c.536T>C (p.Leu179Pro), which were inherited from its father and mother, respectively.According to the guidelines of American College of Medical Genetics and Genomics, both variants were classified as pathogenic (PVS1+PM2_Supporting; PM3+PM2_Supporting+PP3+PP4). CONCLUSION: The compound heterozygous variants of the B3GALNT2 gene probably underlay the α-dystroglycanopathy in this fetus. Above results have provided a basis for genetic counseling of this pedigree.


Asunto(s)
Pueblos del Este de Asia , Síndrome de Walker-Warburg , Femenino , Humanos , Embarazo , Feto Abortado , Pueblo Asiatico/genética , Feto , Asesoramiento Genético , Mutación , N-Acetilgalactosaminiltransferasas , Linaje , Síndrome de Walker-Warburg/genética
16.
J Pediatr Endocrinol Metab ; 36(6): 530-538, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37042760

RESUMEN

OBJECTIVES: Congenital Glycosylation Disorders (CDG) are a large group of inherited metabolic diseases with multi-organ involvement. Herein, we aimed to expand the clinical characteristics of patients with CDG based on our experience with diagnoses and follow-up of CDG patients from different subtypes. METHODS: The clinical and laboratory findings from the last 15 years were reviewed retrospectively in Ege University Child Metabolism and Nutrition Department. RESULTS: There were 8 (57.2 %) females and 6 (42.8 %) males. Diagnoses of the patients were PMM2-CDG (n=4), PGM1-CDG (n=2), DPAGT1-CDG (n=2), SRD5A3-CDG (n=2), MPI-CDG (n=1), POMT2-CDG (n=1), B3GALNT2-CDG (n=1), DPM1-CDG (n=1). The clinical findings of the patients were dysmorphia (85.7 %), developmental delay (85.7 %), intellectual disability (85.7 %), ocular abnormalities (64.2 %), skeletal malformations (64.2 %), failure to thrive (57.1 %), microcephaly (57.1 %), hepatomegaly (35.7 %), hearing loss (35.7 %), seizures (28.5 %), gastrointestinal symptoms (21.4 %), endocrine abnormalities (21.4 %), and cardiac abnormalities (7.1 %). Laboratory findings were abnormal TIEF (92.8 %), abnormal liver enzymes (64.2 %), decreased protein C (64.2 %), decreased antithrombin III (64.2 %), decreased protein S (42.8 %), hypogammaglobulinemia (35.7 %), cerebellar hypoplasia (28.5 %), CK elevation (7.1 %), and hypoglycemia (7.1 %). CONCLUSIONS: This study contributes to the literature by sharing our ultra-rare DPM1-CDG case with less than 20 cases in the literature and expanding the clinical and molecular characteristics of other CDG patients. Hyperinsulinemic hypoglycemia, short stature, hypothyroidism, growth hormone deficiency, hypogammaglobulinemia, pericardial effusion, elevated CK, congenital myasthenia, and anorectal malformation were unique findings that were observed. Cerebello-ocular findings accompanying multi-organ involvement were an essential clue for a possible CDG.


Asunto(s)
Agammaglobulinemia , Trastornos Congénitos de Glicosilación , Hipoglucemia , N-Acetilgalactosaminiltransferasas , Masculino , Niño , Femenino , Humanos , Estudios de Seguimiento , Estudios Retrospectivos , Glicosilación , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/genética , Proteínas de la Membrana/genética , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa , N-Acetilgalactosaminiltransferasas/metabolismo
17.
EBioMedicine ; 91: 104546, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37023531

RESUMEN

BACKGROUND: Global sclerostin inhibition reduces fracture risk efficiently but has been associated with cardiovascular side effects. The strongest genetic signal for circulating sclerostin is in the B4GALNT3 gene region, but the causal gene is unknown. B4GALNT3 expresses the enzyme beta-1,4-N-acetylgalactosaminyltransferase 3 that transfers N-acetylgalactosamine onto N-acetylglucosaminebeta-benzyl on protein epitopes (LDN-glycosylation). METHODS: To determine if B4GALNT3 is the causal gene, B4galnt3-/- mice were developed and serum levels of total sclerostin and LDN-glycosylated sclerostin were analysed and mechanistic studies were performed in osteoblast-like cells. Mendelian randomization was used to determine causal associations. FINDINGS: B4galnt3-/- mice had higher circulating sclerostin levels, establishing B4GALNT3 as a causal gene for circulating sclerostin levels, and lower bone mass. However, serum levels of LDN-glycosylated sclerostin were lower in B4galnt3-/- mice. B4galnt3 and Sost were co-expressed in osteoblast-lineage cells. Overexpression of B4GALNT3 increased while silencing of B4GALNT3 decreased the levels of LDN-glycosylated sclerostin in osteoblast-like cells. Mendelian randomization demonstrated that higher circulating sclerostin levels, genetically predicted by variants in the B4GALNT3 gene, were causally associated with lower BMD and higher risk of fractures but not with higher risk of myocardial infarction or stroke. Glucocorticoid treatment reduced B4galnt3 expression in bone and increased circulating sclerostin levels and this may contribute to the observed glucocorticoid-induced bone loss. INTERPRETATION: B4GALNT3 is a key factor for bone physiology via regulation of LDN-glycosylation of sclerostin. We propose that B4GALNT3-mediated LDN-glycosylation of sclerostin may be a bone-specific osteoporosis target, separating the anti-fracture effect of global sclerostin inhibition, from indicated cardiovascular side effects. FUNDING: Found in acknowledgements.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Densidad Ósea , N-Acetilgalactosaminiltransferasas , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Huesos , Densidad Ósea/genética , Glucocorticoides/farmacología , Glicosilación , Humanos
18.
FEBS Open Bio ; 13(9): 1615-1624, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36999634

RESUMEN

Genetic disruption of glycosyltransferases has provided clear information on the roles of their reaction products in the body. Our group has studied the function of glycosphingolipids by genetic engineering of glycosyltransferases in cell culture and in mice, which has demonstrated both expected and unexpected results. Among these findings, aspermatogenesis in ganglioside GM2/GD2 synthase knockout mice was one of the most surprising and intriguing results. There were no sperms in testis, and multinuclear giant cells were detected instead of spermatids. Although serum levels of testosterone in the male mice were extremely low, testosterone accumulated in the interstitial tissues, including Leydig cells, and seemed not to be transferred into the seminiferous tubules or vascular cavity from Leydig cells. This was considered to be the cause of aspermatogenesis and low serum levels of testosterone. Patients with a mutant GM2/GD2 synthase gene (SPG26) showed similar clinical signs, not only in terms of the neurological aspects, but also in the male reproductive system. The mechanisms for testosterone transport by gangliosides are discussed here based on our own results and reports from other laboratories.


Asunto(s)
Gangliósidos , N-Acetilgalactosaminiltransferasas , Animales , Masculino , Ratones , Gangliósido G(M2) , Gangliósidos/genética , Ratones Noqueados , N-Acetilgalactosaminiltransferasas/genética , Testosterona
20.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36835549

RESUMEN

The Sda carbohydrate epitope and its biosynthetic B4GALNT2 enzyme are expressed in the healthy colon and down-regulated to variable extents in colon cancer. The human B4GALNT2 gene drives the expression of a long and a short protein isoform (LF-B4GALNT2 and SF-B4GALNT2) sharing identical transmembrane and luminal domains. Both isoforms are trans-Golgi proteins and the LF-B4GALNT2 also localizes to post-Golgi vesicles thanks to its extended cytoplasmic tail. Control mechanisms underpinning Sda and B4GALNT2 expression in the gastrointestinal tract are complex and not fully understood. This study reveals the existence of two unusual N-glycosylation sites in B4GALNT2 luminal domain. The first atypical N-X-C site is evolutionarily conserved and occupied by a complex-type N-glycan. We explored the influence of this N-glycan using site-directed mutagenesis and showed that each mutant had a slightly decreased expression level, impaired stability, and reduced enzyme activity. Furthermore, we observed that the mutant SF-B4GALNT2 was partially mislocalized in the endoplasmic reticulum, whereas the mutant LF-B4GALNT2 was still localized in the Golgi and post-Golgi vesicles. Lastly, we showed that the formation of homodimers was drastically impaired in the two mutated isoforms. An AlphaFold2 model of the LF-B4GALNT2 dimer with an N-glycan on each monomer corroborated these findings and suggested that N-glycosylation of each B4GALNT2 isoform controlled their biological activity.


Asunto(s)
Retículo Endoplásmico , Aparato de Golgi , N-Acetilgalactosaminiltransferasas , Humanos , Retículo Endoplásmico/metabolismo , Glicosilación , Aparato de Golgi/metabolismo , Polisacáridos/metabolismo , Isoformas de Proteínas/metabolismo , N-Acetilgalactosaminiltransferasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...