Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
1.
Toxicol In Vitro ; 100: 105892, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38996828

RESUMEN

Targeting cancer cells through drug-based treatment or combination therapy protocols involving chemical compounds can be challenging due to multiple factors, including their resistance to bioactive compounds and the potential of drugs to damage healthy cells. This study aims to investigate the relationship between the structure of novel sulfur-containing shikonin oxime compounds and the corresponding cytotoxicity against four cancer types, namely colon, gastric, liver, and breast cancers, through computational chemistry tools. This investigation is suggested to help build insights into how the structure of the compounds influences their activity and understand the mechanisms behind it and subsequently might be used in multi-cancer drug design process to propose novel optimized compounds that potentially exhibit the desired activity. The findings showed that the cytotoxic activity against the four cancer types was accurately predictable (R2 > 0.7, NRMSE <20%) by a combination of search and machine learning algorithms, based on the information on the structure of the compounds, including their lipophilicity, surface area, and volume. Overall, this study is supposed to play a crucial role in effective multi-cancer drug design in cancer research areas.


Asunto(s)
Antineoplásicos , Naftoquinonas , Oximas , Relación Estructura-Actividad Cuantitativa , Humanos , Naftoquinonas/química , Naftoquinonas/farmacología , Naftoquinonas/toxicidad , Oximas/química , Oximas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Azufre/química , Aprendizaje Automático , Neoplasias/tratamiento farmacológico
2.
Plant Physiol Biochem ; 197: 107660, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36996637

RESUMEN

Hydrophilic, untethered 1,4-naphthoquinones (1,4-NQs) are plant secondary metabolites that are often excreted into the environment and play a role in various plant-microbial, plant-fungal, plant-insect and plant-plant interactions. The biological activity of 1,4-NQs is mainly related to their redox properties, i.e. the ability to undergo redox cycling in cells. These compounds may also undergo electrophilic addition to thiol-containing compounds. The aim of this study was to compare the impact of juglone, plumbagin, lawsone and 2-methoxy-1,4-naphthoquinone (2-met-NQ) on the antioxidant response of the green microalga Chlamydomonas reinhardtii. The algae were incubated with the examined compounds under low light for 6 h and the content of photosynthetic pigments, prenyllipid antioxidants, ascorbate, soluble thiols, proline, and superoxide dismutase activity was assessed. To examine the interaction between photosynthetic activity and naphthoquinone toxicity, we carried out the second experiment, in which C. reinhardtii was incubated with 1,4-NQs for 1 h under high light or in darkness. The pro-oxidant action of the examined 1,4-NQs depended on their reduction potentials, which decrease in order: juglone > plumbagin > 2-met-NQ > lawsone. Lawsone did not display pro-oxidant properties. Exposure to high light strongly enhanced the pro-oxidant effect of juglone, plumbagin, and 2-met-NQ, which is thought to result from the interception of the electrons from photosynthetic electron transfer chain. Only juglone was able to cause a fast depletion of plastoquinol, which may be an important mode of action of this allelochemical, responsible for its high toxicity to plants.


Asunto(s)
Chlamydomonas reinhardtii , Naftoquinonas , Especies Reactivas de Oxígeno/metabolismo , Chlamydomonas reinhardtii/metabolismo , Naftoquinonas/toxicidad , Naftoquinonas/química , Naftoquinonas/metabolismo , Antioxidantes/metabolismo , Plantas/metabolismo
3.
Ecotoxicol Environ Saf ; 249: 114381, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508801

RESUMEN

Black carbon (BC) is an important component of atmospheric PM 2.5 and the second largest contributor to global warming. 1,4-naphthoquinone-coated BC (1,4 NQ-BC) is a secondary particle with great research value, so we chose 1,4 NQ-BC as the research object. In our study, mitochondria and lysosomes were selected as targets to confirm whether they were impaired by 1,4 NQ-BC, label free proteomics technology, fluorescent probes, qRT-PCR and western blots were used to investigate the mechanism of 1,4 NQ-BC toxicity. We found 494 differentially expressed proteins (DEPs) in mitochondria and 86 DEPs in lysosomes using a proteomics analysis of THP1 cells after 1,4 NQ-BC exposure for 24 h. Through proteomics analysis and related experiments, we found that 1,4 NQ-BC can damage THP-1-M cells by obstructing autophagy, increasing lysosomal membrane permeability, disturbing the balance of ROS, and reducing the mitochondrial membrane potential. It is worth noting that 1,4 NQ-BC prevented the removal of FTL by inhibiting autophagy, and increased IL-33 level by POR/FTL/IL-33 axis. We first applied proteomics to study the damage mechanism of 1,4 NQ-BC on THP1 cells. Our research will enrich knowledge of the mechanism by which 1,4 NQ-BC damages human macrophages and identify important therapeutic targets and adverse outcome pathways for 1,4 NQ-BC-induced damage.


Asunto(s)
Apoferritinas , Autofagia , Interleucina-33 , Lisosomas , Naftoquinonas , Hollín , Humanos , Apoferritinas/metabolismo , Autofagia/efectos de los fármacos , Interleucina-33/metabolismo , Macrófagos/efectos de los fármacos , Naftoquinonas/toxicidad , Hollín/toxicidad , Regulación hacia Arriba , Lisosomas/efectos de los fármacos
4.
Bioengineered ; 12(1): 4475-4488, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34304701

RESUMEN

Traumatic tracheal stenosis (TS) is a serious respiratory disease characterized by hyperplasia of airway granulation. Plumbagin (PLB) is a natural naphthoquinone component with anti-fibrotic properties. This research aimed to explore the roles of PLB in alleviating TS and the underlying mechanisms. For in vitro studies, lung fibroblasts (IMR-90 cells), with/without PLB treatment or TGF-ß1 induction, were used. The viability and proliferation of IMR-90 cells were examined by CCK-8 and EdU incorporation assays. The differentiation of IMR-90 cells was assessed by detecting the mRNA and protein expression levels of collagen (COL)-1 and alpha-smooth muscle actin (α-SMA). Besides, immunofluorescence assay was conducted to evaluate the localization of α-SMA in TGF-ß1-induced IMR-90 cells. Moreover, the combination of PLB with/without TßRI (SB-431,542), PI3K/Akt (Ly294002) or mTOR (rapamycin) inhibitor was pretreated on IMR-90 cells after TGF-ß1 induction. For in vivo studies, a rat model of TS was established. The pathological features and severity of TS were determined by hematoxylin and eosin staining. The protein levels of TGF-ß1/Smad and Akt/mTOR pathways were detected for both in vitro and in vivo models. PLB effectively inhibited the proliferation and differentiation of TGF-ß1-induced IMR-90 cells, and suppressed TGF-ß1/Smad and Akt/mTOR signaling pathways both in vivo and in vitro. Furthermore, PLB reduced the degree of TS in rats. Taken together, our results indicate that PLB regulates lung fibroblast activity and attenuates TS in rats by inhibiting TGF-ß1/Smad and Akt/mTOR signaling pathways. In conclusion, this study implies that PLB may serve as a promising therapeutic compound for TS.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Naftoquinonas/farmacología , Estenosis Traqueal/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Pulmón/citología , Masculino , Naftoquinonas/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Smad/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
5.
Bioorg Med Chem Lett ; 49: 128274, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34303812

RESUMEN

Two series of (hetero)arylamino-naphthoquinones and benzo-fused carbazolequinones were considered for study with the rationale that related structural motifs are present in numerous drugs, clinical trial agents, natural products and hTopoIIα inhibitors. Total 42 compounds were synthesized by reactions including dehydrogenative CN and Pd-catalyzed CC bond forming transformations. These compounds were screened against numerous cancer cells including highly metastatic one (MCF-7, MDA-MB-231, H-357 and HEK293T), and normal cells (MCF 10A). Some of the active compounds were evaluated for clonogenic cell survival and apoptotic effects in cancer cells (DAPI nuclear staining, Comet assay, Annexin-V-FITC/PI dual staining, flow cytometry, and western blot analysis with relevant proteins). All compounds were tested for hTopoIIα inhibitory activity. The investigated series compounds showed important properties like significant apoptotic antiproliferation in cancer cells with cell cycle arrest at S-phase and downregulation of NF- κß signaling cascade, relatively less cytotoxicity to normal cells, and hTopoIIα inhibition with more efficiency compared to an anticancer drug etoposide.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carbazoles/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Naftoquinonas/farmacología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/toxicidad , Carbazoles/síntesis química , Carbazoles/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Humanos , Naftoquinonas/síntesis química , Naftoquinonas/toxicidad , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/toxicidad
6.
J Inorg Biochem ; 222: 111497, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34090039

RESUMEN

The use of natural products as potential ligands has been explored as a strategy in the development of metal-based chemotherapy. Since ruthenium complexes are promising alternatives to traditional antitumor agents, this study evaluated the anti-melanoma potential of two ruthenium(II) complexes containing the naphthoquinone ligands lapachol (lap), [Ru(lap)(dppm)2]PF6, and lawsone (law), [Ru(law)(dppm)2]PF6, in addition to the bis(diphenylphosphino)methane (dppm) ligand, referred to as complexes (1) and (2), respectively, using a syngeneic murine melanoma model. Activation of the apoptotic pathway by the treatments was assessed by immunohistochemistry in tumor tissue. Additionally, toxicity of the treatments was evaluated by variation in body and organ weight, quantification of biochemical indicators of renal damage, and genotoxicity in bone marrow and hepatocytes. First, the antiproliferative activity of (1) and (2) was observed in B16F10 cells, with IC50 values of 2.78 and 1.68 µM, respectively. The results obtained in mice showed that, unlike complex (1), (2) possesses significant anti-melanoma activity demonstrated by a reduction in tumor volume and mass (88.42%), as well as in mitosis frequency (83.86%). Additionally, complex (2) increased the levels of cleaved caspase-3, inducing tumor cell apoptosis. When compared to the metallodrug cisplatin, complex (2) exhibited similar anti-melanoma activity and lower toxicity considering all parameters evaluated. In silico studies demonstrated no difference in the binding energy of the naphthoquinone complex between complexes (1) and (2). However, the complex containing the lawsone ligand has a lower molar volume, which may be important for interactions with minor DNA grooves. The present results demonstrate the antitumor efficiency of complex (2) and a significantly lower systemic toxicity compared to cisplatin.


Asunto(s)
Antineoplásicos/uso terapéutico , Complejos de Coordinación/uso terapéutico , Melanoma/tratamiento farmacológico , Naftoquinonas/uso terapéutico , Fosfinas/uso terapéutico , Animales , Antineoplásicos/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/toxicidad , Ligandos , Masculino , Ratones Endogámicos C57BL , Naftoquinonas/toxicidad , Fosfinas/toxicidad , Rutenio/química , Rutenio/toxicidad
7.
Biomed Pharmacother ; 140: 111745, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34020246

RESUMEN

Traditionally, Diospyros lotus Linn is used for insomnia and other associated disorders. Insomnia is a worldwide disorder with different etiology which is treated with different synthetic medicine associated with addiction. Natural products are generally devoid of such addition with good efficacy. Current research was conducted to evaluate the sedative and hypnotic effects of dimeric naphthoquinones such as dinaphthodiospyrol A (1), dinaphthodiospyrol B (2), dinaphthodiospyrol C (3), dinaphthodiospyrol D (4), dinaphthodiospyrol E (5) and dinaphthodiospyrol F (6) isolated from the chloroform fractions of D. lotus. The sedative and hypnotic effects at the dose of 5 and 10 mg/kg (each compound) were assessed through open field and phenobarbital induced sleep test, respectively. In the case of open field test the administration of tested compounds significantly hindered the movement of animals, while in case of hypnotic effect the tested samples significantly improved the onset and duration of sleep as compared to control. The overall effects were in a dose dependent manner. The compounds were also assessed for acute toxicity, but no toxicity was observed. In this regard, our research triumphantly announced the strong chemical base for the folkloric values of the plant with their fringe benefits and implemented a platform for further aspects of mechanistic and clinical studies. A possible mechanism of in vivo inhibition was studied by using docking simulations on GABA receptors. Binding orientations and types of interactions revealed that a possible mechanism behind these pharmacological actions might be interaction with GABA receptors.


Asunto(s)
Hipnóticos y Sedantes/farmacología , Naftoquinonas/farmacología , Sueño/efectos de los fármacos , Animales , Diospyros , Femenino , Hipnóticos y Sedantes/toxicidad , Masculino , Ratones , Simulación del Acoplamiento Molecular , Naftoquinonas/toxicidad , Raíces de Plantas , Receptores de GABA/metabolismo
8.
J Toxicol Sci ; 46(4): 177-185, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33814511

RESUMEN

Chemical modification of the thiol group on protein tyrosine phosphatase (PTP) 1B triggers an activation of epidermal growth factor receptor (EGFR) signaling that is mimicked by environmental electrophiles through S-modification of PTP1B. While activation of PTP1B/EGFR by a single exposure to an electrophile has been established, the effects of combined exposure to electrophiles are unknown. Here, we examined the activation of EGFR signaling by combined exposure to ambient electrophiles in human epithelial carcinoma A431 cells. Simultaneous exposure to 1,2- and 1,4-naphthoquinone (NQ) augmented the S-modification of endogenous and recombinant human PTP1B (hPTP1B). Combined exposure of hPTP1B or A431 cells to 1,2- and 1,4-NQ escalated the inactivation of PTP compared with individual exposure. Phosphorylation of EGFR and its downstream kinase extracellular signal-regulated kinase (ERK) 1/2 by 1,2-NQ exposure was facilitated by simultaneous exposure to 1,2-NQ with 10 µM 1,4-NQ. An EGFR inhibitor diminished the phosphorylation of ERK1/2, indicating that ERK was phosphorylated following EGFR activation by the NQ cocktail. The combined exposure to NQs also accelerated cell death in A431 cells compared with each NQ alone. While no EGFR/ERK activation was seen following 1,4-benzoquinone (BQ) treatment, exposure to 1,4-NQ in the presence of 1,4-BQ increased 1,4-NQ-mediated activation of EGFR. This suggests that the enhancement of 1,4-NQ-dependent EGFR activation by 1,4-BQ is caused by a different mechanism than 1,2-NQ with 1,4-NQ. These results suggest that combined exposure to ambient electrophiles, even at low concentrations, can induce stronger activation of redox signaling than individual exposure. Our findings indicate that combining different electrophiles may produce unexpected effects.


Asunto(s)
Carcinoma/patología , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Naftoquinonas/toxicidad , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Oxidación-Reducción , Fosforilación , Transducción de Señal/genética
9.
Biochem Pharmacol ; 188: 114544, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33831396

RESUMEN

Although YM155 is reported to suppress survivin (also known as BIRC5) expression in cancer cells, its cytotoxic mechanism in human acute myeloid leukemia (AML) cells has not been clearly resolved. In this study, we analyzed the mechanistic pathways that modulate the sensitivity of human AML U937 and HL-60 cells to YM155. YM155 induced apoptosis in AML cells, which was characterized by p38 MAPK phosphorylation and downregulation of survivin and MCL1 expression. Phosphorylated p38 MAPK causes autophagy-mediated Sp1 degradation, thereby inhibiting the transcription of survivin and MCL1. The reduction of survivin and MCL1 levels further facilitated Sp1 protein degradation through autophagy. The restoration of Sp1, survivin, or MCL1 expression protected U937 and HL-60 cells from YM155-mediated cytotoxicity. U937 and HL-60 cells were continuously exposed to hydroquinone (HQ) to generate U937/HQ and HL-60/HQ cells, which showed increased SLC35F2 expression. The increase in SLC35F2 expression led to an increase in the sensitivity of U937/HQ cells to YM155-mediated cytotoxicity, whereas no such effect was observed in HL-60/HQ cells. Of note, myeloperoxidase (MPO) activity in HL-60 and HL-60/HQ cells enhanced YM155 cytotoxicity in these cells, and the enforced expression of MPO also increased the sensitivity of U937 cells to YM155. Taken together, we conclude that p38 MAPK-modulated autophagy inhibits Sp1-mediated survivin and MCL1 expression, which, in turn, leads to the death of U937 and HL-60 cells following YM155 treatment. In addition, our data indicate that SLC35F2 increases the sensitivity of U937 cells to YM155-mediated cytotoxicity, whereas MPO enhances YM155 cytotoxicity in U937 and HL-60 cells.


Asunto(s)
Imidazoles/toxicidad , Proteínas de Transporte de Membrana/biosíntesis , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/biosíntesis , Naftoquinonas/toxicidad , Peroxidasa/biosíntesis , Factor de Transcripción Sp1/biosíntesis , Survivin/biosíntesis , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Citotoxinas/toxicidad , Relación Dosis-Respuesta a Droga , Regulación Neoplásica de la Expresión Génica , Células HL-60 , Humanos , Leucemia/genética , Leucemia/metabolismo , Proteínas de Transporte de Membrana/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Peroxidasa/genética , Factor de Transcripción Sp1/antagonistas & inhibidores , Factor de Transcripción Sp1/genética , Survivin/antagonistas & inhibidores , Survivin/genética , Células U937
10.
Toxicol Appl Pharmacol ; 413: 115392, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33428920

RESUMEN

Electrophiles, ubiquitously found in the environment, modify thiol groups of sensor proteins, leading to activation of redox signaling pathways such as the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor E2 related factor 2 (Nrf2) pathway. Nrf2 activation by exposure to single electrophiles has been established. However, the effect of exposure to a combination of electrophiles on Nrf2 activation has not been well evaluated. The current study examined whether combined exposure to electrophiles enhances the modification of thiol groups and Keap1/Nrf2 activation in HepG2 cells. Six electrophiles [1,2-naphthoquinone (1,2-NQ), 1,4-NQ, 1,4-benzoquinone, (E)-2-hexenal (hexenal), (E)-2-decenal, and (E)-2-butenal] were tested for S-modification of albumin in vitro and for cytotoxicity to HepG2 cells. Interestingly, a mixture of the electrophiles enhanced S-modification of albumin and cytotoxicity compared with exposure to each electrophile separately. Herein, we focused on 1,2-NQ, 1,4-NQ, and hexenal to clarify the combined effect of electrophiles on Keap1/Nrf2 activation in HepG2 cells. A concentration addition model revealed that 1,2-NQ and/or 1,4-NQ additively enhanced hexenal-mediated S-modification of GSH in vitro, whereas the cytotoxicity of hexenal was synergistically increased by simultaneous exposure of HepG2 cells to the NQs. Furthermore, an NQ cocktail (2.5 µM each) that does not activate Nrf2 enhanced hexenal-mediated Nrf2 activation. These results suggest that combined exposure to electrophiles at low concentrations induces stronger activation of redox signaling compared with exposure to each electrophile alone and worsens their cytotoxicity.


Asunto(s)
Contaminantes Ambientales/toxicidad , Exposoma , Hepatocitos/efectos de los fármacos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Aldehídos/toxicidad , Benzoquinonas/toxicidad , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Células Hep G2 , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Factor 2 Relacionado con NF-E2/genética , Naftoquinonas/toxicidad , Oxidación-Reducción , Albúmina Sérica Humana/metabolismo , Transducción de Señal , Compuestos de Sulfhidrilo/metabolismo
11.
J Cardiovasc Pharmacol ; 77(2): 245-252, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33105322

RESUMEN

ABSTRACT: Vasomotion is defined as rhythmic oscillations in arterial diameter that regulate the blood flow and blood pressure. Because antitumor treatment may impair vascular functions and increase the blood pressure, we sought to evaluate whether a new naphthoquinone derivative, postulated as an antitumor agent, manifests adverse effects on vascular function. In this article, we evaluated the toxicity of 2-(4-hydroxyphenyl) amino-1,4-naphthoquinone (Q7) and its effects on vascular vasomotion in 3 models of vascular structure: endothelial cells, aortic ring, and smooth muscle cells. Although showing nontoxic effects, Q7 inhibited the formation of capillary-like structures of the EA.hy926 endothelial cell line grown on Matrigel. In exvivo experiments with aortic rings precontracted with phenylephrine (PE, 10-6 M), Q7 (10-5 M) significantly (P < 0.05) reduced vascular rhythmic contractions induced by the acetylcholine (ACh; 10-7-10-5 M), whereas sodium nitroprusside (a nitric oxide donor; 10-8 M) recovered the vasomotion. Furthermore, Q7 (10-5 M) did not decrease KCl-induced vascular rhythmic contractions in the aortic rings precontracted with BaCl2 (a nonselective K+ channel blocker; 10-3 M). Vascular smooth muscle cells (A7r5) preincubated with Q7 (10-5 M) for 3 hours also demonstrated a reduced glucose uptake. However, the Adenosine Triphosphate content was unaffected, suggesting that the rapid reduction in vasomotion observed in vascular reactivity experiments did not involve cellular metabolism but may be due to faster mechanisms involving endothelial nitric oxide and K+ channels leading to oscillations in intracellular Ca2+. In summary, the naphthoquinone derivative Q7 presents low cytotoxicity yet may alter the endothelial cell response and vasomotion in the absence of changes in smooth muscle cell metabolism.


Asunto(s)
Antineoplásicos/toxicidad , Aorta/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Naftoquinonas/toxicidad , Vasoconstricción/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Aorta/metabolismo , Línea Celular , Células Endoteliales/metabolismo , Glucosa/metabolismo , Humanos , Masculino , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Periodicidad , Canales de Potasio/metabolismo , Ratas Wistar
12.
Drug Chem Toxicol ; 44(2): 140-147, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30574814

RESUMEN

Shikonin (SH) is used as a red pigment for food coloring and cosmetics, and has cytotoxic activity towards cancer cells. However, due to strong toxicity SH has limited potential as an anticancer drug. Acetylshikonin (ASH) is one of the SH derivatives with promising anticancer potential. In present study, we attempted to evaluate and compare the cytotoxicity of SH and ASH towards a normal cell line (V79) and in addition to evaluate their antigenotoxic activity. The evaluation was made with the use of the set of cytotoxicity assays with V79 line and the micronucleus test in vitro performed using clinafloxacin (CLFX), ethyl methanesulfonate (EMS) as direct genotoxins and cyclophosphamide (CPA) as indirect genotoxin. For CPA and EMS the simultaneous protocol was used and for CLFX three different variants were performed: pretreatment, simultaneous, and post-treatment. A higher cytotoxic effect was observed for SH. The EC50 values obtained for SH were approximately twofold lower compared to that of ASH. Moreover, ASH exhibited an antigenotoxic potential against CPA-induced genotoxicity, whereas SH has no activity. However, ASH increased the EMS-induced genotoxicity, when SH exhibited no effect. Both compounds decreased the genotoxicity of CLFX in pretreatment and simultaneous protocol. Based on the results of the present study it can be concluded that ASH is less cytotoxic than SH to normal cells and has comparable antigenotoxic potential.


Asunto(s)
Antraquinonas/farmacología , Daño del ADN/efectos de los fármacos , Naftoquinonas/farmacología , Animales , Antraquinonas/toxicidad , Línea Celular , Cricetulus , Ciclofosfamida/toxicidad , Metanosulfonato de Etilo/toxicidad , Fluoroquinolonas/toxicidad , Pruebas de Micronúcleos , Naftoquinonas/toxicidad
13.
Int Immunopharmacol ; 90: 107124, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33168414

RESUMEN

Leishmaniasis is caused by several protozoan species of Leishmania, and being endemically present in 98 countries around the world, it is also a severe public-health problem. The available antileishmanial drugs are toxic and yet present risks of recurrent infection. Efforts to find new, effective, and safe oral agents for the treatment of leishmaniasis are continuing throughout the world. This work aimed to evaluate the antileishmania activity of cordiaquinone E (CORe), isolated from the roots of Cordia polycephala (Lam.) I. M. Johnston. Cytotoxicity, and possible mechanisms of action against promastigote and amastigote forms of Leishmania amazonensis were examined. CORe was effective in inhibiting promastigote (IC50 4.5 ± 0.3 µM) and axenic amastigote (IC50 2.89 ± 0.11 µM) growth in concentrations found non-toxic for the host cell (CC50 246.81 ± 14.5 µM). Our results revealed that CORe presents direct activity against the parasite, inducing cell death by apoptosis. CORe present greater activity against intracellular amastigotes (EC50 1.92 ± 0.2 µM), yet with much higher selectivity indexes than the reference drugs, being respectively more benign towards RAW 264.7 macrophages than meglumine antimoniate and amphotericin B, (respectively by 4.68 and 42.84 fold). The antiamastigote activity was associated with increased TNF-α, IL-12, NO, and ROS levels, as well as decreased IL-10 levels. These results encourage the progression of studies on this compound for the development of new leishmanicidal agents.


Asunto(s)
Leishmania mexicana/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Naftoquinonas/farmacología , Tripanocidas/farmacología , Animales , Apoptosis/efectos de los fármacos , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Células HL-60 , Interacciones Huésped-Parásitos , Humanos , Leishmania mexicana/crecimiento & desarrollo , Leishmaniasis Cutánea/metabolismo , Leishmaniasis Cutánea/parasitología , Macrófagos/metabolismo , Macrófagos/parasitología , Ratones , Naftoquinonas/toxicidad , Óxido Nítrico/metabolismo , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo , Tripanocidas/toxicidad
14.
Int J Mol Sci ; 22(1)2020 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-33375280

RESUMEN

Juglone, a major naphthalenedione component of walnut trees, has long been used in traditional medicine as an antimicrobial and antitumor agent. Nonetheless, its impact on oocyte and preimplantation embryo development has not been entirely clarified. Using the bovine model, we sought to elucidate the impact of juglone treatment during the in vitro maturation (IVM) of oocytes on their maturation and development of embryos. Results showed a severe reduction in oocyte nuclear maturation and cumulus expansion and a significant increase in mitochondrial dysfunction and reactive oxygen species (ROS) levels in cumulus-oocyte complexes (COCs) treated with juglone (12.5, 25.0, and 50.0 µM). In addition, RT-qPCR showed downregulation of the expansion-related (HAS2, TNFAIP6, PTX3, and PTGS2) and mitochondrial (ATPase6 and ATP5F1E) genes in juglone-treated COCs. Moreover, the development rates of day 4 total cleavage and 8-16 cell stage embryos, as well as day 8 blastocysts, were significantly reduced following exposure to juglone. Using immunofluorescence, the apoptotic marker caspase-9 was overexpressed in oocytes exposed to juglone (25.0 µM) compared to the untreated control. In conclusion, our study reports that exposing bovine oocytes to 12.5-50.0 µM of juglone can reduce their development through the direct induction of ROS accumulation, apoptosis, and mitochondrial dysfunction.


Asunto(s)
Apoptosis , Embrión de Mamíferos/patología , Mitocondrias/patología , Naftoquinonas/toxicidad , Oocitos/patología , Estrés Oxidativo/efectos de los fármacos , Animales , Blastocisto/efectos de los fármacos , Blastocisto/patología , Bovinos , Citotoxinas/toxicidad , Embrión de Mamíferos/efectos de los fármacos , Desarrollo Embrionario , Femenino , Técnicas de Maduración In Vitro de los Oocitos/métodos , Mitocondrias/efectos de los fármacos , Oocitos/efectos de los fármacos , Embarazo , Especies Reactivas de Oxígeno/metabolismo
15.
Reprod Toxicol ; 98: 200-208, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33010468

RESUMEN

Juglone, a naphthoquinone isolated from many species of the Juglandaceae (walnut) family, has been used in traditional Chinese medicine for centuries for its various pharmacological effects. Our previous research found its toxic effects on oocytes maturation. But we still know a little about its toxic effects on embryo development. Here, we used mouse embryo as a model to explore the effects of juglone on early mammalian embryo development. Exposure to juglone significantly decreased the development rate in early mouse embryos in vitro. Moreover, juglone exposure led to developmental arrest by disturbing mitochondrial function, producing abnormal epigenetic modifications, inducing high levels of oxidative stress and DNA damage, and increasing the rate of embryonic cell apoptosis. However, vitamin C (VC) ameliorated the toxic effects of juglone to a certain extent. Overall, juglone has a toxic effect on early embryo development through the generation of ROS and apoptosis. But VC was able to protect against these juglone-induced defects. These results not only give a new perspective on juglone's pharmacological effects on early mammalian embryo development, but also provide ideas for the better application of this agent in traditional Chinese medicine.


Asunto(s)
Ácido Ascórbico/farmacología , Embrión de Mamíferos/efectos de los fármacos , Naftoquinonas/toxicidad , Sustancias Protectoras/farmacología , Vitaminas/farmacología , Animales , Apoptosis/efectos de los fármacos , Daño del ADN , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Femenino , Masculino , Ratones Endogámicos ICR , Especies Reactivas de Oxígeno/metabolismo
16.
Chemistry ; 26(69): 16486-16496, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-32870550

RESUMEN

Accumulation and aggregation of the intrinsically disordered protein α-synuclein (α-Syn) into amyloid fibrils are hallmarks of a series of heterogeneous neurodegenerative disorders, known as synucleinopathies and most notably Parkinson's disease (PD). The crucial role of α-Syn aggregation in PD makes it an attractive target for the development of disease-modifying therapeutics that would inhibit α-Syn aggregation or disrupt its preformed fibrillar assemblies. To this end, we have designed and synthesized two naphthoquinone-dopamine-based hybrid small molecules, NQDA and Cl-NQDA, and demonstrated their ability to inhibit in vitro amyloid formation by α-Syn using ThT assay, CD, TEM, and Congo red birefringence. Moreover, these hybrid molecules efficiently disassembled preformed fibrils of α-Syn into nontoxic species, as evident from LUV leakage assay. NQDA and Cl-NQDA were found to have low cytotoxicity and they attenuated the toxicity induced by α-Syn towards SH-SY5Y neuroblastoma cells. NQDA was found to efficiently cross an in vitro human blood-brain barrier model. These naphthoquinone-dopamine based derivatives can be an attractive scaffold for therapeutic design towards PD.


Asunto(s)
Amiloide/química , Naftoquinonas , Enfermedad de Parkinson , alfa-Sinucleína/química , Dopamina , Humanos , Naftoquinonas/toxicidad
17.
Chem Biol Interact ; 330: 109227, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32818478

RESUMEN

The use of 3D models in various scientific applications is becoming more popular to replace traditional monolayers models. In this work, we used a three-dimensional in-house model of epidermis using HaCaT immortalized cells to evaluate the dermal toxicity induced by Basic Blue 99 and Basic Red 51, both present in commercial hair dye formulations. Our data show that cells cultured in the 3D model respond differently to those cultured in monolayer. Basic Red 51 dye induces apoptosis an DNA breaks in both models, however, these effects is more pronounced in cells cultured in monolayer. The toxic mode of action of Basic Blue 99 seems to be the induction of cell death, without genotoxic effects, but while the necrotic pathway is observed in HaCaT monolayer cell culture, was apoptosis seen in the Equivalent Human Epidermis (EHE) model. We could also confirm that cells in EHE model, an environment that could better mimic human effects, react differently to chemical stressors than the cells cultivated in 2D.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Epidermis/efectos de los fármacos , Tinturas para el Cabello/toxicidad , Apoptosis/efectos de los fármacos , Compuestos Azo/toxicidad , Técnicas de Cultivo de Célula/normas , Línea Celular , Daño del ADN/efectos de los fármacos , Tinturas para el Cabello/análisis , Humanos , Naftoquinonas/toxicidad , Necrosis/inducido químicamente , Compuestos de Amonio Cuaternario/toxicidad
18.
Mar Drugs ; 18(7)2020 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-32707634

RESUMEN

Polyhydroxylated naphthoquinones (PHNQs), known as spinochromes that can be extracted from sea urchins, are bioactive compounds reported to have medicinal properties and antioxidant activity. The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay showed that pure echinochrome A exhibited a cytotoxic effect on Saos-2 cells in a dose-dependent manner within the test concentration range (15.625-65.5 µg/mL). The PHNQ extract from New Zealand sea urchin Evechinus chloroticus did not induce any cytotoxicity within the same concentration range after 21 days of incubation. Adding calcium chloride (CaCl2) with echinochrome A increased the number of viable cells, but when CaCl2 was added with the PHNQs, cell viability decreased. The effect of PHNQs extracted on mineralized nodule formation in Saos-2 cells was investigated using xylenol orange and von Kossa staining methods. Echinochrome A decreased the mineralized nodule formation significantly (p < 0.05), while nodule formation was not affected in the PHNQ treatment group. A significant (p < 0.05) increase in mineralization was observed in the presence of PHNQs (62.5 µg/mL) supplemented with 1.5 mM CaCl2. In conclusion, the results indicate that PHNQs have the potential to improve the formation of bone mineral phase in vitro, and future research in an animal model is warranted.


Asunto(s)
Conservadores de la Densidad Ósea/farmacología , Huesos/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Naftoquinonas/farmacología , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Erizos de Mar/química , Animales , Conservadores de la Densidad Ósea/química , Conservadores de la Densidad Ósea/aislamiento & purificación , Conservadores de la Densidad Ósea/toxicidad , Huesos/metabolismo , Huesos/patología , Línea Celular Tumoral , Humanos , Hidroxilación , Naftoquinonas/química , Naftoquinonas/aislamiento & purificación , Naftoquinonas/toxicidad , Osteoblastos/metabolismo , Osteoblastos/patología , Factores de Tiempo
19.
Biochem Pharmacol ; 180: 114167, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32702370

RESUMEN

Naphthoquinone derivatives and metabolites are widely dispersed molecules in nature. Alkannin, a natural naphthoquinone compound, induces excellent cytotoxicity in cancer cells. However, the detailed mechanism by which alkannin inhibits cancer cell survival remains unclear. In the present study, we isolated alkannin from Arnebia euchroma and found that alkannin induced cytotoxic autophagy and apoptosis in many types of cancer cells in a dose-dependent manner. Alkannin treatment resulted in elevated accumulation of intracellular reactive oxygen species (ROS), leading to mitochondrial membrane potential loss, oxidative damage and JNK and p38 MAPK pathway activation. Notably, we found an antagonistic pattern of p38 MAPK and JNK signaling in the regulation of alkannin-mediated apoptosis and autophagy. Antioxidant NAC effectively attenuated alkannin-induced cytotoxicity and activation of downstream signaling pathways. Moreover, alkannin enhanced the sensitivity of cancer cells to chemotherapeutic agents. In summary, our study highlights the significant broad-spectrum antitumor effects of alkannin and reveals an important mechanism by which alkannin induces cytotoxic autophagy and apoptosis by promoting ROS-mediated mitochondrial dysfunction and activation of the JNK pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Naftoquinonas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis/fisiología , Autofagia/fisiología , Boraginaceae , Supervivencia Celular , Relación Dosis-Respuesta a Droga , Femenino , Células HCT116 , Células HEK293 , Células Hep G2 , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Naftoquinonas/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad
20.
Arh Hig Rada Toksikol ; 71(1): 69-77, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32597139

RESUMEN

Despite its evidenced beneficial herbicidal, antibacterial, antiviral, antifungal, and antioxidant effects, the application of juglone (5-hydroxy-1,4,-naphthoquinone) is limited due to its low water solubility and allelopathic and toxic effects. In recent years, research has aimed to overcome these limitations by increasing its solubility and controlling its release through nanoparticular systems. This is the first study to have synthesised and characterised juglone-loaded polymeric nanoparticles and compared them with free juglone for cytotoxicity in mouse (L929 fibroblasts) and alfalfa cells and for mutagenic potential in Salmonella typhimurium TA98/100. Mouse and plant cells treated with free and nano-encapsulated juglone showed a decrease in cell viability in a dose and time-dependent manner, but this effect was significantly lower with the nano-encapsulated form at lower doses. In the TA98 strain with S9, nano-encapsulated juglone did not exhibit mutagenic effects, unlike the free form. Since all results show that juglone encapsulation with polymeric nanoparticles reduced the toxic and mutagenic effects, it has a promising potential to be applied in medicine, food safety, and agriculture.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Citotoxinas/toxicidad , Fibroblastos/efectos de los fármacos , Medicago sativa/efectos de los fármacos , Mutágenos/toxicidad , Naftoquinonas/toxicidad , Solubilidad/efectos de los fármacos , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA