Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.916
Filtrar
1.
Mol Biol Rep ; 51(1): 658, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748314

RESUMEN

BACKGROUND: The formation of chronic wounds accounts for considerable costs in health care systems. Despite the several benefits of decellularized small intestinal submucosa (SIS) as an appropriate scaffold for different tissue regeneration, it has shortcomings such as lack of antibacterial features and inappropriate mechanical properties for skin tissue regeneration. We aimed to examine the efficacy and safety of decellularized SIS scaffold enhanced with cellulose acetate (CA) and silver (Ag) nanoparticles (NPs) for healing full-thickness wounds. METHODS AND RESULTS: The scaffolds were prepared by decellularizing bovine SIS and electrospinning CA/Ag nanoparticles and characterized using a transmission electron microscope (TEM), scanning electron microscope (SEM), tensile testing, and X-ray diffraction. In vivo evaluations were performed using full-thickness excisions covered with sterile gauze as the control group, SIS, SIS/CA, and SIS/CA/Ag scaffolds on the dorsum of twenty male Wistar rats divided into four groups randomly with 21-days follow-up. All in vivo specimens underwent Masson's trichrome (MT) staining for evaluation of collagen deposition, transforming growth factor-ß (TGF-ß) immunohistochemistry (IHC), and Haematoxylin Eosin (H&E) staining. The IHC and MT data were analyzed with the ImageJ tool by measuring the stained area. The TEM results revealed that Ag nanoparticles are successfully incorporated into CA nanofibers. Assessment of scaffolds hydrophilicity demonstrated that the contact angle of SIS/CA/Ag scaffold was the lowest. The in vivo results indicated that the SIS/CA/Ag scaffold had the most significant wound closure. H&E staining of the in vivo specimens showed the formation of epidermal layers in the SIS/CA/Ag group on day 21. The percentage of the stained area of MT and TGF-ß IHC staining's was highest in the SIS/CA/Ag group. CONCLUSION: The decellularized SIS/CA/Ag scaffolds provided the most significant wound closure compared to other groups and caused the formation of epidermal layers and skin appendages. Additionally, the collagen deposition and expression of TGF-ß increased significantly in SIS/CA/Ag group.


Asunto(s)
Celulosa , Mucosa Intestinal , Intestino Delgado , Nanopartículas del Metal , Nanofibras , Ratas Wistar , Plata , Andamios del Tejido , Cicatrización de Heridas , Animales , Plata/química , Celulosa/análogos & derivados , Celulosa/química , Cicatrización de Heridas/efectos de los fármacos , Nanopartículas del Metal/química , Ratas , Nanofibras/química , Andamios del Tejido/química , Mucosa Intestinal/metabolismo , Masculino , Intestino Delgado/metabolismo , Bovinos , Factor de Crecimiento Transformador beta/metabolismo , Ingeniería de Tejidos/métodos , Colágeno
2.
J Nanobiotechnology ; 22(1): 244, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735969

RESUMEN

Biomaterials can modulate the local immune microenvironments to promote peripheral nerve regeneration. Inspired by the spatial orderly distribution and endogenous electric field of nerve fibers, we aimed to investigate the synergistic effects of electrical and topological cues on immune microenvironments of peripheral nerve regeneration. Nerve guidance conduits (NGCs) with aligned electrospun nanofibers were fabricated using a polyurethane copolymer containing a conductive aniline trimer and degradable L-lysine (PUAT). In vitro experiments showed that the aligned PUAT (A-PUAT) membranes promoted the recruitment of macrophages and induced their polarization towards the pro-healing M2 phenotype, which subsequently facilitated the migration and myelination of Schwann cells. Furthermore, NGCs fabricated from A-PUAT increased the proportion of pro-healing macrophages and improved peripheral nerve regeneration in a rat model of sciatic nerve injury. In conclusion, this study demonstrated the potential application of NGCs in peripheral nerve regeneration from an immunomodulatory perspective and revealed A-PUAT as a clinically-actionable strategy for peripheral nerve injury.


Asunto(s)
Macrófagos , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Poliuretanos , Ratas Sprague-Dawley , Células de Schwann , Animales , Regeneración Nerviosa/efectos de los fármacos , Poliuretanos/química , Ratas , Macrófagos/efectos de los fármacos , Células de Schwann/efectos de los fármacos , Nanofibras/química , Nervio Ciático/efectos de los fármacos , Regeneración Tisular Dirigida/métodos , Masculino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Andamios del Tejido/química , Ratones , Células RAW 264.7
3.
Sci Rep ; 14(1): 10846, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38736008

RESUMEN

Human liver organoids are in vitro three dimensionally (3D) cultured cells that have a bipotent stem cell phenotype. Translational research of human liver organoids for drug discovery has been limited by the challenge of their low hepatic function compared to primary human hepatocytes (PHHs). Various attempts have been made to develop functional hepatocyte-like cells from human liver organoids. However, none have achieved the same level of hepatic functions as PHHs. We here attempted to culture human liver organoids established from cryopreserved PHHs (PHH-derived organoids), using HYDROX, a chemically defined 3D nanofiber. While the proliferative capacity of PHH-derived organoids was lost by HYDROX-culture, the gene expression levels of drug-metabolizing enzymes were significantly improved. Enzymatic activities of cytochrome P450 3A4 (CYP3A4), CYP2C19, and CYP1A2 in HYDROX-cultured PHH-derived organoids (Org-HYDROX) were comparable to those in PHHs. When treated with hepatotoxic drugs such as troglitazone, amiodarone and acetaminophen, Org-HYDROX showed similar cell viability to PHHs, suggesting that Org-HYDROX could be applied to drug-induced hepatotoxicity tests. Furthermore, Org-HYDROX maintained its functions for up to 35 days and could be applied to chronic drug-induced hepatotoxicity tests using fialuridine. Our findings demonstrated that HYDROX could possibly be a novel biomaterial for differentiating human liver organoids towards hepatocytes applicable to pharmaceutical research.


Asunto(s)
Diferenciación Celular , Hepatocitos , Nanofibras , Organoides , Humanos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/citología , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/citología , Diferenciación Celular/efectos de los fármacos , Nanofibras/química , Células Cultivadas , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Supervivencia Celular/efectos de los fármacos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética
4.
J Nanobiotechnology ; 22(1): 232, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720301

RESUMEN

Diabetic wounds pose a challenge to healing due to increased bacterial susceptibility and poor vascularization. Effective healing requires simultaneous bacterial and biofilm elimination and angiogenesis stimulation. In this study, we incorporated polyaniline (PANI) and S-Nitrosoglutathione (GSNO) into a polyvinyl alcohol, chitosan, and hydroxypropyltrimethyl ammonium chloride chitosan (PVA/CS/HTCC) matrix, creating a versatile wound dressing membrane through electrospinning. The dressing combines the advantages of photothermal antibacterial therapy and nitric oxide gas therapy, exhibiting enduring and effective bactericidal activity and biofilm disruption against methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli. Furthermore, the membrane's PTT effect and NO release exhibit significant synergistic activation, enabling a nanodetonator-like burst release of NO through NIR irradiation to disintegrate biofilms. Importantly, the nanofiber sustained a uniform release of nitric oxide, thereby catalyzing angiogenesis and advancing cellular migration. Ultimately, the employment of this membrane dressing culminated in the efficacious amelioration of diabetic-infected wounds in Sprague-Dawley rats, achieving wound closure within a concise duration of 14 days. Upon applying NIR irradiation to the PVA-CS-HTCC-PANI-GSNO nanofiber membrane, it swiftly eradicates bacteria and biofilm within 5 min, enhancing its inherent antibacterial and anti-biofilm properties through the powerful synergistic action of PTT and NO therapy. It also promotes angiogenesis, exhibits excellent biocompatibility, and is easy to use, highlighting its potential in treating diabetic wounds.


Asunto(s)
Antibacterianos , Vendajes , Biopelículas , Óxido Nítrico , Terapia Fototérmica , Ratas Sprague-Dawley , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Óxido Nítrico/farmacología , Óxido Nítrico/metabolismo , Ratas , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/uso terapéutico , Biopelículas/efectos de los fármacos , Terapia Fototérmica/métodos , Masculino , Quitosano/química , Quitosano/farmacología , Nanofibras/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Staphylococcus aureus/efectos de los fármacos , Alcohol Polivinílico/química , Alcohol Polivinílico/farmacología , S-Nitrosoglutatión/farmacología , S-Nitrosoglutatión/química
5.
Carbohydr Polym ; 337: 122112, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710545

RESUMEN

The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.


Asunto(s)
Celulosa , Embalaje de Alimentos , Lignina , Lignina/análogos & derivados , Nanocompuestos , Nanofibras , Resistencia a la Tracción , Madera , Xilanos , Embalaje de Alimentos/métodos , Lignina/química , Nanocompuestos/química , Celulosa/química , Celulosa/análogos & derivados , Madera/química , Nanofibras/química , Xilanos/química , Antioxidantes/química , Frutas/química
6.
AAPS PharmSciTech ; 25(5): 94, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710898

RESUMEN

This study introduces and assesses the potential of a Luliconazole-loaded nanofiber (LUL-NF) patch, fabricated through electrospinning, for enhancing topical drug delivery. The primary objectives involve evaluating the nanofiber structure, characterizing physical properties, determining drug loading and release kinetics, assessing antifungal efficacy, and establishing the long-term stability of the NF patch. LUL-NF patches were fabricated via electrospinning and observed by SEM at approximately 200 nm dimensions. The comprehensive analysis included physical properties (thickness, folding endurance, swelling ratio, weight, moisture content, and drug loading) and UV analysis for drug quantification. In vitro studies explored sustained drug release kinetics, while microbiological assays evaluated antifungal efficacy against Candida albicans and Aspergillus Niger. Stability studies confirmed long-term viability. Comparative analysis with the pure drug, placebo NF patch, LUL-NF patch, and Lulifod gel was conducted using agar diffusion, revealing enhanced performance of the LUL-NF patch. SEM analysis revealed well-defined LUL-NF patches (0.80 mm thickness) with exceptional folding endurance (> 200 folds) and a favorable swelling ratio (12.66 ± 0.73%). The patches exhibited low moisture uptake (3.4 ± 0.09%) and a moisture content of 11.78 ± 0.54%. Drug loading in 1 cm2 section was 1.904 ± 0.086 mg, showing uniform distribution and sustained release kinetics in vitro. The LUL-NF patch demonstrated potent antifungal activity. Stability studies affirmed long-term stability, and comparative analysis highlighted increased inhibition compared to a pure drug, LUL-NF patch, and a commercial gel. The electrospun LUL-NF patch enhances topical drug delivery, promising extended therapy through single-release, one-time application, and innovative drug delivery strategies, supported by thorough analysis.


Asunto(s)
Antifúngicos , Aspergillus niger , Candida albicans , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Imidazoles , Nanofibras , Antifúngicos/administración & dosificación , Antifúngicos/farmacología , Antifúngicos/química , Nanofibras/química , Candida albicans/efectos de los fármacos , Aspergillus niger/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Imidazoles/química , Imidazoles/administración & dosificación , Imidazoles/farmacología , Preparaciones de Acción Retardada , Pruebas de Sensibilidad Microbiana/métodos , Portadores de Fármacos/química , Estabilidad de Medicamentos
7.
Artículo en Inglés | MEDLINE | ID: mdl-38702912

RESUMEN

The shapes of micro- and nano-products have profound influences on their functional performances, which has not received sufficient attention during the past several decades. Electrohydrodynamic atomization (EHDA) techniques, mainly include electrospinning and electrospraying, are facile in manipulate their products' shapes. In this review, the shapes generated using EHDA for modifying drug release profiles are reviewed. These shapes include linear nanofibers, round micro-/nano-particles, and beads-on-a-string hybrids. They can be further divided into different kinds of sub-shapes, and can be explored for providing the desired pulsatile release, sustained release, biphasic release, delayed release, and pH-sensitive release. Additionally, the shapes resulted from the organizations of electrospun nanofibers are discussed for drug delivery, and the shapes and inner structures can be considered together for developing novel drug delivery systems. In future, the shapes and the related shape-performance relationships at nanoscale, besides the size, inner structure and the related structure-performance relationships, would further play their important roles in promoting the further developments of drug delivery field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Asunto(s)
Sistemas de Liberación de Medicamentos , Humanos , Nanofibras/química , Animales , Nanopartículas/química , Hidrodinámica
8.
Part Fibre Toxicol ; 21(1): 23, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734694

RESUMEN

BACKGROUND: Inhalation of biopersistent fibers like asbestos can cause strong chronic inflammatory effects, often resulting in fibrosis or even cancer. The interplay between fiber shape, fiber size and the resulting biological effects is still poorly understood due to the lack of reference materials. RESULTS: We investigated how length, diameter, aspect ratio, and shape of synthetic silica fibers influence inflammatory effects at doses up to 250 µg cm-2. Silica nanofibers were prepared with different diameter and shape. Straight (length ca. 6 to 8 µm, thickness ca. 0.25 to 0.35 µm, aspect ratio ca. 17:1 to 32:1) and curly fibers (length ca. 9 µm, thickness ca. 0.13 µm, radius of curvature ca. 0.5 µm, aspect ratio ca. 70:1) were dispersed in water with no apparent change in the fiber shape during up to 28 days. Upon immersion in aqueous saline (DPBS), the fibers released about 5 wt% silica after 7 days irrespectively of their shape. The uptake of the fibers by macrophages (human THP-1 and rat NR8383) was studied by scanning electron microscopy and confocal laser scanning microscopy. Some fibers were completely taken up whereas others were only partially internalized, leading to visual damage of the cell wall. The biological effects were assessed by determining cell toxicity, particle-induced chemotaxis, and the induction of gene expression of inflammatory mediators. CONCLUSIONS: Straight fibers were only slightly cytotoxic and caused weak cell migration, regardless of their thickness, while the curly fibers were more toxic and caused significantly stronger chemotaxis. Curly fibers also had the strongest effect on the expression of cytokines and chemokines. This may be due to the different aspect ratio or its twisted shape.


Asunto(s)
Quimiotaxis , Macrófagos , Tamaño de la Partícula , Dióxido de Silicio , Dióxido de Silicio/toxicidad , Dióxido de Silicio/química , Animales , Humanos , Ratas , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Quimiotaxis/efectos de los fármacos , Nanofibras/toxicidad , Nanofibras/química , Células THP-1 , Transcriptoma/efectos de los fármacos , Fibras Minerales/toxicidad , Citocinas/metabolismo , Citocinas/genética , Línea Celular
9.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732199

RESUMEN

Nanofibrous materials generated through electrospinning have gained significant attention in tissue regeneration, particularly in the domain of bone reconstruction. There is high interest in designing a material resembling bone tissue, and many scientists are trying to create materials applicable to bone tissue engineering with piezoelectricity similar to bone. One of the prospective candidates is highly piezoelectric poly(vinylidene fluoride) (PVDF), which was used for fibrous scaffold formation by electrospinning. In this study, we focused on the effect of PVDF molecular weight (180,000 g/mol and 530,000 g/mol) and process parameters, such as the rotational speed of the collector, applied voltage, and solution flow rate on the properties of the final scaffold. Fourier Transform Infrared Spectroscopy allows for determining the effect of molecular weight and processing parameters on the content of the electroactive phases. It can be concluded that the higher molecular weight of the PVDF and higher collector rotational speed increase nanofibers' diameter, electroactive phase content, and piezoelectric coefficient. Various electrospinning parameters showed changes in electroactive phase content with the maximum at the applied voltage of 22 kV and flow rate of 0.8 mL/h. Moreover, the cytocompatibility of the scaffolds was confirmed in the culture of human adipose-derived stromal cells with known potential for osteogenic differentiation. Based on the results obtained, it can be concluded that PVDF scaffolds may be taken into account as a tool in bone tissue engineering and are worth further investigation.


Asunto(s)
Nanofibras , Polivinilos , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Polivinilos/química , Humanos , Andamios del Tejido/química , Nanofibras/química , Materiales Biocompatibles/química , Células Cultivadas , Espectroscopía Infrarroja por Transformada de Fourier , Diferenciación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Células del Estroma/citología , Células del Estroma/metabolismo , Peso Molecular , Polímeros de Fluorocarbono
10.
ACS Nano ; 18(19): 12341-12354, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38695772

RESUMEN

The patch with a superlubricated surface shows great potential for the prevention of postoperative adhesion during soft tissue repair. However, the existing patches suffer from the destruction of topography during superlubrication coating and lack of pro-healing capability. Herein, we demonstrate a facile and versatile strategy to develop a Janus nanofibrous patch (J-NFP) with antiadhesion and reactive oxygen species (ROS) scavenging functions. Specifically, sequential electrospinning is performed with initiators and CeO2 nanoparticles (CeNPs) embedded on the different sides, followed by subsurface-initiated atom transfer radical polymerization for grafting zwitterionic polymer brushes, introducing superlubricated skin on the surface of single nanofibers. The poly(sulfobetaine methacrylate) brush-grafted patch retains fibrous topography and shows a coefficient of friction of around 0.12, which is reduced by 77% compared with the pristine fibrous patch. Additionally, a significant reduction in protein, platelet, bacteria, and cell adhesion is observed. More importantly, the CeNPs-embedded patch enables ROS scavenging as well as inhibits pro-inflammatory cytokine secretion and promotes anti-inflammatory cytokine levels. Furthermore, the J-NFP can inhibit tissue adhesion and promote repair of both rat skin wounds and intrauterine injuries. The present strategy for developing the Janus patch exhibits enormous prospects for facilitating soft tissue repair.


Asunto(s)
Nanofibras , Animales , Ratas , Nanofibras/química , Cicatrización de Heridas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Piel/efectos de los fármacos , Piel/patología , Adherencias Tisulares/prevención & control , Ratas Sprague-Dawley , Adhesión Celular/efectos de los fármacos , Cerio/química , Cerio/farmacología , Propiedades de Superficie , Ratones , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
11.
Anal Chem ; 96(19): 7772-7779, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38698542

RESUMEN

There is growing attention focused toward the problems of ecological sustainability and food safety raised from the abuse of herbicides, which underscores the need for the development of a portable and reliable sensor for simple, rapid, and user-friendly on-site analysis of herbicide residues. Herein, a novel multifunctional hydrogel composite is explored to serve as a portable and flexible sensor for the facile and efficient analysis of atrazine (ATZ) residues. The hydrogel electrode is fabricated by doping graphite-phase carbon nitride (g-C3N4) into the aramid nanofiber reinforced poly(vinyl alcohol) hydrogel via a simple solution-casting procedure. Benefiting from the excellent electroactivity and large specific surface area of the solid nanoscale component, the prepared hydrogel sensor is capable of simple, rapid, and sensitive detection of ATZ with a detection limit down to 0.002 ng/mL and per test time less than 1 min. After combination with a smartphone-controlled portable electrochemical analyzer, the flexible sensor exhibited satisfactory analytical performance for the ATZ assay. We further demonstrated the applications of the sensor in the evaluation of the ATZ residues in real water and soil samples as well as the user-friendly on-site point-of-need detection of ATZ residues on various agricultural products. We envision that this flexible and portable sensor will open a new avenue on the development of next-generation analytical tools for herbicide monitoring in the environment and agricultural products.


Asunto(s)
Atrazina , Técnicas Electroquímicas , Herbicidas , Hidrogeles , Atrazina/análisis , Herbicidas/análisis , Hidrogeles/química , Técnicas Electroquímicas/instrumentación , Grafito/química , Electrodos , Límite de Detección , Nitrilos/química , Nitrilos/análisis , Nanofibras/química , Contaminantes Químicos del Agua/análisis
12.
ACS Nano ; 18(19): 12477-12488, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38699877

RESUMEN

Progress in the design and synthesis of nanostructured self-assembling systems has facilitated the realization of numerous nanoscale geometries, including fibers, ribbons, and sheets. A key challenge has been achieving control across multiple length scales and creating macroscopic structures with nanoscale organization. Here, we present a facile extrusion-based fabrication method to produce anisotropic, nanofibrous hydrogels using self-assembling peptides. The application of shear force coinciding with ion-triggered gelation is used to kinetically trap supramolecular nanofibers into aligned, hierarchical macrostructures. Further, we demonstrate the ability to tune the nanostructure of macroscopic hydrogels through modulating phosphate buffer concentration during peptide self-assembly. In addition, increases in the nanostructural anisotropy of fabricated hydrogels are found to enhance their strength and stiffness under hydrated conditions. To demonstrate their utility as an extracellular matrix-mimetic biomaterial, aligned nanofibrous hydrogels are used to guide directional spreading of multiple cell types, but strikingly, increased matrix alignment is not always correlated with increased cellular alignment. Nanoscale observations reveal differences in cell-matrix interactions between variably aligned scaffolds and implicate the need for mechanical coupling for cells to understand nanofibrous alignment cues. In total, innovations in the supramolecular engineering of self-assembling peptides allow us to decouple nanostructure from macrostructure and generate a gradient of anisotropic nanofibrous hydrogels. We anticipate that control of architecture at multiple length scales will be critical for a variety of applications, including the bottom-up tissue engineering explored here.


Asunto(s)
Hidrogeles , Nanofibras , Péptidos , Nanofibras/química , Péptidos/química , Hidrogeles/química , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Anisotropía , Animales
13.
Molecules ; 29(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38731558

RESUMEN

Given the widespread prevalence of viruses, there is an escalating demand for antimicrobial composites. Although the composite of dialdehyde cellulose and silver nanoparticles (DAC@Ag1) exhibits excellent antibacterial properties, its weak mechanical characteristics hinder its practical applicability. To address this limitation, cellulose nanofibers (CNFs) were initially ammoniated to yield N-CNF, which was subsequently incorporated into DAC@Ag1 as an enhancer, forming DAC@Ag1/N-CNF. We systematically investigated the optimal amount of N-CNF and characterized the DAC@Ag1/N-CNF using FT-IR, XPS, and XRD analyses to evaluate its additional properties. Notably, the optimal mass ratio of N-CNF to DAC@Ag1 was found to be 5:5, resulting in a substantial enhancement in mechanical properties, with a 139.8% increase in tensile elongation and a 33.1% increase in strength, reaching 10% and 125.24 MPa, respectively, compared to DAC@Ag1 alone. Furthermore, the inhibition zones against Escherichia coli and Staphylococcus aureus were significantly expanded to 7.9 mm and 15.9 mm, respectively, surpassing those of DAC@Ag1 alone by 154.8% and 467.9%, indicating remarkable improvements in antimicrobial efficacy. Mechanism analysis highlighted synergistic effects from chemical covalent bonding and hydrogen bonding in the DAC@Ag1/N-CNF, enhancing the mechanical and antimicrobial properties significantly. The addition of N-CNF markedly augmented the properties of the composite film, thereby facilitating its broader application in the antimicrobial field.


Asunto(s)
Celulosa , Escherichia coli , Nanopartículas del Metal , Plata , Staphylococcus aureus , Plata/química , Nanopartículas del Metal/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Celulosa/química , Celulosa/análogos & derivados , Antibacterianos/farmacología , Antibacterianos/química , Nanofibras/química , Nanocompuestos/química , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/química , Antiinfecciosos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier
14.
ACS Biomater Sci Eng ; 10(5): 2925-2934, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38587986

RESUMEN

Spider dragline (major ampullate) silk is one of the toughest known fibers in nature and exhibits an excellent combination of high tensile strength and elasticity. Increasing evidence has indicated that preassembly plays a crucial role in facilitating the proper assembly of silk fibers by bridging the mesoscale gap between spidroin molecules and the final strong fibers. However, it remains challenging to control the preassembly of spidroins and investigate its influence on fiber structural and mechanical properties. In this study, we explored to bridge this gap by modulating the polyalanine (polyA) motifs in repetitive region of spidroins to tune their preassemblies in aqueous dope solutions. Three biomimetic silk proteins with varying numbers of alanine residues in polyA motif and comparable molecular weights were designed and biosynthesized, termed as N16C-5A, N15C-8A, and N13C-12A, respectively. It was found that all three proteins could form nanofibril assemblies in the concentrated aqueous dopes, but the size and structural stability of the fibrils were distinct from each other. The silk protein N15C-8A with 8 alanine residues in polyA motif allowed for the formation of stable nanofibril assemblies with a length of approximately 200 nm, which were not prone to disassemble or aggregate as that of N16C-5A and N13C-12A. More interestingly, the stable fibril assembly of N15C-8A enabled spinning of simultaneously strong (623.3 MPa) and tough (107.1 MJ m-3) synthetic fibers with fine molecular orientation and close interface packing of fibril bundles. This work highlights that modulation of polyA motifs is a feasible way to tune the morphology and stability of the spidroin preassemblies in dope solutions, thus controlling the structural and mechanical properties of the resulting fibers.


Asunto(s)
Fibroínas , Péptidos , Resistencia a la Tracción , Fibroínas/química , Fibroínas/genética , Péptidos/química , Seda/química , Animales , Secuencias de Aminoácidos , Nanofibras/química , Arañas/química
15.
ACS Biomater Sci Eng ; 10(5): 3041-3056, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38623037

RESUMEN

Oral immunization is a promising strategy for preventing and treating gastrointestinal (GI) infections and diseases, as it allows for direct access to the disease site. To elicit immune responses within the GI tract, however, there are many obstacles that oral vaccines must surmount, including proteolytic degradation and thick mucus barriers. Here, we employed a modular self-assembling peptide nanofiber platform to facilitate oral immunization against both peptide and small molecule epitopes. Synthesizing nanofibers with d-amino acids rendered them resistant to proteases in vitro, whereas l-amino acid nanofibers were rapidly degraded. Additionally, the inclusion of peptide sequences rich in proline, alanine, and serine (PAS), increased nanofiber muco-penetration, and accelerated nanofiber transport through the GI tract. Oral immunization with PASylated nanofibers and mucosal adjuvant generated local and systemic immune responses to a peptide epitope but only for l-amino acid nanofibers. Further, we were able to apply this design to also enable oral immunization against a small molecule epitope and illustrated the therapeutic and prophylactic effectiveness of these immunizations in mouse models of colitis. These findings demonstrate that supramolecular peptide self-assemblies have promise as oral vaccines and immunotherapies.


Asunto(s)
Inmunización , Nanofibras , Péptidos , Animales , Administración Oral , Nanofibras/química , Péptidos/inmunología , Péptidos/química , Péptidos/administración & dosificación , Ratones , Inmunización/métodos , Epítopos/inmunología , Femenino , Ratones Endogámicos C57BL , Colitis/inmunología , Colitis/prevención & control , Colitis/inducido químicamente
16.
Biomacromolecules ; 25(5): 3063-3075, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38652055

RESUMEN

Assemblies of peptides and proteins through specific intermolecular interactions set the basis for macroscopic materials found in nature. Peptides provide easily tunable hydrogen-bonding interactions, which can lead to the formation of ordered structures such as highly stable ß-sheets that can form amyloid-like supramolecular peptide nanofibrils (PNFs). PNFs are of special interest, as they could be considered as mimics of various fibrillar structures found in nature. In their ability to serve as supramolecular scaffolds, they could mimic certain features of the extracellular matrix to provide stability, interact with pathogens such as virions, and transduce signals between the outside and inside of cells. Many PNFs have been reported that reveal rich bioactivities. PNFs supporting neuronal cell growth or lentiviral gene transduction have been studied systematically, and their material properties were correlated to bioactivities. However, the impact of the structure of PNFs, their dynamics, and stabilities on their unique functions is still elusive. Herein, we provide a microscopic view of the self-assembled PNFs to unravel how the amino acid sequence of self-assembling peptides affects their secondary structure and dynamic properties of the peptides within supramolecular fibrils. Based on sequence truncation, amino acid substitution, and sequence reordering, we demonstrate that peptide-peptide aggregation propensity is critical to form bioactive ß-sheet-rich structures. In contrast to previous studies, a very high peptide aggregation propensity reduces bioactivity due to intermolecular misalignment and instabilities that emerge when fibrils are in close proximity to other fibrils in solution. Our multiscale simulation approach correlates changes in biological activity back to single amino acid modifications. Understanding these relationships could lead to future material discoveries where the molecular sequence predictably determines the macroscopic properties and biological activity. In addition, our studies may provide new insights into naturally occurring amyloid fibrils in neurodegenerative diseases.


Asunto(s)
Amiloide , Interacciones Hidrofóbicas e Hidrofílicas , Amiloide/química , Péptidos/química , Agregado de Proteínas , Humanos , Simulación de Dinámica Molecular , Nanofibras/química , Estructura Secundaria de Proteína
17.
ACS Biomater Sci Eng ; 10(5): 3164-3172, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38671385

RESUMEN

Intestinal adhesion is one of the complications that occurs more frequently after abdominal surgery. Postsurgical intestinal adhesion (PIA) can lead to a series of health problems, including abdominal pain, intestinal obstruction, and female infertility. Currently, hydrogels and nanofibrous films as barriers are often used for preventing PIA formation; however, these kinds of materials have their intrinsic disadvantages. Herein, we developed a dual-structure drug delivery patch consisting of poly lactic-co-glycolic acid (PLGA) nanofibers and a chitosan hydrogel (NHP). PLGA nanofibers loaded with deferoxamine mesylate (DFO) were incorporated into the hydrogel; meanwhile, the hydrogel was loaded with anti-inflammatory drug dexamethasone (DXMS). The rapid degradation of the hydrogel facilitated the release of DXMS at the acute inflammatory stage of the early injury and provided effective anti-inflammatory effects for wound sites. Moreover, PLGA composite nanofibers could provide sustained and stable release of DFO for promoting the peritoneal repair by the angiogenesis effects of DFO. The in vivo results indicated that NHP can effectively prevent PIA formation by restraining inflammation and vascularization, promoting peritoneal repair. Therefore, we believe that our NHP has a great potential application in inhibition of PIA.


Asunto(s)
Dexametasona , Sistemas de Liberación de Medicamentos , Hidrogeles , Nanofibras , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Nanofibras/química , Nanofibras/uso terapéutico , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/administración & dosificación , Adherencias Tisulares/prevención & control , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Dexametasona/farmacología , Dexametasona/administración & dosificación , Dexametasona/uso terapéutico , Quitosano/química , Quitosano/farmacología , Intestinos/efectos de los fármacos , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Complicaciones Posoperatorias/prevención & control , Ratas Sprague-Dawley , Ratones , Femenino , Ratas
18.
J Photochem Photobiol B ; 255: 112906, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688040

RESUMEN

New functionalities were added to biocompatible polycaprolactone nanofiber materials through the co-encapsulation of chlorin e6 trimethyl ester (Ce6) photogenerating singlet oxygen and absorbing light both in the blue and red regions, and using 4-(N-(aminopropyl)-3-(trifluoromethyl)-4-nitrobenzenamine)-7-nitrobenzofurazan, NO-photodonor (NOP), absorbing light in the blue region of visible light. Time-resolved and steady-state luminescence, as well as absorption spectroscopy, were used to monitor both photoactive compounds. The nanofiber material exhibited photogeneration of antibacterial species, specifically nitric oxide and singlet oxygen, upon visible light excitation. This process resulted in the efficient photodynamic inactivation of E. coli not only close to nanofiber material surfaces due to short-lived singlet oxygen, but even at longer distances due to diffusion of longer-lived nitric oxide. Interestingly, nitric oxide was also formed by processes involving photosensitization of Ce6 during irradiation by red light. This is promising for numerous applications, especially in the biomedical field, where strictly local photogeneration of NO and its therapeutic benefits can be applied using excitation in the "human body phototherapeutic window" (600-850 nm). Generally, due to the high permeability of red light, the photogeneration of NO can be achieved in any aqueous environment where direct excitation of NOP to its absorbance in the blue region is limited.


Asunto(s)
Antibacterianos , Escherichia coli , Luz , Nanofibras , Óxido Nítrico , Porfirinas , Oxígeno Singlete , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nanofibras/química , Antibacterianos/química , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/efectos de la radiación , Porfirinas/química , Porfirinas/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Clorofilidas , Poliésteres/química
19.
Biofabrication ; 16(3)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38565133

RESUMEN

Spinal cord injury (SCI) can cause permanent impairment to motor or sensory functions. Pre-cultured neural stem cell (NSC) hydrogel scaffolds have emerged as a promising approach to treat SCI by promoting anti-inflammatory effects, axon regrowth, and motor function restoration. Here, in this study, we performed a coaxial extrusion process to fabricate a core-shell hydrogel microfiber with high NSC density in the core portion. Oxidized hyaluronic acid, carboxymethyl chitosan, and matrigel blend were used as a matrix for NSC growth and to facilitate the fabrication process. During thein vitrodifferentiation culture, it was found that NSC microfibers could differentiate into neurons and astrocytes with higher efficiency compared to NSC cultured in petri dishes. Furthermore, duringin vivotransplantation, NSC microfibers were coated with polylactic acid nanosheets by electrospinning for reinforcement. The coated NSC nanofibers exhibited higher anti-inflammatory effect and lesion cavity filling rate compared with the control group. Meanwhile, more neuron- and oligodendrocyte-like cells were visualized at the lesion epicenter. Finally, axon regrowth across the whole lesion site was observed, demonstrating that the microfiber could guide renascent axon regrowth. Experiment results indicate that the NSC microfiber is a promising bioactive treatment for complete SCI treatment with superior outcomes.


Asunto(s)
Axones , Diferenciación Celular , Células-Madre Neurales , Neuronas , Traumatismos de la Médula Espinal , Andamios del Tejido , Animales , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Axones/efectos de los fármacos , Axones/fisiología , Axones/metabolismo , Diferenciación Celular/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Andamios del Tejido/química , Ratas Sprague-Dawley , Hidrogeles/química , Hidrogeles/farmacología , Quitosano/química , Quitosano/farmacología , Quitosano/análogos & derivados , Células Cultivadas , Regeneración Nerviosa/efectos de los fármacos , Nanofibras/química , Ratas , Femenino
20.
Colloids Surf B Biointerfaces ; 238: 113889, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574404

RESUMEN

A novel core-shell with a tetradecyl dimethyl benzyl ammonium chloride-modified montmorillonite (TDMBA/MMT) interlayer silk fibroin (SF)/poly(lactic acid) (PLLA) nanofibrous membrane was fabricated using a simple conventional electrospinning method. Scanning electron microscopy and pore size analyses revealed that this core-shell with TDMBA/MMT interlayer maintained its nanofibrous morphology and larger pore structure more successfully than SF/PLLA nanofibrous membranes after treatment with 75% ethanol vapor. Transmission electron microscopy and energy-dispersive X-ray spectroscopy analyses testified that the SF/PLLA-TDMBA/MMT nanofibers exhibited a core-shell with an interlayer structure, with SF/PLLA in the core-shell layer and TDMBA/MMT in the interlayer. The formation of a core-shell with interlayer nanofibers was primarily attributed to the uniform dispersion of TDMBA/MMT nanosheets in a solution owing to its exfoliation using hexafluoroisopropanol and then preparing a stable spinning solution similar to an emulsion. Compared to SF/PLLA nanofibrous membranes, the core-shell structure with TDMBA/MMT interlayers of SF/PLLA nanofibrous membranes exhibited enhanced hydrophilicity, thermal stability, mechanical properties as well as improved and long-lasting antimicrobial performance against Escherichia coli and Staphylococcus aureus without cytotoxicity.


Asunto(s)
Bentonita , Escherichia coli , Nanofibras , Staphylococcus aureus , Bentonita/química , Bentonita/farmacología , Nanofibras/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Fibroínas/química , Fibroínas/farmacología , Poliésteres/química , Poliésteres/farmacología , Membranas Artificiales , Antiinfecciosos/farmacología , Antiinfecciosos/química , Ratones , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...