RESUMEN
Nickel ferrite nanoparticles (NiF NPs) have growing applications in biomedical and nanomedicine fields. However, knowledge concerning their ecotoxicity during the early developmental stages of invertebrates, such as gastropods, remains scarce. Thus, the current study aimed to evaluate whether NiF NPs and nickel chloride (NiCl2) induce toxic effects on embryos and newly hatched snails of freshwater species Biomphalaria glabrata (Say, 1818). NiF NPs were synthesized and characterized by multiple techniques, and their ecotoxicity was assessed by Biomphalaria embryotoxicity test (BET) during 144 h of exposure and an acute toxicity test (96 h) using newly hatched snails. NiF NPs induced mortality, developmental delay, reduced hatching rate, and promoted morphological changes in B. glabrata. Also, NiF NPs induced higher toxicity in embryos than in newly hatched B. glabrata. Overall, results showed that the early developmental stages of gastropods are a target group for nanoparticle toxicity in freshwater ecosystems.
Asunto(s)
Biomphalaria , Compuestos Férricos , Nanopartículas , Níquel , Animales , Níquel/toxicidad , Compuestos Férricos/toxicidad , Biomphalaria/efectos de los fármacos , Nanopartículas/toxicidad , Agua Dulce , Contaminantes Químicos del Agua/toxicidadRESUMEN
The present study aims to evaluate the toxicity of the green calcium oxide nanoparticles (CaO-NPs) from golden linseed extract (Linum usitatissimum L.) by phytotoxicity in seeds (Daucus carota, Beet shankar, Lactuca sativa and Brassica oleracea), in vitro safety profile and soil toxicity for CaO-NPs solutions from 12.5 to 100 µg mL-1. Ecotoxicity analysis of the soil was conducted using XRD diffractograms, which revealed characteristic peaks of the nanoparticles at 37.35° (12.5, 25, 50, and 100 µg mL-1), as well as a peak at 67.34° (25 and 100 µg mL-1). Additionally, the in vitro safety assessment indicated favorable cell specification and regulation within the first 24 h, demonstrating reductions of 15.9 ± 0.2%, 17.9 ± 0.2%, 17.6 ± 0.2%, and 32.9 ± 0.2% to 12.5, 25, 50, and 100 µg mL-1, respectively. The dsDNA assay revealed initial protection and controlled release within the cells for 48 h. However, after 72 h, there was an increase of 20 ± 0.2%, 16 ± 0.2%, 32 ± 0.2%, and 43 ± 0.2% to 12.5, 25, and 50 µg mL-1. The analysis of ROS generation demonstrated a reduction of 40 ± 0.2%, 33 ± 0.2%, 20 ± 0.2%, and 9 ± 0.2% to 12.5, 25, 50, and 100 µg mL-1, respectively, within 72 h. When compared to the negative control (NC), there was an increase of 50 ± 0.2%, 56 ± 0.2%, 77 ± 0.2%, and 92 ± 0.2% at the same concentrations, suggesting that the nanoparticles generated free radicals, leading to cellular inflammation. This was attributed to the positive surface charge of the nanoparticles, resulting in reduced interaction with the cell membrane and the subsequent release of hydroxyl (â¢OH), which caused inflammatory processes in the cells. Therefore, CaO-NPs exhibited a low phytotoxicity and high cytocompatibility, while also promoting plant germination and growth.
Asunto(s)
Compuestos de Calcio , Nanopartículas , Óxidos , Compuestos de Calcio/toxicidad , Compuestos de Calcio/química , Óxidos/toxicidad , Óxidos/química , Nanopartículas/toxicidad , Nanopartículas/química , Humanos , Contaminantes del Suelo/toxicidad , Brassica/efectos de los fármacos , Brassica/crecimiento & desarrollo , Semillas/efectos de los fármacos , Suelo/químicaRESUMEN
Nanotechnology has brought about significant progress through the use of goods based on nanomaterials. However, concerns remain about the accumulation of these materials in the environment and their potential toxicity to living organisms. Plants have the ability to take in nanomaterials (NMs), which can cause changes in their physiology and morphology. On the other hand, nanoparticles (NPs) have been used to increase plant development and control pests in agriculture by including them into agrochemicals. The challenges of the interaction, internalization, and accumulation of NMs within plant tissues are enormous, mainly because of the various characteristics of NMs and the absence of reliable analytical tools. As our knowledge of the interactions between NMs and plant cells expands, we are able to create novel NMs that are tailored, targeted, and designed to be safe, thus minimizing the environmental consequences of nanomaterials. This review provides a thorough examination and comparison of the main microscopy techniques, spectroscopic methods, and far-field super-resolution methodologies used to examine nanomaterials within the cell walls of plants.
Asunto(s)
Nanopartículas , Plantas , Nanopartículas/toxicidad , Plantas/metabolismo , Plantas/efectos de los fármacos , Nanotecnología/métodosRESUMEN
The increased environmental presence of micro-/nanoplastics (MNPLs) and the potential health risks associated with their exposure classify them as environmental pollutants with special environmental and health concerns. Consequently, there is an urgent need to investigate the potential risks associated with secondary MNPLs. In this context, using "true-to-life" MNPLs, resulting from the laboratory degradation of plastic goods, may be a sound approach. These non-commercial secondary MNPLs must be labeled to track their presence/journeys inside cells or organisms. Because the cell internalization of MNPLs is commonly analyzed using fluorescence techniques, the use of fluorescent dyes may be a sound method to label them. Five different compounds comprising two chemical dyes (Nile Red and Rhodamine-B), one optical brightener (Opticol), and two industrial dyes (Amarillo Luminoso and iDye PolyPink) were tested to determine their potential for such applications. Using commercial standards of polystyrene nanoplastics (PSNPLs) with an average size of 170 nm, different characteristics of the selected dyes such as the absence of impact on cell viability, specificity for plastic staining, no leaching, and lack of interference with other fluorochromes were analyzed. Based on the overall data obtained in the wide battery of assays performed, iDye PolyPink exhibited the most advantages, with respect to the other compounds, and was selected to effectively label "true-to-life" MNPLs. These advantages were confirmed using a proposed protocol, and labeling titanium-doped PETNPLs (obtained from the degradation of milk PET plastic bottles), as an example of "true-to-life" secondary NPLs. These results confirmed the usefulness of iDye PolyPink for labeling MNPLs and detecting cell internalization.
Asunto(s)
Colorantes Fluorescentes , Microplásticos , Colorantes Fluorescentes/química , Microplásticos/toxicidad , Humanos , Nanopartículas/química , Nanopartículas/toxicidad , Supervivencia Celular/efectos de los fármacos , Animales , Poliestirenos/química , Poliestirenos/toxicidadRESUMEN
The increasing use of UV filters, such as benzophenone-3 (BP-3) and titanium dioxide nanoparticles (TiO2 NPs), has raised concerns regarding their ecotoxicological effects on the aquatic environment. The aim of the present study was to examine the embryo-larval toxicity attributed to BP-3 or TiO2 NPs, either alone or in a mixture, utilizing zebrafish (Danio rerio) as a model after exposure to environmentally relevant concentrations of these compounds. Zebrafish embryos were exposed to BP-3 (10, 100, or 1000 ng/L) or TiO2 NPs (1000 ng/L) alone or in a mixture (BP-3 10, 100, or 1000 ng/L plus 1000 ng/L of TiO2 NPs) under static conditions for 144 hr. After exposure, BP-3 levels were determined by high-performance liquid chromatography (HPLC). BP-3 levels increased in the presence of TiO2 NPs, indicating that the BP-3 degradation decreased in the presence of the NPs. In addition, in the presence of zebrafish, BP-3 levels in water decreased, indicating that zebrafish embryos and larvae might absorb BP-3. Data demonstrated that, in general, environmentally relevant concentrations of BP-3 and TiO2 NPs, either alone or in a mixture, did not significantly induce changes in heart and spontaneous contractions frequencies, levels of reactive oxygen species (ROS), morphological and morphometric parameters as well as mortality rates during 144 hr exposure. However, the groups exposed to TiO2 NPs alone and in a mixture with BP-3 at 10 ng/L exhibited an earlier significant hatching rate than the controls. Altogether, the data indicates that a potential ecotoxicological impact on the aquatic environment exists.
Asunto(s)
Benzofenonas , Embrión no Mamífero , Protectores Solares , Titanio , Contaminantes Químicos del Agua , Pez Cebra , Animales , Titanio/toxicidad , Titanio/química , Benzofenonas/toxicidad , Protectores Solares/toxicidad , Protectores Solares/química , Embrión no Mamífero/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Nanopartículas/toxicidad , Nanopartículas del Metal/toxicidad , Ecotoxicología , Larva/efectos de los fármacosRESUMEN
The ubiquity of nanoparticles, sourced from both natural environments and human activities, presents critical challenges for public health. While offering significant potential for innovative biomedical applications-especially in enhancing drug transport across the blood-brain barrier-these particles also introduce possible hazards due to inadvertent exposure. This concise review explores the paradoxical nature of nanoparticles, emphasizing their promising applications in healthcare juxtaposed with their potential neurotoxic consequences. Through a detailed examination, we delineate the pathways through which nanoparticles can reach the brain and the subsequent health implications. There is growing evidence of a disturbing association between nanoparticle exposure and the onset of neurodegenerative conditions, highlighting the imperative for comprehensive research and strategic interventions. Gaining a deep understanding of these mechanisms and enacting protective policies are crucial steps toward reducing the health threats of nanoparticles, thereby maximizing their therapeutic advantages.
Asunto(s)
Nanopartículas , Enfermedades Neurodegenerativas , Humanos , Nanopartículas/toxicidad , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Exposición a Riesgos Ambientales/efectos adversosRESUMEN
Cannabis is the most used illicit substance for recreational purposes around the world. However, it has become increasingly common to witness the use of approved cannabis preparations for symptoms management in various diseases. The aim of this study was to investigate the effects of cannabis nano emulsion in the liver of Wistar rats, with different proportions of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). For this, a total of 40 male Wistar rats were distributed into 5 groups, as follows (n = 8 per group): Control: G1, Experimental group (G2): treated with cannabis nano emulsion (THC and CBD) at a dose of 2.5 mg/kg, Experimental group (G3): treated with cannabis nano emulsion (THC and CBD) at a dose of 5 mg/kg, Experimental group (G4): treated with cannabis nano emulsion (CBD) at a dose of 2.5 mg/kg; Experimental group (G5): treated with cannabis nano emulsion (CBD) at a dose of 5 mg/kg. Exposure to the nano emulsion was carried out for 21 days, once a day, orally (gavage). Our results showed that cannabis nano emulsions at higher doses (5 mg/kg), regardless of the composition, induced histopathologic changes in the liver (G3 and G5) in comparison with the control group. In line with that, placental glutathione S-transferase (GST-P) positive foci increased in both G3 and G5 (p < 0.05), as well as the immune expression of Ki-67, vascular endothelial growth factor (VEGF) and p53 (p < 0.05). Also, the nano emulsion intake induced an increase in the number of micronucleated hepatocytes in G5 (p < 0.05) whereas G3 showed an increase in binucleated cells (p < 0.05). As for metanuclear alterations, karyolysis and pyknosis had an increased frequency in G3 (p < 0.05). Taken together, the results show that intake of cannabis nano emulsion may induce degenerative changes and genotoxicity in the liver in higher doses, demonstrating a clear dose-response relationship.
Asunto(s)
Cannabidiol , Cannabis , Relación Dosis-Respuesta a Droga , Emulsiones , Hígado , Ratas Wistar , Animales , Masculino , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Cannabidiol/toxicidad , Cannabidiol/administración & dosificación , Cannabis/química , Dronabinol/toxicidad , Dronabinol/administración & dosificación , Ratas , Nanopartículas/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiologíaRESUMEN
Polyethylene terephthalate (PET) is a commonly used thermoplastic in industry due to its excellent malleability and thermal stability, making it extensively employed in packaging manufacturing. Inadequate disposal of PET packaging in the environment and natural physical-chemical processes leads to the formation of smaller particles known as PET micro and nanoplastics (MNPs). The reduced dimensions enhance particle bioavailability and, subsequently, their reactivity. This study involved chemical degradation of PET using trifluoroacetic acid to assess the impact of exposure to varying concentrations of PET MNPs (0.5, 1, 5, 10, and 20 mg/L) on morphological, functional, behavioral, and biochemical parameters during the early developmental stages of zebrafish (Danio rerio). Characterization of the degraded PET revealed the generated microplastics (MPs) ranged in size from 1305 to 2032 µm, and that the generated nanoplastics (NPs) ranged from 68.06 to 955 nm. These particles were then used for animal exposure. After a six-day exposure period, our findings indicate that PET MNPs can diminish spontaneous tail coiling (STC), elevate the heart rate, accumulate on the chorion surface, and reduce interocular distance. These results suggest that PET exposure induces primary toxic effects on zebrafish embryo-larval stage of development.
Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos , Tereftalatos Polietilenos/toxicidad , Pez Cebra , Contaminantes Químicos del Agua/toxicidad , Nanopartículas/toxicidadRESUMEN
Nanotechnology applications in biomedicine have increased in recent decades, primarily as therapeutic agents, drugs, and gene delivery systems. Among the nanoparticles used in medicine, we highlight cationic solid lipid nanoparticles (SLN). Given their nontoxic properties, much research has focused on the beneficial effects of SLN for drug or gene delivery system. However, little attention has been paid to the adverse impacts of SLN on the cellular environment, particularly their influence on intracellular signaling pathways. In this work, we investigate the effects triggered by cationic SLN on human prostate non-tumor cells (PNT1A) and tumor cells (PC-3). Our results demonstrate that cationic SLN enhances the migration of PC-3 prostate cancer cells but not PNT1A non-tumor prostate cells, an unexpected and unprecedented development. Furthermore, we observed that the enhanced cell migration velocity is a concentration-dependent and nanoparticle-dependent effect, and not related to any individual nanoparticle component. Moreover, cationic SLN increased vimentin expression (p < 0.05) but SLN did not affect Smad2 nuclear translocation. Meanwhile, EMT-related (epithelial-to-mesenchymal transition) proteins, such as ZEB1, underwent nuclear translocation when treated with cationic SLN, thereby affecting PC-3 cell motility through ZEB1 and vimentin modulation. From a therapeutic perspective, cationic SLN could potentially worsen a patient's condition if these results were reproduced in vivo. Understanding the in vitro molecular mechanisms triggered by nanomaterials and their implications for cell function is crucial for defining their safe and effective use.
Asunto(s)
Liposomas , Nanopartículas , Neoplasias de la Próstata , Masculino , Humanos , Lípidos/toxicidad , Vimentina , Próstata , Línea Celular Tumoral , Plásmidos , Nanopartículas/toxicidad , ADNRESUMEN
In a changing environmental scenario, acid rain can have a significant impact on aquatic ecosystems. Acidification is known to produce corrosion in metals, hence increasing their harmful effects on the environment, organisms and human health. The prevalent use of metallic nanoparticles (NPs) in everyday products raises concerns regarding exposure and nanotoxicity even in these acidified conditions. We thus report on the cytotoxic and genotoxic potential of nickel oxide (NiO-NP) and zinc oxide (ZnO-NP) NPs when suspended in aqueous media in light of pH variations (7.5 and 5). A modified microsuspension method of the Salmonella/microsome assay was adopted, and strains (TA97a, TA98, TA100, TA102) were exposed to NPs (10-1280 µg/plate) with and without a metabolization fraction. The acidic condition favored disaggregation and caused a decrease in NPs size. Mutagenicity was observed in all samples and different strains, with greater DNA base pair substitution damage (TA100 and TA102), but extrinsic conditions (pH) suggest different action mechanisms of NiO-NP and ZnO-NP on genetic content. Mutagenic activity was found to increase upon metabolic activation (TA98, TA100, and TA102) demonstrating the bioactivity of NiO-NP and ZnO-NP in relation to metabolites generated by the mammalian p450 system in vitro. Modifications in the Salmonella assay methodology increased cell exposure time. The observed responses recommend this modified assay as one of the methodologies of choice for nanoecotoxicological evaluation. These findings emphasize the significance of incorporating the environmental context when evaluating the toxicity of metal-based NPs.
Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Animales , Humanos , Ecosistema , Concentración de Iones de Hidrógeno , Mamíferos , Nanopartículas del Metal/toxicidad , Mutágenos , Nanopartículas/toxicidad , Óxido de Zinc/toxicidadRESUMEN
The incidence of viruses such as Zika, Dengue, and Chikungunya affects human health worldwide, and insect repellents are recommended for individual protection. Formulations incorporating nanotechnology should be carefully assessed for toxicity, particularly regarding the security levels established for human health and the environment. This study evaluates the cytotoxicity of a repellent formulation containing zein nanoparticles (NP) loading geraniol (Ger) and icaridin (Ica) in three cell lines: NIH/3T3, HaCaT, and SIRC. To address formulation hazards, IC50 values were determined by MTT and Calcein-AM assays. In both NIH/3T3 and HaCaT, the IC50 values for NP + Ger + Ica formulation were around 0.2%. For risk assessment, cell viability was also determined after a single exposure and repeated exposure to the formulation. No evidence of cytotoxicity was observed for NP + Ger + Ica formulation-treated cells. The risk assessment for eye damage revealed cytotoxicity in SIRC cells when exposed to a 5% concentration, which may be attributed to ocular geraniol toxicity, because zein nanoparticles alone did not exhibit any signs of toxicity. Cell internalization indicated low uptake in NIH/3T3 and HaCaT cells. Phenotypic profiling resulted in similar phenotypes for untreated cells and cells exposed to NP + Ger + Ica formulation. The toxicological profile outlined by the multiparametric and orthogonal approach suggests that the NP + Ger + Ica formulation poses no significant risk to the topical application under the tested conditions. Adopting an orthogonal approach brings robustness to our findings.
Asunto(s)
Repelentes de Insectos , Nanopartículas , Zeína , Infección por el Virus Zika , Virus Zika , Humanos , Repelentes de Insectos/toxicidad , Zeína/toxicidad , Monoterpenos Acíclicos/toxicidad , Nanopartículas/toxicidadRESUMEN
In the field of agriculture, nanopesticides have been developed as an alternative to the conventional pesticides, being more efficient for pest control. However, before their widespread application it is essential to evaluate their safe application and no environmental impacts. In this paper, we evaluated the toxicological effects of two kinds of atrazine nanoformulations (ATZ NPs) in different biological models (Raphidocelis subcapitata, Danio rerio, Lemna minor, Artemia salina, Lactuca sativa and Daphnia magna) and compared the results with nanoparticle stability over time and the presence of natural organic matter (NOM). The systems showed different characteristics for Zein (ATZ NPZ) (184 ± 2 nm with a PDI of 0.28 ± 0.04 and zeta potential of (30.4 ± 0.05 mV) and poly(epsilon-caprolactone (ATZ PCL) (192 ± 3 nm, polydispersity (PDI) of 0.28 ± 0.28 and zeta potential of -18.8 ± 1.2 mV) nanoparticles. The results showed that there is a correlation between nanoparticles stability and the presence of NOM in the medium and Environmental Concentrations (EC) values. The stability loss or an increase in nanoparticle size result in low toxicity for R. subcapitata and L. minor. For D. magna and D. rerio, the presence of NOM in the medium reduces the ecotoxic effects for ATZ NPZ nanoparticles, but not for ATZ NPs, showing that the nanoparticles characteristics and their interaction with NOM can modulate toxic effects. Nanoparticle stability throughout the evaluation must be considered and become an integral part of toxicity protocol guidelines for nanopesticides, to ensure test quality and authentic results regarding nanopesticide effects in target and non-target organisms.
Asunto(s)
Atrazina , Nanopartículas , Plaguicidas , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Atrazina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Nanopartículas/toxicidad , Plaguicidas/toxicidad , Pez Cebra , DaphniaRESUMEN
Iron oxide nanoparticles present superparamagnetic properties that enable their application in various areas, including drug delivery at specific locations in the organism. Silver nanoparticles have potent antimicrobial effects. Although the combination of Fe3O4-NPs and Ag-NPs in one hybrid nanostructure (Fe3O4@Ag-NPs) demonstrated promising targeted biomedical applications, their toxicological effects are unknown and need to be assessed. Caenorhabditis elegans is a promising model for nanotoxicological analysis, as it allows an initial screening of new substances. After exposure to Fe3O4-NPs, Ag-NPs and Fe3O4@Ag-NPs, we observed that hybrid NPs reduced the C. elegans survival and reproduction. Higher concentrations of Fe3O4@Ag-NPs caused an increase in cell apoptosis in the germline and a decrease in egg laying, which was associated with a decrease in worm swimming movements and abnormalities in the cholinergic neurons. Fe3O4@Ag-NPs caused an increase in reactive oxygen species, along with activation of DAF-16 transcription factor. A higher expression of the target genes GST-4::GFP and SOD-3::GFP were evidenced, which suggests the activation of the antioxidant system. Our results indicate the reprotoxicity caused by high levels of Fe3O4@Ag-NPs, as well as cholinergic neurotoxicity and activation of the antioxidant system in C. elegans, suggesting that high concentrations of these nanomaterials can be harmful to living organisms.
Asunto(s)
Nanopartículas del Metal , Nanopartículas , Animales , Caenorhabditis elegans , Nanopartículas del Metal/química , Plata/química , Antioxidantes/farmacología , Nanopartículas/toxicidadRESUMEN
This study evaluated the effects of Lead (Pb) and titanium dioxide nanoparticles (TiO2 NPs) alone or in combination in anterior kidney macrophages of the freshwater fish Hoplias malabaricus, naïve or stimulated with 1 ng.mL-1 lipopolysaccharide (LPS). Pb (1 ×10-5 to 1 ×10-1 mg.mL-1) or TiO2 NPs (1.5 ×10-6 to 1.5 ×10-2 mg.mL-1) reduced cell viability despite LPS stimulation, especially Pb 10-1 mg.mL-1. In combination, lower concentrations of NPs intensified Pb-induced cell viability reduction while higher concentrations restored the cell viability independently of LPS stimulation. Basal and LPS- induced NO production was reduced by both TiO2 NPs and Pb isolated. The combination of both xenobiotics avoided this reduction of NO production by the isolated compounds at lower concentrations but the protective effect was lost as the concentrations increased. None xenobiotic increase DNA fragmentation. Therefore, at specific conditions, TiO2 NPs may have a protective effect over Pb toxicity, may also provide additional toxicity at higher concentrations.
Asunto(s)
Nanopartículas del Metal , Nanopartículas , Animales , Lipopolisacáridos/toxicidad , Plomo/toxicidad , Nanopartículas/toxicidad , Titanio/toxicidad , Técnicas de Cultivo de Célula , Agua Dulce , Riñón , Nanopartículas del Metal/toxicidadRESUMEN
Natural and renewable resources from plants or animals are an important source of biomaterials due to their biocompatibility and high availability. Lignin is a biopolymer present in the biomass of plants, where it is intertwined and cross-linked with other polymers and macromolecules in the cell walls, generating a lignocellulosic material with potential applications. We have prepared lignocellulosic-based nanoparticles with an average size of 156 nm that exhibit a high photoluminescence signal when excited at 500 nm with emission in the near-infrared (NIR) region at 800 nm. The advantage of these lignocellulosic-based nanoparticles is their natural luminescent properties and their origin from rose biomass waste, which eliminates the need for encapsulation or functionalization of imaging agents. Moreover, the in vitro cell growth inhibition (IC50) of lignocellulosic-based nanoparticles is about 3 mg/mL, and no in vivo toxicity was registered up to 57 mg/kg, which suggests that they are suitable for bioimaging applications. In addition, these nanoparticles can circulate in the blood and are excreted in urine. The combined high luminescence signal in NIR, small size, low in vitro toxicity, low in vivo toxicity, and blood circulation support the potential of lignin-based nanoparticles as a novel bioimaging agent.
Asunto(s)
Lignina , Nanopartículas , Animales , Nanopartículas/toxicidad , Luminiscencia , Espectroscopía Infrarroja CortaRESUMEN
The co-therapy of common chemotherapeutics with nitric oxide (NO), an endogenous signaling molecule, is proposed as an alternative to sensitize cancer cells and enhance treatments' efficacy. Herein, we have synthesized cisplatin-releasing zinc oxide nanoparticles (ZnO/CisPt NPs), which promoted a sustained and pH targeted release, able to release a higher amount of CisPt at tumor microenvironment conditions. This material was combined with a chronic NO treatment, at low concentration, in prostate cancer cells (PC3). NO treatment enhanced the S-NO concentration in PC3 cells, suggesting the nitrosylation or transnitrosylation processes enhancement, which are directly related to S-NO binding to proteins, function alterations and cancer cells death. Indeed, these mechanisms directly impacted the cytotoxic effect of ZnO/CisPt NPs, inducing a 30 % higher viability reduction of PC3 cells after NO treatment, along with a higher selectivity index when compared to normal human fibroblasts (FN1).
Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias de la Próstata , Óxido de Zinc , Masculino , Humanos , Óxido de Zinc/química , Óxido Nítrico , Nanopartículas/toxicidad , Neoplasias de la Próstata/tratamiento farmacológico , Cisplatino/farmacología , Nanopartículas del Metal/química , Microambiente TumoralRESUMEN
Titatinum dioxide nanoparticles (TiO2-NPs) are frequently used in several areas. Titanium alloys are employed in orthopedic and odontological surgery (such as hip, knee, and teeth implants). To evaluate the potential acute toxic effects of titanium pieces implantations and in other sources that allow the systemic delivery of titanium, parenteral routes of TiO2-NPs administration should be taken into account. The present study evaluated the impact of subcutaneous administration of TiO2-NPs on renal function and structure in rats. Animals were exposed to a dose of 50 mg/kg b.w., s.c. and sacrificed after 48 h. Titanium levels were detected in urine (135 ± 6 ηg/mL) and in renal tissue (502 ± 40 ηg/g) employing inductively coupled plasma mass spectrometry. An increase in alkaline phosphatase activity, total protein levels, and glucose concentrations was observed in urine from treated rats suggesting injury in proximal tubule cells. In parallel, histopathological studies showed tubular dilatation and cellular desquamation in these nephron segments. In summary, this study demonstrates that subcutaneous administration of TiO2-NPs causes acute nephrotoxicity evidenced by functional and histological alterations in proximal tubule cells. This fact deserves to be mainly considered when humans are exposed directly or indirectly to TiO2-NPs sources that cause the systemic delivery of titanium.
Asunto(s)
Nanopartículas del Metal , Nanopartículas , Humanos , Ratas , Animales , Titanio/toxicidad , Titanio/química , Nanopartículas/toxicidad , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/químicaRESUMEN
Zinc oxide nanoparticles (ZnO NPs) are widely used in the cosmetic industry. They are nano-optical and nano-electrical devices, and their antimicrobial properties are applied in food packaging and medicine. ZnO NPs penetrate the body through inhalation, oral, and dermal exposure and spread through circulation to various systems and organs. Since the cardiovascular system is one of the most vulnerable systems, in this work, we studied ZnO NPs toxicity in H9c2 rat cardiomyoblasts. Cardiac cells were exposed to different concentrations of ZnO NPs, and then the morphology, proliferation, viability, mitochondrial membrane potential (ΔΨm), redox state, and protein expression were measured. Transmission electron microscopy (TEM) and hematoxylin-eosin (HE) staining showed strong morphological damage. ZnO NPs were not observed inside cells, suggesting that Zn2+ ions were internalized, causing the damage. ZnO NPs strongly inhibited cell proliferation and MTT reduction at 10 and 20 µg/cm2 after 72 h of treatment. ZnO NPs at 20 µg/cm2 elevated DCF fluorescence, indicating alterations in the cellular redox state associated with changes in ΔΨm and cell death. ZnO NPs also reduced the intracellular expression of troponin I and atrial natriuretic peptide. ZnO NPs are toxic for cardiac cells; therefore, consumption of products containing them could cause heart damage and the development of cardiovascular diseases.
Asunto(s)
Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Ratas , Animales , Óxido de Zinc/química , Nanopartículas/toxicidad , Nanopartículas/química , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Iones , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/químicaRESUMEN
Currently, copper nanoparticles are used in various sectors of industry, agriculture, and medicine. To understand the effects induced by these nanoparticles, it is necessary to assess the environmental risk and safely expand their use. In this study, we evaluated the toxicity of copper oxide (nCuO) nanoparticles in Danio rerio adults, their distribution/concentration, and chemical form after exposure. This last assessment had never been performed on copper-exposed zebrafish. Such evaluation was done through the characterization of nCuO, acute exposure tests and analysis of distribution and concentration by microstructure X-ray fluorescence spectroscopy (µ-XRF) and atomic absorption spectroscopy (GF-AAS). Synchrotron X-ray absorption spectroscopy (XAS) was performed to find out the chemical form of copper in hotspots. The results show that the toxicity values of fish exposed to nCuO were 2.4 mg L-1 (25 nm), 12.36 mg L-1 (40 nm), 149.03 mg L-1 (80 nm) and 0.62 mg L-1 (CuSO4, used as a positive control). The total copper found in the fish was in the order of mg kg-1 and it was not directly proportional to the exposure concentration; most of the copper was concentrated in the gastric system. However, despite the existence of copper hotspots, chemical transformation of CuO into other compounds was not detected.
Asunto(s)
Nanopartículas del Metal , Nanopartículas , Contaminantes Químicos del Agua , Animales , Cobre/toxicidad , Cobre/química , Pez Cebra , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Rayos X , Nanopartículas/toxicidad , Espectroscopía de Absorción de Rayos X , Óxidos , Contaminantes Químicos del Agua/toxicidadRESUMEN
Titanium dioxide food grade (E171) is one of the most used food additives containing nanoparticles. Recently, the European Food Safety Authority indicated that E171 could no longer be considered safe as a food additive due to the possibility of it being genotoxic and there is evidence that E171 administration exacerbates colon tumor formation in murine models. However, less is known about the effects of E171 accumulation once the exposure stopped, then we hypothesized that toxic effects could be detected even after E171 removal. Therefore, we investigated the effects of E171 exposure after being removed from colon cell cultures. Human colon cancer cell line (HCT116) was exposed to 0, 1, 10 and 50 µg/cm2 of E171. Our results showed that in the absence of cytotoxicity, E171 was accumulated in the cells after 24 of exposure, increasing granularity and reactive oxygen species, inducing alterations in the molecular pattern of nucleic acids and lipids, and causing nuclei enlargement, DNA damage and tubulin depolymerization. After the removal of E171, colon cells were cultured for 48 h more hours to analyze the ability to restore the previously detected alterations. As we hypothesized, the removal of E171 was unable to revert the alterations found after 24 h of exposure in colon cells. In conclusion, exposure to E171 causes alterations that cannot be reverted after 48 h if E171 is removed from colon cells.