Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(3): 3744-3759, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36630299

RESUMEN

Inducing immunogenic cell death (ICD) is a critical strategy for enhancing cancer immunotherapy. However, inefficient and risky ICD inducers along with a tumor hypoxia microenvironment seriously limit the immunotherapy efficacy. Non-specific delivery is also responsible for this inefficiency. In this work, we report a drug-free bacteria-derived outer membrane vesicle (OMV)-functionalized Fe3O4-MnO2 (FMO) nanoplatform that realized neutrophil-mediated targeted delivery and photothermally enhanced cancer immunotherapy. In this system, modification of OMVs derived from Escherichia coli enhanced the accumulation of FMO NPs at the tumor tissue through neutrophil-mediated targeted delivery. The FMO NPs underwent reactive decomposition in the tumor site, generating manganese and iron ions that induced ICD and O2 that regulated the tumor hypoxia environment. Moreover, OMVs are rich in pathogen-associated pattern molecules that can overcome the tumor immunosuppressive microenvironment and effectively activate immune cells, thereby enhancing specific immune responses. Photothermal therapy (PTT) caused by MnO2 and Fe3O4 can not only indirectly stimulate systemic immunity by directly destroying tumor cells but also promote the enrichment of neutrophil-equipped nanoparticles by enhancing the inflammatory response at the tumor site. Finally, the proposed multi-modal treatment system with targeted delivery capability realized effective tumor immunotherapy to prevent tumor growth and recurrence.


Asunto(s)
Bioingeniería , Inmunoterapia , Nanopartículas Multifuncionales , Neoplasias , Humanos , Línea Celular Tumoral , Inmunoterapia/métodos , Nanopartículas Multifuncionales/uso terapéutico , Neoplasias/terapia , Microambiente Tumoral/inmunología , Vesículas Transportadoras/química , Vesículas Transportadoras/inmunología , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/inmunología , Escherichia coli
2.
ACS Appl Mater Interfaces ; 13(37): 43937-43951, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34499462

RESUMEN

Nanotechnology has emerged as a promising solution to permanent elimination of cancer. However, nanoparticles themselves lack specificity to tumors. Due to enhanced migration to tumors, mesenchymal stem cells (MSCs) were suggested as cell-mediated delivery vehicles of nanoparticles. In this study, we have constructed a complex composed of photoluminescent quantum dots (QDs) and a photosensitizer chlorin e6 (Ce6) to obtain multifunctional nanoparticles, combining cancer diagnostic and therapeutic properties. QDs serve as energy donors-excited QDs transfer energy to the attached Ce6 via Förster resonance energy transfer, which in turn generates reactive oxygen species. Here, the physicochemical properties of the QD-Ce6 complex and singlet oxygen generation were measured, and the stability in protein-rich media was evaluated, showing that the complex remains the most stable in protein-free medium. In vitro studies on MSC and cancer cell response to the QD-Ce6 complex revealed the complex-loaded MSCs' potential to transport theranostic nanoparticles and induce cancer cell death. In vivo studies proved the therapeutic efficacy, as the survival of tumor-bearing mice was statistically significantly increased, while tumor progression and metastases were slowed down.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Pulmonar de Lewis/diagnóstico por imagen , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Células Madre Mesenquimatosas/metabolismo , Nanopartículas Multifuncionales/uso terapéutico , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/efectos de la radiación , Compuestos de Cadmio/química , Compuestos de Cadmio/metabolismo , Compuestos de Cadmio/efectos de la radiación , Compuestos de Cadmio/uso terapéutico , Carcinoma Pulmonar de Lewis/metabolismo , Línea Celular Tumoral , Clorofilidas/química , Clorofilidas/metabolismo , Clorofilidas/efectos de la radiación , Clorofilidas/uso terapéutico , Femenino , Humanos , Luz , Ratones Endogámicos C57BL , Nanopartículas Multifuncionales/química , Nanopartículas Multifuncionales/metabolismo , Nanopartículas Multifuncionales/efectos de la radiación , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Fármacos Fotosensibilizantes/efectos de la radiación , Fármacos Fotosensibilizantes/uso terapéutico , Medicina de Precisión/métodos , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Puntos Cuánticos/efectos de la radiación , Puntos Cuánticos/uso terapéutico , Compuestos de Selenio/química , Compuestos de Selenio/metabolismo , Compuestos de Selenio/efectos de la radiación , Compuestos de Selenio/uso terapéutico , Oxígeno Singlete/metabolismo , Sulfuros/química , Sulfuros/metabolismo , Sulfuros/efectos de la radiación , Sulfuros/uso terapéutico , Compuestos de Zinc/química , Compuestos de Zinc/metabolismo , Compuestos de Zinc/efectos de la radiación , Compuestos de Zinc/uso terapéutico
3.
Biomolecules ; 11(4)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808293

RESUMEN

The global impact of cancer emphasizes the importance of developing innovative, effective and minimally invasive therapies. In the context of superficial cancers, the development of a multifunctional nanoparticle-based system and its in vitro and in vivo safety and efficacy characterization are, herein, proposed as a proof-of-concept. This multifunctional system consists of gold nanoparticles coated with hyaluronic and oleic acids, and functionalized with epidermal growth factor for greater specificity towards cutaneous melanoma cells. This nanoparticle system is activated by a near-infrared laser. The characterization of this nanoparticle system included several phases, with in vitro assays being firstly performed to assess the safety of gold nanoparticles without laser irradiation. Then, hairless immunocompromised mice were selected for a xenograft model upon inoculation of A375 human melanoma cells. Treatment with near-infrared laser irradiation for five minutes combined with in situ administration of the nanoparticles showed a tumor volume reduction of approximately 80% and, in some cases, led to the formation of several necrotic foci, observed histologically. No significant skin erythema at the irradiation zone was verified, nor other harmful effects on the excised organs. In conclusion, these assays suggest that this system is safe and shows promising results for the treatment of superficial melanoma.


Asunto(s)
Terapia por Luz de Baja Intensidad/métodos , Melanoma/terapia , Nanopartículas Multifuncionales/uso terapéutico , Neoplasias Cutáneas/terapia , Animales , Línea Celular Tumoral , Factor de Crecimiento Epidérmico/química , Oro/química , Humanos , Terapia por Luz de Baja Intensidad/efectos adversos , Masculino , Melanoma/patología , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Ratones SCID , Nanopartículas Multifuncionales/química , Ácido Oléico/química , Prueba de Estudio Conceptual , Neoplasias Cutáneas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Molecules ; 26(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919694

RESUMEN

Glioblastoma (GB) is an aggressive cancer with high microvascular proliferation, resulting in accelerated invasion and diffused infiltration into the surrounding brain tissues with very low survival rates. Treatment options are often multimodal, such as surgical resection with concurrent radiotherapy and chemotherapy. The development of resistance of tumor cells to radiation in the areas of hypoxia decreases the efficiency of such treatments. Additionally, the difficulty of ensuring drugs effectively cross the natural blood-brain barrier (BBB) substantially reduces treatment efficiency. These conditions concomitantly limit the efficacy of standard chemotherapeutic agents available for GB. Indeed, there is an urgent need of a multifunctional drug vehicle system that has potential to transport anticancer drugs efficiently to the target and can successfully cross the BBB. In this review, we summarize some nanoparticle (NP)-based therapeutics attached to GB cells with antigens and membrane receptors for site-directed drug targeting. Such multicore drug delivery systems are potentially biodegradable, site-directed, nontoxic to normal cells and offer long-lasting therapeutic effects against brain cancer. These models could have better therapeutic potential for GB as well as efficient drug delivery reaching the tumor milieu. The goal of this article is to provide key considerations and a better understanding of the development of nanotherapeutics with good targetability and better tolerability in the fight against GB.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Glioblastoma/tratamiento farmacológico , Nanopartículas Multifuncionales/uso terapéutico , Animales , Membrana Celular/química , Humanos , Nanotecnología
5.
Int J Nanomedicine ; 16: 2897-2915, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33907399

RESUMEN

BACKGROUND: Surgery is considered to be a potentially curative approach for gastric cancer. However, most cases are diagnosed at a very advanced stage for the lack of typical symptoms in the initial stage, which makes it difficult to completely surgical resect of tumors. Early diagnosis and precise personalized intervention are urgent issues to be solved for improving the prognosis of gastric cancer. Herein, we developed an RGD-modified ROS-responsive multifunctional nanosystem for near-infrared (NIR) imaging and photothermal therapy (PTT) against gastric cancer. METHODS: Firstly, the amphiphilic polymer was synthesized by bromination reaction and nucleophilic substitution reaction of carboxymethyl chitosan (CMCh) and 4-hydroxymethyl-pinacol phenylborate (BAPE). Then, it was used to encapsulate indocyanine green (ICG) and modified with RGD to form a smart multifunctional nanoparticle targeted to gastric cancer (CMCh-BAPE-RGD@ICG). The characteristics were determined, and the targeting capacity and biosafety were evaluated both in vitro and in vivo. Furthermore, CMCh-BAPE-RGD@ICG mediated photothermal therapy (PTT) effect was studied using gastric cancer cells (SGC7901) and SGC7901 tumor model. RESULTS: The nanoparticle exhibited suitable size (≈ 120 nm), improved aqueous stability, ROS-responsive drug release, excellent photothermal conversion efficiency, enhanced cellular uptake, and targeting capacity to tumors. Remarkably, in vivo studies suggested that CMCh-BAPE-RGD@ICG could accurately illustrate the location and margin of the SGC7901 tumor through NIR imaging in comparison with non-targeted nanoparticles. Moreover, the antitumor activity of CMCh-BAPE-RGD@ICG-mediated PTT could effectively suppress tumor growth by inducing necrosis and apoptosis in cancer cells. Additionally, CMCh-BAPE-RGD@ICG demonstrated excellent biosafety both in vitro and in vivo. CONCLUSION: Overall, our study provides a biocompatible theranostic nanoparticle with enhanced tumor-targeting ability and accumulation to realize NIR image-guided PTT in gastric cancer.


Asunto(s)
Nanopartículas Multifuncionales/química , Nanopartículas Multifuncionales/uso terapéutico , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/terapia , Animales , Ácidos Borónicos/química , Línea Celular Tumoral , Quitosano/análogos & derivados , Quitosano/química , Femenino , Humanos , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Ratones Endogámicos BALB C , Oligopéptidos/química , Fototerapia/métodos , Terapia Fototérmica , Polímeros/química , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Nanomedicine ; 32: 102325, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33186695

RESUMEN

Respiratory Syncytial Virus (RSV) has been a major health concern globally for decades, yet no effective prophylactic or treatment regimen is available. The key viral proteins responsible for RSV pathology include the fusion protein (F), the immunomodulatory non-structural-protein 1 (NS1) and the phosphoprotein (P) involved in viral replication. Herein, we developed a novel shell-core multifunctional nanosystem with dual payload: a plasmid construct encoding for shRNAs against NS1 and P, and an anti-fusion peptide (HR2D). Anti-ICAM1 antibody conjugated on the nanoparticle (NP) surface is used to target RSV infected cells. Our data show the potential of this nanosystem as a prophylactic and/or a therapeutic regimen against RSV infection. Furthermore, therapy of RSV infected mice with this nanosystem, in addition to reducing viral load, modulated expression of Th2 and allergy-associated cytokines such as IL4, IL-13 and IL-17 indicating a direct role of this nanosystem in the mechanisms involved in the immunoregulation of disease pathogenesis.


Asunto(s)
Nanopartículas Multifuncionales/uso terapéutico , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitial Respiratorio Humano/fisiología , Animales , Citocinas/metabolismo , Liberación de Fármacos , Femenino , Mediadores de Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Ratones Endogámicos BALB C , Nanopartículas Multifuncionales/ultraestructura , Péptidos/farmacología , Plásmidos/genética , ARN Interferente Pequeño/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Transfección , Proteínas Virales de Fusión/metabolismo
7.
Sci Rep ; 10(1): 10115, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572041

RESUMEN

Smart multifunctional nanoparticles with magnetic and plasmonic properties assembled on a single nanoplatform are promising for various biomedical applications. Owing to their expanding imaging and therapeutic capabilities in response to external stimuli, they have been explored for on-demand drug delivery, image-guided drug delivery, and simultaneous diagnostic and therapeutic (i.e. theranostic) applications. In this study, we engineered nanoparticles with unique morphology consisting of a superparamagnetic iron oxide core and star-shaped plasmonic shell with high-aspect-ratio gold branches. Strong magnetic and near-infrared (NIR)-responsive plasmonic properties of the engineered nanostars enabled multimodal quantitative imaging combining advantageous functions of magnetic resonance imaging (MRI), magnetic particle imaging (MPI), photoacoustic imaging (PAI), and image-guided drug delivery with a tunable drug release capacity. The model drug molecules bound to the core-shell nanostars were released upon NIR illumination due to the heat generation from the core-shell nanostars. Moreover, our simulation analysis showed that the specific design of the core-shell nanostars demonstrated a pronounced multipolar plasmon resonance, which has not been observed in previous reports. The multimodal imaging and NIR-triggered drug release capabilities of the proposed nanoplatform verify their potential for precise and controllable drug release with different applications in personalized medicine.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas de Magnetita/química , Nanopartículas Multifuncionales/química , Animales , Liberación de Fármacos/fisiología , Fenómenos Electromagnéticos , Compuestos Férricos/química , Oro , Humanos , Imagen por Resonancia Magnética , Magnetismo , Nanopartículas Multifuncionales/uso terapéutico , Imagen Multimodal , Fototerapia/métodos , Medicina de Precisión/métodos
8.
Int J Nanomedicine ; 15: 2777-2787, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32368054

RESUMEN

BACKGROUND: Owing to its combined effects, the co-delivery of different therapeutics is a promising option for the treatment of cancer. In the present study, tumor-targeting poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) nanoparticles were developed for the transportation of two molecules, namely chemotherapeutic drug 5-fluorouracil (5Fu) and radionuclide iodine-131 (131I), in a single platform. METHODS: The obtained nanoparticles (Cetuximab [Cet]-PEG-PLA-5Fu-131I) were spherical (diameter approximately 110 nm) and pH-sensitive. The targeting effect of nanoparticles via Cet was confirmed in colorectal cancer cells using a fluorescent assay. The combined effects of Cet-PEG-PLA-5Fu-131I on cell viability and apoptosis were evaluated in colorectal cancer cells by Cell Counting Kit-8 and flow cytometry assays. RESULTS: Blank nanoparticles (Cet-PEG-PLA) showed good biocompatibility, and Cet-PEG-PLA-5Fu-131I nanoparticles were the most effective in terms of inhibition of cell viability and induction of apoptosis compared with monotherapy using Cet-PEG-PLA-5Fu or Cet-PEG-PLA-131I. In the xenograft mouse model, compared with using Cet-PEG-PLA-5Fu or Cet-PEG-PLA-131I alone, Cet-PEG-PLA-5Fu-131I nanoparticles exhibited prolonged circulation in the blood and accumulation in the tumor, thus resulting in enhanced antitumor efficacy. Additionally, combined radio-chemotherapy with Cet-PEG-PLA-5Fu-131I nanoparticles was associated with smaller tumor sizes than monotherapy, revealing the superior antitumor effects of Cet-PEG-PLA-5Fu-131I nanoparticles. These effects were further evidenced by histological and immunohistochemical analyses. CONCLUSION: The multifunctional Cet-PEG-PLA-5Fu-131I nanoparticles are promising candidates for the co-delivery of 5Fu-mediated chemotherapy and 131I-mediated radiotherapy.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Neoplasias Colorrectales/tratamiento farmacológico , Fluorouracilo/administración & dosificación , Nanopartículas Multifuncionales/química , Animales , Antimetabolitos Antineoplásicos/farmacología , Circulación Sanguínea , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cetuximab/química , Neoplasias Colorrectales/patología , Sistemas de Liberación de Medicamentos/métodos , Fluorouracilo/farmacología , Humanos , Radioisótopos de Yodo/química , Radioisótopos de Yodo/farmacocinética , Ratones Endogámicos BALB C , Nanopartículas Multifuncionales/uso terapéutico , Polietilenglicoles , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Artículo en Inglés | MEDLINE | ID: mdl-32196991

RESUMEN

Clinical translation of nanoparticle-based drug delivery systems is hindered by an array of challenges including poor circulation time and limited targeting. Novel approaches including designing multifunctional particles, cell-mediated delivery systems, and fabrications of protein-based nanoparticles have gained attention to provide new perspectives to current drug delivery obstacles in the interdisciplinary field of nanomedicine. Collectively, these nanoparticle devices are currently being investigated for applications spanning from drug delivery and cancer therapy to medical imaging and immunotherapy. Here, we review the current state of the field, highlight opportunities, identify challenges, and present the future directions of the next generation of multifunctional nanoparticle drug delivery platforms. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Asunto(s)
Nanopartículas Multifuncionales/uso terapéutico , Nanomedicina , Anisotropía , Ensayos Clínicos como Asunto , Humanos , Nanopartículas/química , Proteínas/química
10.
Int J Nanomedicine ; 15: 347-361, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32021184

RESUMEN

PURPOSE: Chemotherapy in head and neck squamous cell carcinoma (HNSCC) has many systemic side effects, as well as hypoxia-induced chemoresistance. To reduce side effects and enhance chemosensitivity are urgently needed. METHODS: We synthesized a drug delivery system (named CECMa NPs) based on cisplatin (CDDP) and metformin (chemotherapeutic sensitizer), of which chlorin e6 (Ce6) and polyethylene glycol diamine (PEG) were synthesized as the shell, an anti-LDLR antibody (which can target to hypoxic tumor cells) was modified on the surface to achieve tumor targeting. RESULTS: The NPs possessed a great synergistic effect of chemotherapy and phototherapy. After laser stimulation, both CDDP and metformin can be released in situ to achieve anti-tumor effects. Meanwhile, PDT and PTT triggered by a laser have anticancer effects. Furthermore, compared with free cisplatin, CECMa exhibits less systemic toxicity with laser irradiation in the xenograft mouse tumor model. CONCLUSION: CECMa effectively destroyed the tumors via hypoxia targeting multimodal therapy both in vitro and in vivo, thereby providing a novel strategy for targeting head and neck squamous cell carcinoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias de Cabeza y Cuello/terapia , Nanopartículas Multifuncionales/química , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Animales , Línea Celular Tumoral , Clorofilidas , Cisplatino/administración & dosificación , Cisplatino/farmacología , Terapia Combinada , Sistemas de Liberación de Medicamentos , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Metformina/administración & dosificación , Metformina/farmacología , Ratones Endogámicos BALB C , Nanopartículas Multifuncionales/administración & dosificación , Nanopartículas Multifuncionales/uso terapéutico , Fotoquimioterapia , Fototerapia/métodos , Polietilenglicoles/química , Porfirinas/química , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Hipoxia Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Int J Nanomedicine ; 14: 6749-6777, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31692550

RESUMEN

Janus particles, which are named after the two-faced Roman god Janus, have two distinct sides with different surface features, structures, and compositions. This asymmetric structure enables the combination of different or even incompatible physical, chemical, and mechanical properties within a single particle. Much effort has been focused on the preparation of Janus particles with high homogeneity, tunable size and shape, combined functionalities, and scalability. With their unique features, Janus particles have attracted attention in a wide range of applications such as in optics, catalysis, and biomedicine. As a biomedical device, Janus particles offer opportunities to incorporate therapeutics, imaging, or sensing modalities in independent compartments of a single particle in a spatially controlled manner. This may result in synergistic actions of combined therapies and multi-level targeting not possible in isotropic systems. In this review, we summarize the latest advances in employing Janus particles as therapeutic delivery carriers, in vivo imaging probes, and biosensors. Challenges and future opportunities for these particles will also be discussed.


Asunto(s)
Diagnóstico por Imagen/métodos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas Multifuncionales/química , Nanopartículas Multifuncionales/uso terapéutico , Nanomedicina Teranóstica/métodos , Animales , Técnicas Biosensibles , Medios de Contraste/química , Humanos , Polímeros/química
12.
J Mater Chem B ; 7(30): 4669-4676, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31364688

RESUMEN

We report herein the assembly of an integrated nanodevice with bi-enzymatic cascade control for on-command cargo release. This nanocarrier is based on Au-mesoporous silica Janus nanoparticles capped at the mesoporous face with benzimidazole/ß-cyclodextrin-glucose oxidase pH-sensitive gate-like ensembles and functionalized with invertase on the gold face. The rationale for this delivery mechanism is based on the invertase-mediated hydrolysis of sucrose yielding glucose, which is further transformed into gluconic acid by glucose oxidase causing the disruption of the pH-sensitive supramolecular gates at the Janus nanoparticles. This enzyme-powered device was successfully employed in the autonomous and on-demand delivery of doxorubicin in HeLa cancer cells.


Asunto(s)
Portadores de Fármacos/uso terapéutico , Nanopartículas Multifuncionales/uso terapéutico , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Gluconatos/metabolismo , Glucosa Oxidasa/metabolismo , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , beta-Fructofuranosidasa/metabolismo
13.
ACS Nano ; 13(6): 6438-6454, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31180624

RESUMEN

Ionizing radiation (IR) has been extensively used in industry and radiotherapy, but IR exposure from nuclear or radiological accidents often causes serious health effects in an exposed individual, and its application in radiotherapy inevitably brings undesirable damage to normal tissues. In this work, we have developed ultrathin two-dimensional (2D) niobium carbide (Nb2C) MXene as a radioprotectant and explored its application in scavenging free radicals against IR. The 2D Nb2C MXene features intriguing antioxidant properties in effectively eliminating hydrogen peroxide (H2O2), hydroxyl radicals (•OH), and superoxide radicals (O2•-). Pretreatment with biocompatible polyvinylpyrrolidone (PVP)-functionalized Nb2C nanosheets (Nb2C-PVP NSs) significantly reduces IR-induced production of reactive oxygen species (ROS), resulting in enhanced cell viability in vitro. A single intravenous injection of Nb2C-PVP significantly enhances the survival rate of 5 and 6.5 Gy irradiated mice to 100% and 81.25%, respectively, and significantly increases bone marrow mononuclear cells after IR. Critically, Nb2C-PVP reverses the damage of the hematopoietic system in irradiated mice. Single administration of Nb2C-PVP significantly increases superoxide dismutase (SOD) activities, decreases malondialdehyde levels, and thereby reduces IR-induced pathological damage in the testis, small intestine, lung, and liver of 5 Gy irradiated mice. Importantly, Nb2C-PVP is almost completely eliminated from the mouse body on day 14 post treatment, and no obvious toxicities are observed during the 30-day post treatment period. Our study pioneers the application of 2D MXenes with intrinsic radioprotective nature in vivo.


Asunto(s)
Depuradores de Radicales Libres/química , Hematopoyesis , Nanopartículas Multifuncionales/química , Niobio/química , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Protectores contra Radiación/química , Células 3T3 , Animales , Depuradores de Radicales Libres/farmacocinética , Depuradores de Radicales Libres/uso terapéutico , Masculino , Ratones , Ratones Endogámicos BALB C , Nanopartículas Multifuncionales/uso terapéutico , Povidona/química , Protectores contra Radiación/farmacocinética , Protectores contra Radiación/uso terapéutico
14.
Biomaterials ; 197: 284-293, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30677557

RESUMEN

Despite multifunctional nanoparticles using for photothermal therapy can efficiently kill cancer cells, their further application is still hindered by the intrinsic high uptake in the reticuloendothelial system (RES) organs, causing the slow elimination from the body and potential toxicity to the body. Therefore, it is ideal to develop multifunctional nanoparticles which process the ability to effectively accumulate in tumors, while the nanoparticles can be rapidly excreted from the body via renal clearance after effective treatment. Herein, we report the multifunctional nanoparticles (FeTNPs) based on the coordination interaction of phenolic group and metal iron, which are composed of ferric iron, tannic acid (TA) and poly (glutamic acid)-graft-methoxypoly (ethylene glycol) (PLG-g-mPEG). FeTNPs exhibit the following highlighted features: (1) The effective accumulation in the tumor tissue is achieved based on EPR effect. (2) The dual photoacoustic (PA)/magnetic resonance (MR) imaging capacity can provide guidance for the photothermal therapy (PTT). (3) FeTNPs can be dynamically disassembled by deferoxamine mesylate (DFO) to accelerate elimination of the nanoparticles, thus reducing the potential toxicity for the body. The DFO triggered dynamic disassembling strategy may open a new avenue to overcome the dilemma between EPR effect and renal clearance.


Asunto(s)
Neoplasias de la Mama/terapia , Nanopartículas Multifuncionales/uso terapéutico , Animales , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Hipertermia Inducida , Células MCF-7 , Imagen por Resonancia Magnética , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas Multifuncionales/química , Técnicas Fotoacústicas , Ratas Sprague-Dawley , Nanomedicina Teranóstica
15.
J Mater Chem B ; 7(4): 576-585, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-32254791

RESUMEN

The intrinsic limits of conventional cancer therapies prompt the development of a new technology for a more effective and safer cancer treatment. The bioresponsive delivery technique has recently emerged as an innovative strategy to overcome multiple barriers in the systemic delivery of nanoparticle (NP)-based therapeutics. However, some issues especially the tumor penetration-retention balance have not been completely solved, which may induce the suboptimal therapeutic effect. Herein, we developed a new multifunctional sharp pH-responsive NP platform for targeted drug delivery and effective cancer therapy. This NP platform is made of the sharp pH-responsive poly(2-(diisopropylamino)ethylmethacrylate) (PDPA) polymer as the inner core, amphiphilic lipid-poly(ethylene glycol) (lipid-PEG) as the outer shell, and the internalizing RGD (iRGD) peptide encoded on the surface. After anticancer drug loading and then systemic administration, the resulting NP platform shows the following features in one nanostructure: (i) the PEG shell to prolong blood circulation; (ii) the iRGD peptide to enhance tumor targeting and penetration; (iii) a larger particle size (∼80 nm) than that of free drug to ensure long tumor retention; (iv) the sharp endosomal pH response of the PDPA polymer to induce fast intracellular drug release and thus efficient inhibition of tumor growth. Together with facile polymer synthesis and robust NP formulation to enable easy scale-up, the multifunctional NP platform reported herein shows great potential as a new generation nanomedicine for effective cancer treatment.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas Multifuncionales/uso terapéutico , Nanomedicina/métodos , Animales , Antineoplásicos/administración & dosificación , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mitoxantrona/administración & dosificación , Oligopéptidos/administración & dosificación , Polietilenglicoles/química , Ácidos Polimetacrílicos/química , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...