Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33375008

RESUMEN

Supramolecular aggregates formed between polycyclic aromatic hydrocarbons and either naphthalene or perylene-derived diimides have been anchored in magnetite magnetic nanoparticles. The high affinity and stability of these aggregates allow them to capture and confine these extremely carcinogenic contaminants in a reduced space. In some cases, the high cohesion of these aggregates leads to the formation of magnetic microfibres of several microns in length, which can be isolated from the solution by the direct action of a magnet. Here we show a practical application of bioremediation aimed at the environmental decontamination of naphthalene, a very profuse contaminant, based on the uptake, sequestration, and acceleration of the biodegradation of the formed supramolecular aggregate, by the direct action of a bacterium of the lineage Roseobacter (biocompatible with nanostructured receptors and very widespread in marine environments) without providing more toxicity to the environment.


Asunto(s)
Microfibrillas/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Roseobacter/metabolismo , Agua de Mar/microbiología , Biodegradación Ambiental , Fenómenos Magnéticos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/microbiología , Nanopartículas de Magnetita/ultraestructura , Microfibrillas/microbiología , Microfibrillas/ultraestructura , Microscopía Electrónica de Rastreo , Estructura Molecular , Naftalenos/química , Naftalenos/metabolismo , Tamaño de la Partícula , Hidrocarburos Policíclicos Aromáticos/química
2.
Biotechnol Lett ; 42(4): 597-603, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31950407

RESUMEN

OBJECTIVES: The yeast cells were coated with Fe3O4 magnetic nanoparticles and employed as biocatalyst for the microbial biotransformation of benzaldehyde into L-phenylacetylcarbinol (L-PAC). RESULTS: Saccharomyces cerevisiae CEN.PK113-7D yeast cells were coated with magnetic nanoparticles to facilitate the cells separation process. Transmission electron microscopy, powder XRD diffraction, and vibrating sample magnetometer were used to characterize magnetic nanoparticles and magnetic nanoparticle-coated yeast cells. Then the reusability of magnetically recoverable cells in production of L-PAC was investigated. Results show that coating yeast cells with magnetic nanoparticles does not affect their size and structure. Coated cells were also used in seven consecutive batch cycles and no significant reduction for L-PAC titer was observed in any of the cycles. CONCLUSION: Coating yeast cells with magnetic nanoparticles enabled rapid separation and reuse of cells in several successive batch cycle without affecting their ability to produce L-PAC.


Asunto(s)
Acetona/análogos & derivados , Benzaldehídos/metabolismo , Nanopartículas de Magnetita/microbiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Acetona/metabolismo , Técnicas de Cultivo Celular por Lotes , Biocatálisis , Biotransformación , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Difracción de Polvo , Saccharomyces cerevisiae/metabolismo , Difracción de Rayos X
3.
Appl Environ Microbiol ; 84(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29959254

RESUMEN

Magnetic nanoparticles (MNPs) are useful for many biomedical applications, but it is challenging to synthetically produce them in large numbers with uniform properties and surface functionalization. Magnetotactic bacteria (MTB) produce magnetosomes with homogenous sizes, shapes, and magnetic properties. Consequently, there is interest in using MTB as biological factories for MNP production. Nonetheless, MTB can only be grown to low yields, and wild-type strains produce low numbers of MNPs/bacterium. There are also limited technologies to facilitate the selection of MTB with different magnetic contents, such as MTB with compromised and enhanced biomineralization ability. Here, we describe a magnetic microfluidic platform combined with transient cold/alkaline treatment to temporarily reduce the rapid flagellar motion of MTB without compromising their long-term proliferation and biomineralization ability for separating MTB on the basis of their magnetic contents. This strategy enables live MTB to be enriched, which, to the best of our knowledge, has not been achieved with another previously described magnetic microfluidic device that makes use of ferrofluid and heat. Our device also facilitates the high-throughput (25,000 cells/min) separation of wild-type Magnetospirillum gryphiswaldense (MSR-1) from nonmagnetic ΔmamAB MSR-1 mutants with a sensitivity of up to 80% and isolation purity of up to 95%, as confirmed with a gold-standard fluorescent-activated cell sorter (FACS) technique. This offers a 25-fold higher throughput than other previously described magnetic microfluidic platforms (1,000 cells/min). The device can also be used to isolate Magnetospirillum magneticum (AMB-1) mutants with different ranges of magnetosome numbers with efficiencies close to theoretical estimates. We believe this technology will facilitate the magnetic characterization of genetically engineered MTB for a variety of applications, including using MTB for large-scale, controlled MNP production.IMPORTANCE Our magnetic microfluidic technology can greatly facilitate biological applications with magnetotactic bacteria, from selection and screening to analysis. This technology will be of interest to microbiologists, chemists, and bioengineers who are interested in the biomineralization and selection of magnetotactic bacteria (MTB) for applications such as directed evolution and magnetogenetics.


Asunto(s)
Magnetospirillum/aislamiento & purificación , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/instrumentación , Microfluídica/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Nanopartículas de Magnetita/microbiología , Magnetosomas/fisiología , Magnetospirillum/genética
4.
Biotechnol Lett ; 39(6): 865-871, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28299545

RESUMEN

OBJECTIVE: Thialkalivibrio versutus D301 cells were immobilized on Fe3O4 nanoparticles (NPs) synthesized by an improved chemical coprecipitation method and modified with 3-aminopropyltriethoxysilane (APTES), then the immobilized cells were used in sulfur oxidation. RESULTS: The prepared Fe3O4-APTES NPs had a narrow size distribution (10 ± 2 nm) and were superparamagnetic, with a saturation magnetization of 60.69 emu/g. Immobilized cells had a saturation magnetization of 34.95 emu/g and retained superparamagnetism. The optimum conditions for cell immobilization were obtained at pH 9.5 and 1 M Na+. The immobilization capacity of Fe3O4-APTES NPs was 7.15 g DCW/g-NPs that was 2.3-fold higher than that of Fe3O4 NPs. The desulfurization efficiency of the immobilized cells was close to 100%, having the same sulfur oxidation capacity as free cells. Further, the immobilized cells could be reused at least eight times, retaining more than 85% of their desulfurization efficiency. CONCLUSION: Immobilization of cells with the modified magnetic NPs efficiently increased cell controllability, have no effect on their desulfurization activity and could be effectively used in large-scale industrial applications.


Asunto(s)
Células Inmovilizadas/metabolismo , Ectothiorhodospiraceae/metabolismo , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/microbiología , Propilaminas/química , Silanos/química , Azufre/metabolismo , Reactores Biológicos/microbiología , Equipo Reutilizado , Oxidación-Reducción , Tamaño de la Partícula , Azufre/química
5.
Environ Sci Pollut Res Int ; 24(9): 8790-8804, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28213710

RESUMEN

Batch dark fermentation experiments were conducted to investigate the effects of initial pH, substrate-to-biomass (S/X) ratio, and concentrations of Fe2+ and magnetite nanoparticles on biohydrogen production from sugarcane bagasse (SCB) hydrolysate. By applying the response surface methodology, the optimum condition of steam-acid hydrolysis was 0.64% (v/v) H2SO4 for 55.7 min, which obtained a sugar yield of 274 mg g-1. The maximum hydrogen yield (HY) of 0.874 mol (mol glucose-1) was detected at the optimum pH of 5.0 and S/X ratio of 0.5 g chemical oxygen demand (COD, g VSS-1). The addition of Fe2+ 200 mg L-1 and magnetite nanoparticles 200 mg L-1 to the inoculum enhanced the HY by 62.1% and 69.6%, respectively. The kinetics of hydrogen production was estimated by fitting the experimental data to the modified Gompertz model. The inhibitory effects of adding Fe2+ and magnetite nanoparticles to the fermentative hydrogen production were examined by applying Andrew's inhibition model. COD mass balance and full stoichiometric reactions, including soluble metabolic products, cell synthesis, and H2 production, indicated the reliability of the experimental results. A qPCR-based analysis was conducted to assess the microbial community structure using Enterobacteriaceae, Clostridium spp., and hydrogenase-specific gene activity. Results from the microbial analysis revealed the dominance of hydrogen producers in the inoculum immobilized on magnetite nanoparticles, followed by the inoculum supplemented with Fe2+ concentration. Graphical abstract ᅟ.


Asunto(s)
Biocombustibles/análisis , Celulosa/metabolismo , Fermentación , Hidrógeno/análisis , Nanopartículas de Magnetita/química , Saccharum/metabolismo , Anaerobiosis , Análisis de la Demanda Biológica de Oxígeno , Biomasa , Células Inmovilizadas/metabolismo , Clostridium/metabolismo , Enterobacteriaceae/metabolismo , Hidrógeno/química , Concentración de Iones de Hidrógeno , Hidrólisis , Nanopartículas de Magnetita/microbiología , Saccharum/crecimiento & desarrollo , Sudáfrica , Propiedades de Superficie
6.
Biomaterials ; 104: 352-60, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27487574

RESUMEN

The bacterial magnetic nanoparticles (BMPs) are biomineralized by the magnetotactic bacteria and naturally covered with a layer of biomembrane. Herein, BMPs were isolated and firstly used for the photothermal therapy (PTT) of cancer under the guidance of magnetic resonance imaging (MRI) in vitro and in vivo. The results showed that BMPs could rapidly convert the energy of 808 nm near-infrared (NIR) light into heat. After internalization by the HepG2 tumor cells, BMPs with good biocompatibility could induce an efficient killing effect after NIR light irradiation, along with a change of mitochondrial membrane potential (ΔΨm) and level of intracellular reactive oxygen species (ROS). The in vivo therapy also confirms that PTT with BMPs could effectively and completely ablate the tumor in mice without inducing observable toxicity. T2-weighted MRI showed a clear tumor boundary and a 25% enhancement of negative contrast enhancement at the tumor site, suggesting that BMPs can act as an effective MRI contrast agent for guiding the PTT. Our results indicate that BMPs could be a potential theranostic agent for simultaneous MRI and PTT of cancer.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/uso terapéutico , Magnetospirillum/metabolismo , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/terapia , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Animales , Femenino , Células Hep G2 , Humanos , Hipertermia Inducida/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/microbiología , Magnetospirillum/química , Ratones , Ratones Endogámicos ICR , Resultado del Tratamiento
7.
Int J Food Microbiol ; 217: 29-34, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26485316

RESUMEN

Grape juice can be easily contaminated with ochratoxin A (OTA), one of the known mycotoxins with the greatest public health significance. Among the different approaches to decontaminate juice from this mycotoxin, microbiological methods proved efficient, inexpensive and safe, particularly the use of yeast or yeast products. To ascertain whether immobilisation of the yeast biomass would lead to successful decontamination, alginate beads encapsulating Candida intermedia yeast cells were used in our experiments to evaluate their OTA-biosorption efficacy. Magnetic calcium alginate beads were also prepared by adding magnetite in the formulation to allow fast removal from the aqueous solution with a magnet. Calcium alginate beads were added to commercial grape juice spiked with 20 µg/kg OTA and after 48 h of incubation a significant reduction (>80%), of the total OTA content was achieved, while in the subsequent phases (72-120 h) OTA was slowly released into the grape juice by alginate beads. Biosorption properties of alginate-yeast beads were tested in a prototype bioreactor consisting in a glass chromatography column packed with beads, where juice amended with OTA was slowly flowed downstream. The adoption of an interconnected scaled-up bioreactor as an efficient and safe tool to remove traces of OTA from liquid matrices is discussed.


Asunto(s)
Candida/metabolismo , Microbiología de Alimentos/métodos , Micotoxinas/metabolismo , Ocratoxinas/metabolismo , Vitis/microbiología , Adsorción , Alginatos , Bebidas/microbiología , Reactores Biológicos/microbiología , Descontaminación/métodos , Contaminación de Alimentos/prevención & control , Ácido Glucurónico , Ácidos Hexurónicos , Nanopartículas de Magnetita/microbiología , Vitis/química
8.
J Nanosci Nanotechnol ; 15(8): 6129-32, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26369212

RESUMEN

The objective of this study is to examine microbial synthesis of magnetite and Zn-substituted magnetite nanoparticles by iron-reducing bacteria (Clostridium sp.) enriched from intertidal flat sediments. The magnetite nanoparticles were synthesized by the bacteria under anaerobic conditions at room temperature using akaganeite (ß-FeOOH) or Zn-substituted akaganeite (ß-ZnxFe1-xOOH) as a magnetite precursor during glucose fermentation. This research indicates that fermentation processes can establish the microbial synthesis of magnetite and Zn-substituted magnetite when conditions are at room temperature, ambient pressure, and pH values near neutral to slightly basic (pH < 8).


Asunto(s)
Clostridium/metabolismo , Compuestos Férricos/metabolismo , Sedimentos Geológicos/microbiología , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/microbiología , Zinc/metabolismo , Clostridium/clasificación , Impedancia Eléctrica , Compuestos Férricos/química , Campos Magnéticos , Nanopartículas de Magnetita/ultraestructura , Ensayo de Materiales , Tamaño de la Partícula , Especificidad de la Especie , Propiedades de Superficie , Zinc/química
9.
Biotechnol Appl Biochem ; 60(3): 323-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23656694

RESUMEN

The application of Fe3 O4 nanoparticles to the separation of desulfurizing bacterial cells and their influence on the desulfurization activity and reusability of the two bacterial strains Rhodococcus erythropolis FMF and R. erythropolis IGTS8 were investigated. Magnetite nanoparticles were synthesized via the reverse coprecipitation method. Transmission electron microscopy (TEM) images showed that the magnetite nanoparticles had sizes of 5.35 ± 1.13 (F1 nanoparticles) and 8.74 ± 1.18 nm (F2 nanoparticles) when glycine was added during the synthesis of nanoparticles and when it was absent from the reaction mixture, respectively. Glycine was added after the synthesis of both F1 and F2 nanoparticles to stabilize the nanoparticle dispersion. TEM images of cells treated with magnetite nanoparticles indicated that F1 nanoparticles were immobilized on the surface of bacterial cells more evenly than the F2 nanoparticles. Desulfurization activities of the F1 magnetite nanoparticle-coated R. erythropolis FMF and R. erythropolis IGTS8 cells (with sulfur-removal percentage values of 70 ± 4 and 73 ± 3, respectively), as examined with the spectrophotometric Gibbs assay (based on dibenzothiophene degradation and sulfur-removal percentage), were not significantly different from those for the free bacterial cells (67 ± 3 and 69 ± 4, respectively). These results indicate that magnetite nanoparticles cannot affect the desulfurization activity of cells examined in this work. Isolation of bacterial cells from the suspension using a magnet and evaluation of desulfurization activity of separated cells showed that Fe3 O4 nanoparticles can provide a high-efficiency recovery of bacterial cells from a suspension, with the reused magnetite nanoparticle-coated bacterial cells being able to maintain their desulfurization activity efficiently.


Asunto(s)
Bacterias/metabolismo , Nanopartículas de Magnetita/microbiología , Rhodococcus/metabolismo , Azufre/metabolismo , Biomasa , Glicina/metabolismo , Tamaño de la Partícula
10.
Chem Commun (Camb) ; 48(38): 4591-3, 2012 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-22473513

RESUMEN

Novel multifunctional magnetic particles (MMPs) conjugated with photosensitizer and vancomycin were fabricated by surface modification of Fe(3)O(4) particles. The capacities to target, capture and inactivate pathogenic bacteria and good biocompatibility suggest that the MMPs have great potentials as photodynamic inactivation agents for serious bacterial contamination.


Asunto(s)
Bacterias/efectos de los fármacos , Nanopartículas de Magnetita/microbiología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Vancomicina/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Óxido Ferrosoférrico/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Nanopartículas de Magnetita/química , Ratones , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...