Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Viruses ; 14(2)2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-35215919

RESUMEN

SARS-CoV-2 can efficiently infect both children and adults, albeit with morbidity and mortality positively associated with increasing host age and presence of co-morbidities. SARS-CoV-2 continues to adapt to the human population, resulting in several variants of concern (VOC) with novel properties, such as Alpha and Delta. However, factors driving SARS-CoV-2 fitness and evolution in paediatric cohorts remain poorly explored. Here, we provide evidence that both viral and host factors co-operate to shape SARS-CoV-2 genotypic and phenotypic change in primary airway cell cultures derived from children. Through viral whole-genome sequencing, we explored changes in genetic diversity over time of two pre-VOC clinical isolates of SARS-CoV-2 during passage in paediatric well-differentiated primary nasal epithelial cell (WD-PNEC) cultures and in parallel, in unmodified Vero-derived cell lines. We identified a consistent, rich genetic diversity arising in vitro, variants of which could rapidly rise to near fixation within two passages. Within isolates, SARS-CoV-2 evolution was dependent on host cells, with paediatric WD-PNECs showing a reduced diversity compared to Vero (E6) cells. However, mutations were not shared between strains. Furthermore, comparison of both Vero-grown isolates on WD-PNECs disclosed marked growth attenuation mapping to the loss of the polybasic cleavage site (PBCS) in Spike, while the strain with mutations in Nsp12 (T293I), Spike (P812R) and a truncation of Orf7a remained viable in WD-PNECs. Altogether, our work demonstrates that pre-VOC SARS-CoV-2 efficiently infects paediatric respiratory epithelial cells, and its evolution is restrained compared to Vero (E6) cells, similar to the case of adult cells. We highlight the significant genetic plasticity of SARS-CoV-2 while uncovering an influential role for collaboration between viral and host cell factors in shaping viral evolution and ultimately fitness in human respiratory epithelium.


Asunto(s)
Evolución Molecular , Mucosa Respiratoria/virología , SARS-CoV-2/genética , Animales , Células Cultivadas , Niño , Chlorocebus aethiops , Genotipo , Humanos , Mutación , Nariz/citología , Nariz/virología , Fenotipo , SARS-CoV-2/clasificación , SARS-CoV-2/crecimiento & desarrollo , Células Vero , Secuenciación Completa del Genoma
2.
Nat Immunol ; 23(1): 23-32, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34937933

RESUMEN

Systemic immune cell dynamics during coronavirus disease 2019 (COVID-19) are extensively documented, but these are less well studied in the (upper) respiratory tract, where severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replicates1-6. Here, we characterized nasal and systemic immune cells in individuals with COVID-19 who were hospitalized or convalescent and compared the immune cells to those seen in healthy donors. We observed increased nasal granulocytes, monocytes, CD11c+ natural killer (NK) cells and CD4+ T effector cells during acute COVID-19. The mucosal proinflammatory populations positively associated with peripheral blood human leukocyte antigen (HLA)-DRlow monocytes, CD38+PD1+CD4+ T effector (Teff) cells and plasmablasts. However, there was no general lymphopenia in nasal mucosa, unlike in peripheral blood. Moreover, nasal neutrophils negatively associated with oxygen saturation levels in blood. Following convalescence, nasal immune cells mostly normalized, except for CD127+ granulocytes and CD38+CD8+ tissue-resident memory T cells (TRM). SARS-CoV-2-specific CD8+ T cells persisted at least 2 months after viral clearance in the nasal mucosa, indicating that COVID-19 has both transient and long-term effects on upper respiratory tract immune responses.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Nasofaringe/inmunología , Nariz/citología , Mucosa Respiratoria/inmunología , SARS-CoV-2/inmunología , Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/patología , Granulocitos/inmunología , Antígenos HLA-DR/metabolismo , Humanos , Células Asesinas Naturales/inmunología , Células T de Memoria/inmunología , Monocitos/inmunología , Nasofaringe/citología , Nasofaringe/virología , Neutrófilos/inmunología , Nariz/inmunología , Nariz/virología , Estudios Prospectivos , Mucosa Respiratoria/citología , Mucosa Respiratoria/virología
3.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34948054

RESUMEN

The brain insulin metabolism alteration has been addressed as a pathophysiological factor underlying Alzheimer's disease (AD). Insulin can be beneficial in AD, but its macro-polypeptide nature negatively influences the chances of reaching the brain. The intranasal (IN) administration of therapeutics in AD suggests improved brain-targeting. Solid lipid nanoparticles (SLNs) and poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) are promising carriers to deliver the IN-administered insulin to the brain due to the enhancement of the drug permeability, which can even be improved by chitosan-coating. In the present study, uncoated and chitosan-coated insulin-loaded SLNs and PLGA NPs were formulated and characterized. The obtained NPs showed desirable physicochemical properties supporting IN applicability. The in vitro investigations revealed increased mucoadhesion, nasal diffusion, and drug release rate of both insulin-loaded nanocarriers over native insulin with the superiority of chitosan-coated SLNs. Cell-line studies on human nasal epithelial and brain endothelial cells proved the safety IN applicability of nanoparticles. Insulin-loaded nanoparticles showed improved insulin permeability through the nasal mucosa, which was promoted by chitosan-coating. However, native insulin exceeded the blood-brain barrier (BBB) permeation compared with nanoparticulate formulations. Encapsulating insulin into chitosan-coated NPs can be beneficial for ensuring structural stability, enhancing nasal absorption, followed by sustained drug release.


Asunto(s)
Encéfalo/citología , Quitosano/química , Insulina/farmacología , Nariz/citología , Encéfalo/metabolismo , Línea Celular , Liberación de Fármacos , Células Endoteliales/química , Células Endoteliales/citología , Insulina/química , Liposomas/química , Nanopartículas/química , Nariz/química , Tamaño de la Partícula , Ácido Poliglicólico/química
4.
Toxicol Lett ; 353: 27-33, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34627954

RESUMEN

Trimellitic anhydride (TMA) is a chemical agent classified as a low molecular weight (LMW) agent causing occupational rhinitis (OR) or asthma. Although TMA is recognized as a respiratory sensitizer, the direct and non-immunologic effects of TMA remain unclear. Air- liquid interface (ALI) cultured human nasal epithelial cells (HNECs) derived from control subjects were treated with TMA, followed by measurement of the transepithelial electrical resistance (TEER), paracellular permeability of fluorescein isothiocyanate (FITC)-dextran and immunofluorescence of tight junction proteins claudin-1 and zonula occludens-1 (ZO-1). The cytotoxicity of TMA was evaluated by lactate dehydrogenase (LDH) assay. TMA at concentrations of 2 and 4 mg/mL significantly reduced the TEER within 10 min (p = 0.0177 on 2 mg/mL; p < 0.0001 on 4 mg/mL). The paracellular permeability of FITC-dextran was significantly increased upon challenge with 4 mg/mL TMA for 3 h (p = 0.0088) and 6 h (p = 0.0004). TMA treatment induced a reduction in the fluorescence intensity of claudin-1 and ZO-1 in a dose-dependent manner. LDH assay revealed 4 mg/mL TMA induced cytotoxicity only after 6 h incubation, while 1 or 2 mg/mL TMA caused no cytotoxicity. Our results suggest that TMA has a potential to penetrate the epithelial barrier by disrupting claudin-1 and ZO-1, indicating an important role for sensitization and OR development.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Anhídridos Ftálicos/toxicidad , Adulto , Supervivencia Celular/efectos de los fármacos , Claudina-1/genética , Claudina-1/metabolismo , Dextranos , Relación Dosis-Respuesta a Droga , Células Epiteliales/metabolismo , Femenino , Fluoresceína-5-Isotiocianato/análogos & derivados , Técnica del Anticuerpo Fluorescente Directa , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Nariz/citología , Permeabilidad , Anhídridos Ftálicos/administración & dosificación , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
5.
Int J Mol Sci ; 22(19)2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34638663

RESUMEN

Decellularization has emerged as a potential solution for tracheal replacement. As a fully decellularized graft failed to achieve its purposes, the de-epithelialization partial decellularization protocol appeared to be a promising approach for fabricating scaffolds with preserved mechanical properties and few immune rejection responses after transplantation. Nevertheless, a lack of appropriate concurrent epithelialization treatment can lead to luminal stenosis of the transplant and impede its eventual success. To improve re-epithelialization, autologous nasal epithelial cell sheets generated by our cell sheet engineering platform were utilized in this study under an in vivo rabbit model. The newly created cell sheets have an intact and transplantable appearance, with their specific characteristics of airway epithelial origin being highly expressed upon histological and immunohistochemical analysis. Subsequently, those cell sheets were incorporated with a partially decellularized tracheal graft for autograft transplantation under tracheal partial resection models. The preliminary results two months post operation demonstrated that the transplanted patches appeared to be wholly integrated into the host trachea with adequate healing of the luminal surface, which was confirmed via endoscopic and histologic evaluations. The satisfactory result of this hybrid scaffold protocol could serve as a potential solution for tracheal reconstructions in the future.


Asunto(s)
Células Epiteliales/citología , Nariz/citología , Tráquea/citología , Animales , Estudios Transversales , Matriz Extracelular/fisiología , Masculino , Conejos , Procedimientos de Cirugía Plástica/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Trasplante Autólogo/métodos
6.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638978

RESUMEN

Natural or experimental infection of domestic cats and virus transmission from humans to captive predatory cats suggest that felids are highly susceptible to SARS-CoV-2 infection. However, it is unclear which cells and compartments of the respiratory tract are infected. To address this question, primary cell cultures derived from the nose, trachea, and lungs of cat and lion were inoculated with SARS-CoV-2. Strong viral replication was observed for nasal mucosa explants and tracheal air-liquid interface cultures, whereas replication in lung slices was less efficient. Infection was mainly restricted to epithelial cells and did not cause major pathological changes. Detection of high ACE2 levels in the nose and trachea but not lung further suggests that susceptibility of feline tissues to SARS-CoV-2 correlates with ACE2 expression. Collectively, this study demonstrates that SARS-CoV-2 can efficiently replicate in the feline upper respiratory tract ex vivo and thus highlights the risk of SARS-CoV-2 spillover from humans to felids.


Asunto(s)
COVID-19/veterinaria , Gatos/virología , Leones/virología , Enzima Convertidora de Angiotensina 2/análisis , Animales , COVID-19/transmisión , COVID-19/virología , Enfermedades de los Gatos/transmisión , Enfermedades de los Gatos/virología , Células Cultivadas , Susceptibilidad a Enfermedades , Humanos , Pulmón/citología , Pulmón/virología , Nariz/citología , Nariz/virología , SARS-CoV-2/aislamiento & purificación , Tráquea/citología , Tráquea/virología
7.
mSphere ; 6(3)2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980679

RESUMEN

Human respiratory syncytial virus (HRSV) is the leading cause of bronchiolitis in infants. Two subgroups of HRSV (A and B) routinely cocirculate. Most research has been performed with HRSV-A strains because these are easier to culture than HRSV-B strains. In this study, we aimed to compare the replicative fitness and HRSV-induced innate cytokine responses of HRSV-A and HRSV-B strains in disease-relevant cell culture models. We used two recombinant (r) clinical isolate-based HRSV strains (A11 and B05) and one recombinant laboratory-adapted HRSV strain (A2) to infect commercially available nasal, bronchial, and small-airway cultures. Epithelial cells from all anatomical locations were susceptible to HRSV infection despite the induction of a dominant type III interferon response. Subgroup A viruses disseminated and replicated faster than the subgroup B virus. Additionally, we studied HRSV infection and innate responses in airway organoids (AOs) cultured at air-liquid interface (ALI). Results were similar to the commercially obtained bronchial cells. In summary, we show that HRSV replicates well in cells from both the upper and the lower airways, with a slight replicative advantage for subgroup A viruses. Lastly, we showed that AOs cultured at ALI are a valuable model for studying HRSV ex vivo and that they can be used in the future to study factors that influence HRSV disease severity.IMPORTANCE Human respiratory syncytial virus (HRSV) is the major cause of bronchiolitis and pneumonia in young infants and causes almost 200,000 deaths per year. Currently, there is no vaccine or treatment available, only a prophylactic monoclonal antibody (palivizumab). An important question in HRSV pathogenesis research is why only a fraction (1 to 3%) of infants develop severe disease. Model systems comprising disease-relevant HRSV isolates and accurate and reproducible cell culture models are indispensable to study infection, replication, and innate immune responses. Here, we used differentiated AOs cultured at ALI to model the human airways. Subgroup A viruses replicated better than subgroup B viruses, which we speculate fits with epidemiological findings that subgroup A viruses cause more severe disease in infants. By using AOs cultured at ALI, we present a highly relevant, robust, and reproducible model that allows for future studies into what drives severe HRSV disease.


Asunto(s)
Bronquios/virología , Nariz/virología , Organoides/microbiología , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/fisiología , Replicación Viral , Bronquios/citología , Citocinas/análisis , Citocinas/inmunología , Células Epiteliales/virología , Humanos , Inmunidad Innata , Técnicas In Vitro , Cinética , Nariz/citología , Virus Sincitial Respiratorio Humano/clasificación , Virus Sincitial Respiratorio Humano/inmunología
8.
mSphere ; 6(2)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731473

RESUMEN

Staphylococcus aureus is an opportunistic pathogen that colonizes the anterior nares of 30 to 50% of the population. Colonization is most often asymptomatic; however, self-inoculation can give rise to potentially fatal infections of the deeper tissues and blood. Like all bacteria, S. aureus can sense and respond to environmental cues and modify gene expression to adapt to specific environmental conditions. The transition of S. aureus from the nares to the deeper tissues and blood is accompanied by changes in environmental conditions, such as nutrient availability, pH, and temperature. In this study, we perform transcriptomics and proteomics on S. aureus cultures growing at three physiologically relevant temperatures, 34°C (nares), 37°C (body), and 40°C (pyrexia), to determine if small scale, biologically meaningful alterations in temperature impact S. aureus gene expression. Results show that small but definite temperature changes elicit a large-scale restructuring of the S. aureus transcriptome and proteome in a manner that, most often, inversely correlates with increasing temperature. We also provide evidence that a large majority of these changes are modulated at the posttranscriptional level, possibly by sRNA regulatory elements. Phenotypic analyses were also performed to demonstrate that these changes have physiological relevance. Finally, we investigate the impact of temperature-dependent alterations in gene expression on S. aureus pathogenesis and demonstrate decreased intracellular invasion of S. aureus grown at 34°C. Collectively, our results demonstrate that small but biologically meaningful alterations in temperature influence S. aureus gene expression, a process that is likely a major contributor to the transition from a commensal to pathogen.IMPORTANCE Enteric bacterial pathogens, like Escherichia coli, are known to experience large temperature differences as they are transmitted through the fecal oral route. This change in temperature has been demonstrated to influence bacterial gene expression and facilitate infection. Staphylococcus aureus is a human-associated pathogen that can live as a commensal on the skin and nares or cause invasive infections of the deeper tissues and blood. Factors influencing S. aureus nasal colonization are not fully understood; however, individuals colonized with S. aureus are at increased risk of invasive infections through self-inoculation. The transition of S. aureus from the nose (colonization) to the body (infection) is accompanied by a modest but definite temperature increase, from 34°C to 37°C. In this study, we investigate whether these host-associated small temperature changes can influence S. aureus gene expression. Results show widespread changes in the bacterial transcriptome and proteome at three physiologically relevant temperatures (34°C, 37°C, and 40°C).


Asunto(s)
Proteínas Bacterianas/análisis , Regulación Bacteriana de la Expresión Génica , Proteoma , Staphylococcus aureus/genética , Temperatura , Transcriptoma , Células Cultivadas , Células Epiteliales/microbiología , Humanos , Nariz/citología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo , Factores de Virulencia/genética
9.
J Med Virol ; 93(6): 3484-3495, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33247612

RESUMEN

The effects of the clinically used protease inhibitor nafamostat on influenza virus replication have not been well studied. Primary human tracheal (HTE) and nasal (HNE) epithelial cells were pretreated with nafamostat and infected with the 2009 pandemic [A/Sendai-H/108/2009/(H1N1) pdm09] or seasonal [A/New York/55/2004(H3N2)] influenza virus. Pretreatment with nafamostat reduced the titers of the pandemic and seasonal influenza viruses and the secretion of inflammatory cytokines, including interleukin-6 and tumor necrosis factor-α, in the supernatants of the cells infected with the pandemic influenza virus. HTE and HNE cells exhibited mRNA and/or protein expression of transmembrane protease serine 2 (TMPRSS2), TMPRSS4, and TMPRSS11D. Pretreatment with nafamostat reduced cleavage of the precursor protein HA0 of the pandemic influenza virus into subunit HA1 in HTE cells and reduced the number of acidic endosomes in HTE and HNE cells where influenza virus RNA enters the cytoplasm. Additionally, nafamostat (30 mg/kg/day, intraperitoneal administration) reduced the levels of the pandemic influenza virus [A/Hyogo/YS/2011 (H1N1) pdm09] in mouse lung washes. These findings suggest that nafamostat may inhibit influenza virus replication in human airway epithelial cells and mouse lungs and reduce infection-induced airway inflammation by modulating cytokine production.


Asunto(s)
Benzamidinas/farmacología , Benzamidinas/uso terapéutico , Células Epiteliales/efectos de los fármacos , Guanidinas/farmacología , Guanidinas/uso terapéutico , Pulmón/efectos de los fármacos , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Serina Proteinasa/uso terapéutico , Replicación Viral/efectos de los fármacos , Animales , Células Cultivadas , Citocinas/análisis , Citocinas/inmunología , Células Epiteliales/virología , Femenino , Humanos , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Nariz/citología , Tráquea/citología
10.
Biomolecules ; 10(8)2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823934

RESUMEN

Background: Cilia are actin based cellular protrusions conserved from algae to complex multicellular organisms like Homo sapiens. Respiratory motile cilia line epithelial cells of the tracheobronchial tree, beat in a synchronous, metachronal wave, moving inhaled pollutants and pathogens cephalad. Their role in both congenital disorders like primary ciliary dyskinesia (PCD) to acquired disorders like chronic obstructive pulmonary disease (COPD) continues to evolve. In this current body of work we outline a protocol optimized to reciliate human nasal epithelial cells and mouse tracheal cells in vitro. Using this protocol, we knocked down known cilia genes, as well as use a small molecule inhibitor of Notch, N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl Ester (DAPT), to assess the effect of these on ciliogenesis in order to show the validity of our protocol. Methods: Tracheas were harvested from wild-type, adult C57B6 mice, pronase digested and sloughed off epithelial cells grown to confluence in stationary culture on rat-tail collagen coated wells. Upon reaching confluence, collagen was digested and cells placed suspension culture protocol to reciliate the cells. Using this suspension culture protocol, we employed siRNA gene knockdown to assay gene functions required for airway ciliogenesis. Knock down of Dynein axonemal heavy chain 5 (Dnah5), a ciliary structural protein, was confirmed using immunostaining. Mouse tracheal cells were treated in suspension with varying doses of DAPT, an inhibitor of Notch, with the purpose of evaluating its effect and dose response on ciliogenesis. The optimum dose was then used on reciliating human nasal epithelial cells. Results: siRNA knockdown of Foxj1 prevented ciliation, consistent with its role as a master regulator of motile cilia. Knockdown of Dnai1 and Dnah5 resulted in immotile cilia, and Cand1 knockdown, a centrosome protein known to regulate centrosome amplification, inhibited airway ciliogenesis. Dnah5 knockdown was confirmed with significantly decreased immunostaining of cilia for this protein. Inhibiting Notch signaling by inhibiting gamma secretase with DAPT enhanced the percentage of ciliation, and resulted in longer cilia that beat with higher frequency in both mouse and human airway epithelia. Conclusions: Modifying existing reciliation protocols to suit both human nasal epithelial and mouse tracheal tissue, we have shown that knockdown of known cilia-related genes have the expected effects. Additionally, we have demonstrated the optimal dosage for significantly improving reciliation of airway epithelia using DAPT. Given that cilia length and function are significantly compromised in COPD, these findings open up interesting avenues for further exploration.


Asunto(s)
Cilios/metabolismo , Dipéptidos/farmacología , Nariz/citología , Tráquea/citología , Animales , Dineínas Axonemales/genética , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cilios/efectos de los fármacos , Cilios/genética , Relación Dosis-Respuesta a Droga , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Factores de Transcripción Forkhead/genética , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Nariz/efectos de los fármacos , Tráquea/efectos de los fármacos , Tráquea/metabolismo , Factores de Transcripción/genética
11.
Cell Mol Life Sci ; 77(23): 4847-4859, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32504256

RESUMEN

Due to poor self-regenerative potential of articular cartilage, stem cell-based regeneration becomes a hopeful approach for the treatment of articular cartilage defects. Recent studies indicate that neural crest-derived cells (NCDCs) have the potential for repairing articular cartilage with even greater chondrogenic capacity than mesoderm-derived cells (MDCs): a conventional stem cell source for cartilage regeneration. Given that NCDCs originate from a different germ layer in the early embryo compared with MDCs that give rise to articular cartilage, a mystery remains regarding their capacity for articular cartilage regeneration. In this review, we summarize the similarities and differences between MDCs and NCDCs including articular and nasal chondrocytes in cell origin, anatomy, and chondrogenic differentiation and propose that NCDCs might be promising cell origins for articular cartilage regeneration.


Asunto(s)
Cartílago Articular/fisiología , Condrocitos/citología , Cresta Neural/citología , Nariz/citología , Regeneración , Células Madre/citología , Animales , Humanos
12.
mBio ; 11(3)2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32487760

RESUMEN

Mucormycosis, caused by Rhizopus species, is a life-threatening fungal infection that occurs in patients immunocompromised by diabetic ketoacidosis (DKA), cytotoxic chemotherapy, immunosuppressive therapy, hematologic malignancies, or severe trauma. Inhaled Rhizopus spores cause pulmonary infections in patients with hematologic malignancies, while patients with DKA are much more prone to rhinoorbital/cerebral mucormycosis. Here, we show that Rhizopus delemar interacts with glucose-regulated protein 78 (GRP78) on nasal epithelial cells via its spore coat protein CotH3 to invade and damage the nasal epithelial cells. Expression of the two proteins is significantly enhanced by high glucose, iron, and ketone body levels (hallmark features of DKA), potentially leading to frequently lethal rhinoorbital/cerebral mucormycosis. In contrast, R. delemar CotH7 recognizes integrin ß1 as a receptor on alveolar epithelial cells, causing the activation of epidermal growth factor receptor (EGFR) and leading to host cell invasion. Anti-integrin ß1 antibodies inhibit R. delemar invasion of alveolar epithelial cells and protect mice from pulmonary mucormycosis. Our results show that R. delemar interacts with different mammalian receptors depending on the host cell type. Susceptibility of patients with DKA primarily to rhinoorbital/cerebral disease can be explained by host factors typically present in DKA and known to upregulate CotH3 and nasal GRP78, thereby trapping the fungal cells within the rhinoorbital milieu, leading to subsequent invasion and damage. Our studies highlight that mucormycosis pathogenesis can potentially be overcome by the development of novel customized therapies targeting niche-specific host receptors or their respective fungal ligands.IMPORTANCE Mucormycosis caused by Rhizopus species is a fungal infection with often fatal prognosis. Inhalation of spores is the major route of entry, with nasal and alveolar epithelial cells among the first cells that encounter the fungi. In patients with hematologic malignancies or those undergoing cytotoxic chemotherapy, Rhizopus causes pulmonary infections. On the other hand, DKA patients predominantly suffer from rhinoorbital/cerebral mucormycosis. The reason for such disparity in disease types by the same fungus is not known. Here, we show that the unique susceptibility of DKA subjects to rhinoorbital/cerebral mucormycosis is likely due to specific interaction between nasal epithelial cell GRP78 and fungal CotH3, the expression of which increases in the presence of host factors present in DKA. In contrast, pulmonary mucormycosis is initiated via interaction of inhaled spores expressing CotH7 with integrin ß1 receptor, which activates EGFR to induce fungal invasion of host cells. These results introduce a plausible explanation for disparate disease manifestations in DKA versus those in hematologic malignancy patients and provide a foundation for development of therapeutic interventions against these lethal forms of mucormycosis.


Asunto(s)
Células Epiteliales/microbiología , Proteínas de Choque Térmico/genética , Interacciones Huésped-Patógeno , Infecciones Fúngicas Invasoras/microbiología , Mucormicosis/microbiología , Receptores de Vitronectina/genética , Rhizopus/patogenicidad , Células A549 , Células Epiteliales Alveolares/microbiología , Células Epiteliales Alveolares/patología , Animales , Línea Celular , Cetoacidosis Diabética/complicaciones , Cetoacidosis Diabética/microbiología , Chaperón BiP del Retículo Endoplásmico , Células Epiteliales/patología , Receptores ErbB/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Nariz/citología , Virulencia
13.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1158-L1164, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32267720

RESUMEN

Shifts in cellular metabolic phenotypes have the potential to cause disease-driving processes in respiratory disease. The respiratory epithelium is particularly susceptible to metabolic shifts in disease, but our understanding of these processes is limited by the incompatibility of the technology required to measure metabolism in real-time with the cell culture platforms used to generate differentiated respiratory epithelial cell types. Thus, to date, our understanding of respiratory epithelial metabolism has been restricted to that of basal epithelial cells in submerged culture, or via indirect end point metabolomics readouts in lung tissue. Here we present a novel methodology using the widely available Seahorse Analyzer platform to monitor real-time changes in the cellular metabolism of fully differentiated primary human airway epithelial cells grown at air-liquid interface (ALI). We show increased glycolytic, but not mitochondrial, ATP production rates in response to physiologically relevant increases in glucose availability. We also show that pharmacological inhibition of lactate dehydrogenase is able to reduce glucose-induced shifts toward aerobic glycolysis. This method is timely given the recent advances in our understanding of new respiratory epithelial subtypes that can only be observed in vitro through culture at ALI and will open new avenues to measure real-time metabolic changes in healthy and diseased respiratory epithelium, and in turn the potential for the development of novel therapeutics targeting metabolic-driven disease phenotypes.


Asunto(s)
Aire , Diferenciación Celular , Sistemas de Computación , Metabolismo Energético , Células Epiteliales/citología , Células Epiteliales/metabolismo , Nariz/citología , Ácidos/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Glucosa/farmacología , Humanos , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , Metabolómica
14.
PLoS One ; 15(3): e0228229, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32214336

RESUMEN

The culture of differentiated human airway epithelial cells allows the study of pathogen-host interactions and innate immune responses in a physiologically relevant in vitro model. As the use of primary cell culture has gained popularity the availability of the reagents needed to generate these cultures has increased. In this study we assessed two different media, Promocell and PneumaCult, during the differentiation and maintenance of well-differentiated primary nasal epithelial cell cultures (WD-PNECs). We compared and contrasted the consequences of these media on WD-PNEC morphological and physiological characteristics and their responses to respiratory syncytial virus (RSV) infection. We found that cultures generated using PneumaCult resulted in greater total numbers of smaller, tightly packed, pseudostratified cells. However, cultures from both media resulted in similar proportions of ciliated and goblet cells. There were no differences in RSV growth kinetics, although more ciliated cells were infected in the PneumaCult cultures. There was also significantly more IL-29/IFNλ1 secreted from PneumaCult compared to Promocell cultures following infection. In conclusion, the type of medium used for the differentiation of primary human airway epithelial cells may impact experimental results.


Asunto(s)
Diferenciación Celular , Medios de Cultivo/química , Células Epiteliales/citología , Células Epiteliales/virología , Nariz/citología , Cultivo Primario de Células/métodos , Virus Sincitiales Respiratorios/fisiología , Línea Celular , Niño , Células Caliciformes/citología , Humanos
15.
Mol Pharmacol ; 96(4): 515-525, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31427400

RESUMEN

ORKAMBI, a combination of the corrector, lumacaftor, and the potentiator, ivacaftor, partially rescues the defective processing and anion channel activity conferred by the major cystic fibrosis-causing mutation, F508del, in in vitro studies. Clinically, the improvement in lung function after ORKAMBI treatment is modest and variable, prompting the search for complementary interventions. As our previous work identified a positive effect of arginine-dependent nitric oxide signaling on residual F508del-Cftr function in murine intestinal epithelium, we were prompted to determine whether strategies aimed at increasing arginine would enhance F508del-cystic fibrosis transmembrane conductance regulator (CFTR) channel activity in patient-derived airway epithelia. Now, we show that the addition of arginine together with inhibition of intracellular arginase activity increased cytosolic nitric oxide and enhanced the rescue effect of ORKAMBI on F508del-CFTR-mediated chloride conductance at the cell surface of patient-derived bronchial and nasal epithelial cultures. Interestingly, arginine addition plus arginase inhibition also enhanced ORKAMBI-mediated increases in ciliary beat frequency and mucociliary movement, two in vitro CF phenotypes that are downstream of the channel defect. This work suggests that strategies to manipulate the arginine-nitric oxide pathway in combination with CFTR modulators may lead to improved clinical outcomes. SIGNIFICANCE STATEMENT: These proof-of-concept studies highlight the potential to boost the response to cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulators, lumacaftor and ivacaftor, in patient-derived airway tissues expressing the major CF-causing mutant, F508del-CFTR, by enhancing other regulatory pathways. In this case, we observed enhancement of pharmacologically rescued F508del-CFTR by arginine-dependent, nitric oxide signaling through inhibition of endogenous arginase activity.


Asunto(s)
Aminofenoles/farmacología , Aminopiridinas/farmacología , Arginasa/antagonistas & inhibidores , Arginina/metabolismo , Benzodioxoles/farmacología , Fibrosis Quística/metabolismo , Óxido Nítrico/metabolismo , Quinolonas/farmacología , Animales , Bronquios/citología , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Células Cultivadas , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Citosol/metabolismo , Combinación de Medicamentos , Humanos , Mucosa Intestinal/metabolismo , Ratones , Mutación , Nariz/citología , Nariz/efectos de los fármacos
16.
Indian J Pathol Microbiol ; 62(3): 451-453, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31361238

RESUMEN

Rhabdomyosarcoma (RMS) is a tumor arising from primitive mesenchymal cell with tendency for myogenesis. WHO classification categorizes this entity as embryonal, alveolar, spindle cell/sclerosing, and pleomorphic subtypes removing botryoid as a separate entity. The alveolar variant has worse prognosis and the cytological features of this entity are similar to embryonal type with little variations. This case report describes the cytohistological features of alveolar RMSfrom a 9-year-old child with nonparameningeal location.


Asunto(s)
Nariz/patología , Rabdomiosarcoma Alveolar/diagnóstico , Biopsia , Biopsia con Aguja Fina , Niño , Cara/patología , Técnicas Histológicas , Humanos , Masculino , Nariz/citología , Rabdomiosarcoma Alveolar/terapia
17.
Clin Exp Pharmacol Physiol ; 46(9): 821-827, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31211861

RESUMEN

Allergic rhinitis (AR) is a type of respiratory disease closely associated with chronic inflammation. Esculetin is a natural coumarin derivative and has been reported to possess anti-allergic and anti-inflammatory effects. However, the roles of esculetin in AR have not been studied. In this study, we aimed to examine the effect of esculetin on AR using an in vitro model. The human nasal epithelial cells (HNEpC) were stimulated by histamine for 24 hours with or without the pretreatment of esculetin. The mRNA levels and production of inflammatory cytokines including IL-6 and IL-8, as well as mucin 5AC (MUC5AC) were measured using qRT-PCR and ELISA, respectively. The results showed that esculetin suppressed histamine-induced expression and secretion of IL-6, IL-8, and MUC5AC in HNEpCs. Furthermore, we examined the effect of esculetin on NF-κB pathway by detecting the expression levels of NF-κB p65, p-p65 and IκBα using western blot analysis. Esculetin treatment suppressed the histamine-induced p-p65 expression and p-IκBα degradation. Inhibiting NF-κB pathway suppressed histamine-induced production of IL-6, IL-8, and MUC5AC in HNEpCs. These findings suggested that esculetin suppressed histamine-induced production of inflammatory cytokines and mucin in HNEpCs, which were partly mediated by the inhibition of NF-κB pathway.


Asunto(s)
Citocinas/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Histamina/farmacología , Nariz/citología , Umbeliferonas/farmacología , Línea Celular , Humanos , Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Mucina 5AC/metabolismo , FN-kappa B/metabolismo
18.
Med Eng Phys ; 68: 85-93, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31005567

RESUMEN

The ideal simulator for Endoscopic Sinus and Skull Base Surgery (ESSS) training must be supported by a physical model and provide repetitive behavior in a controlled environment. Development of realistic tissue models is a key part of ESSS virtual reality (VR)-based surgical simulation. Considerable research has been conducted to address haptic or force feedback and propose a phenomenological tissue fracture model for sino-nasal tissue during surgical tool indentation. Mechanical properties of specific sino-nasal regions of the sheep head have been studied in various indentation and relaxation experiments. Tool insertion at different indentation rates into coronal orbital floor (COF) tissue is modeled as a sequence of three events: deformation, fracture, and cutting. The behavior in the deformation phase can be characterized using a non-linear, rate-dependent modified Kelvin-Voigt model. A non-linear model for tissue behavior prior to the fracture point is presented. The overall model shows a non-positive dependency of maximum force on tool indentation rate, which indicates faster tool insertion velocity decreases the maximum final fracture force. The tissue cutting phase has been modeled to characterize the force necessary to slice through the COF. The proposed model in this study can help develop VR-based ESSS base simulators in otolaryngology and ophthalmology surgeries. Such simulators are useful in preoperative planning, accurate surgical simulation, intelligent robotic assistance, and treatment applications.


Asunto(s)
Endoscopía/efectos adversos , Fenómenos Mecánicos , Modelos Biológicos , Nariz/cirugía , Base del Cráneo/cirugía , Animales , Fenómenos Biomecánicos , Nariz/citología , Ovinos , Base del Cráneo/citología
19.
Int J Mol Sci ; 20(6)2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893823

RESUMEN

Monoclonal antibodies (mAbs) are promising therapies to treat airway chronic inflammatory disease (asthma or nasal polyps). To date, no study has specifically assessed, in vitro, the potential function of neonatal Fc receptor (FcRn) in IgG transcytosis through the human nasal airway epithelium. The objective of this study was to report the in vitro expression and function of FcRn in nasal human epithelium. FcRn expression was studied in an air⁻liquid interface (ALI) primary culture model of human nasal epithelial cells (HNEC) from polyps. FcRn expression was characterized by quantitative RT-PCR, western blot, and immunolabeling. The ability of HNECs to support mAb transcytosis via FcRn was assessed by transcytosis assay. This study demonstrates the expression of FcRn mRNA and protein in HNEC. We report a high expression of FcRn in the cytosol of ciliated, mucus, and basal cells by immunohistochemistry with a higher level of FcRn proteins in differentiated HNEC. We also proved in vitro transepithelial delivery of an IgG1 therapeutic mAb with a dose⁻response curve. This is the first time that FcRn expression and mAb transcytosis has been shown in a model of human nasal respiratory epithelium in vitro. This study is a prerequisite for FcRn-dependent nasal administration of mAbs.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Sistemas de Liberación de Medicamentos , Células Epiteliales/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Nariz/citología , Receptores Fc/metabolismo , Transcitosis , Diferenciación Celular , Células HEK293 , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
Connect Tissue Res ; 60(4): 344-357, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30348015

RESUMEN

Damage of hyaline cartilage such as nasoseptal cartilage requires proper reconstruction, which remains challenging due to its low intrinsic repair capacity. Implantation of autologous chondrocytes in combination with a biomimetic biomaterial represents a promising strategy to support cartilage repair. Despite so far mostly tested for bone tissue engineering, bioactive glass (BG) could exert stimulatory effects on chondrogenesis. The aim of this work was to produce and characterize composite porous poly(L-lactide) (PLLA)/1393BG scaffolds via thermally induced phase separation (TIPS) technique and assess their effects on chondrogenesis of nasoseptal chondrocytes. The PLLA scaffolds without or with 1, 2.5, 5% BG1393 were prepared via TIPS technique starting from a ternary solution (polymer/solvent/non-solvent) in a single step. Scaffolds were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetric analysis (DSC). Human nasoseptal chondrocytes were seeded on the scaffolds with 1 and 2.5% BG for 7 and 14 days and cell survival, attachment, morphology and expression of SOX9 and cartilage-specific extracellular cartilage matrix (ECM) components were monitored. The majority of chondrocytes survived on all PLLA scaffolds functionalized with BG for the whole culture period. Also inner parts of the scaffold were colonized by chondrocytes synthesizing an ECM which contained glycosaminoglycans. Type II collagen and aggrecan gene expression increased significantly in 1% BG scaffolds during the culture. Chondrocyte protein expression for cartilage ECM proteins indicated that the chondrocytes maintained their differentiated phenotype in the scaffolds. BG could serve as a cytocompatible basis for future scaffold composites for osteochondral cartilage defect repair. Abbreviations: AB: alcian blue ACAN: gene coding for aggrecan; BG: Bioactive glass; 2D: two-dimensional; 3D: three-dimensional; COL2A1: gene coding for type II collagen; DAPI: 4',6-diamidino-2-phenylindole; DMEM: Dulbecco's Modified Eagle's Medium; DMMB: dimethylmethylene blue; DSC: Differential scanning calorimetric analysis; ECM: extracellular matrix; EDTA: ethylenediaminetetraacetic acid; EtBr: ethidium bromide; FCS: fetal calf serum; FDA: fluorescein diacetate; GAG: glycosaminoglycans; HDPE: high density polyethylene; HE: hematoxylin and eosin staining; HCA: hydoxylapatite; PBE: phosphate buffered EDTA100 mM Na2HPO4 and 5 mM EDTA, pH8; PBS: phosphate buffered saline; PFA: paraformaldehyde; PG: proteoglycans; PI: propidium iodide; PLLA: Poly-L-Lactic Acid Scaffold; RT: room temperature; SD: standard deviation; SEM: scanning electron microscopy; sGAG: sulfated glycosaminoglycans; SOX9/Sox9: SRY (sex-determining region Y)-box 9 protein; TBS: TRIS buffered saline; TIPS: Thermally Induced Phase Separation; XRD: X-ray diffraction analysis.


Asunto(s)
Diferenciación Celular , Condrocitos/citología , Vidrio/química , Nariz/citología , Poliésteres/farmacología , Temperatura , Andamios del Tejido/química , Adulto , Rastreo Diferencial de Calorimetría , Diferenciación Celular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/ultraestructura , Colágeno Tipo II/metabolismo , Colágeno Tipo X/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glicosaminoglicanos/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Difracción de Rayos X , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...