Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.033
Filtrar
1.
Radiat Environ Biophys ; 63(2): 185-194, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565701

RESUMEN

This paper describes events of anomalously high energy transfer to a micro-object by fragments of nuclei generated in nuclear interactions in the environment on board a spacecraft in flight in low-Earth orbit. An algorithm has been developed that allows for the calculation of the absorbed energy from one or more fragments - products of nuclear interaction. With this algorithm the energy distributions for a spherical micro-volume in an aqueous medium were calculated. And the resulting absorbed energy spectra from nuclear fragments and from primary cosmic rays were compared. The role of nuclear interactions in events of large energy transfers in micro-objects in the field of primary cosmic radiation has been evaluated. The calculations performed in this study showed that the energy in a micro-volume from nuclear events can be several times higher compared to the energy imparted by primary space radiation.


Asunto(s)
Radiación Cósmica , Transferencia de Energía , Algoritmos , Nave Espacial , Vuelo Espacial
2.
Life Sci Space Res (Amst) ; 41: 119-126, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670638

RESUMEN

The risk posed by prolonged exposure to space radiation represents a significant obstacle to long-duration human space exploration. Of the ion species present in the galactic cosmic ray spectrum, relativistic protons are the most abundant and as such are a relevant point of interest with regard to the radiation protection of space crews involved in future long-term missions to the Moon, Mars, and beyond. This work compared the shielding effectiveness of a number of standard and composite materials relevant to the design and development of future spacecraft or planetary surface habitats. Absorbed dose was measured using Al2O3:C optically stimulated luminescence dosimeters behind shielding targets of varying composition and depth using the 1 GeV nominal energy proton beam available at the NASA Space Radiation Laboratory at the Brookhaven National Laboratory in New York. Absorbed dose scored from computer simulations performed using the multi-purpose Monte Carlo radiation transport code FLUKA agrees well with measurements obtained via the shielding experiments. All shielding materials tested and modeled in this study were unable to reduce absorbed dose below that measured by the (unshielded) front detector, even after depths as large as 30 g/cm2. These results could be noteworthy given the broad range of proton energies present in the galactic cosmic ray spectrum, and the potential health and safety hazard such space radiation could represent to future human space exploration.


Asunto(s)
Radiación Cósmica , Método de Montecarlo , Protones , Protección Radiológica , Vuelo Espacial , Protección Radiológica/instrumentación , Protección Radiológica/métodos , Humanos , Radiación Cósmica/efectos adversos , Dosis de Radiación , Nave Espacial , Simulación por Computador
3.
Life Sci Space Res (Amst) ; 41: 52-55, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670652

RESUMEN

The health risk of staying in space is a well-known fact, and the radiation doses to the astronauts must be monitored. The Pille-ISS thermoluminescent dosimeter system is present on the International Space Station (ISS) since 2003. We present an analysis of 60000 data points over 19 years from the 90 min automatic measurements and show a 4-day-long segment of 15 min measurements. In the case of the 15 min we show that the mapping of the radiation environment for the orbit of the ISS is possible with the Pille system. From our results the dose rates inside the South Atlantic Anomaly (SAA) are at least 1 magnitude higher than outside. From the 90 min data, we select orbits passing through the SAA. A statistical correlation in the SAA between the ISS altitude and monthly mean dose rate is presented with the Spearman correlation value of ρSAA=0.56. The dose rate and the sunspot number show strong inverse Pearson correlation (R2=-0.90) at a given altitude.


Asunto(s)
Astronautas , Nave Espacial , Dosimetría Termoluminiscente , Nave Espacial/instrumentación , Dosimetría Termoluminiscente/instrumentación , Dosimetría Termoluminiscente/métodos , Humanos , Dosis de Radiación , Monitoreo de Radiación/instrumentación , Monitoreo de Radiación/métodos , Radiación Cósmica , Vuelo Espacial
4.
Life Sci Space Res (Amst) ; 41: 56-63, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670653

RESUMEN

The prevention and reduction of microbial species entering and leaving Earth's biosphere is a critical aspect of planetary protection research. While various decontamination methods exist and are currently utilized for planetary protection purposes, the use of far-UVC light (200-230 nm) as a means for microbial reduction remains underexplored. Unlike conventional germicidal ultraviolet at 254 nm, which can pose a health risk to humans even with small exposure doses, far-UVC light poses minimal health hazard making it a suitable candidate for implementation in occupied areas of spacecraft assembly facilities. This study investigates the efficacy of far-UVC 222-nm light to inactivate bacteria using microbial species which are relevant to planetary protection either in vegetative cell or spore form. All the tested vegetative cells demonstrated susceptibility to 222-nm exposure, although susceptibility varied among the tested species. Notably, Deinococcus radiodurans, a species highly tolerant to extreme environmental conditions, exhibited the most resistance to far-UVC exposure with a dose of 112 mJ/cm2 required for a 1-log reduction in survival. While spore susceptibility was similar across the species tested, Bacillus pumilus spores were the most resistant of the tested spores when analyzed with a bi-exponential cell killing model (D90 of 6.8 mJ/cm2). Overall, these results demonstrate the efficacy of far-UVC light for reducing microbial bioburden to help ensure the success and safety of future space exploration missions.


Asunto(s)
Nave Espacial , Esporas Bacterianas , Rayos Ultravioleta , Esporas Bacterianas/efectos de la radiación , Extremófilos/fisiología , Extremófilos/efectos de la radiación , Deinococcus/efectos de la radiación , Deinococcus/fisiología , Desinfección/métodos
5.
Life Sci Space Res (Amst) ; 41: 86-99, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670657

RESUMEN

Recent discoveries related to the habitability and astrobiological relevance of the outer Solar System have expanded our understanding of where and how life may have originated. As a result, the Icy Worlds of the outer Solar System have become among the highest priority targets for future spacecraft missions dedicated to astrobiology-focused and/or direct life detection objectives. This, in turn, has led to a renewed interest in planetary protection concerns and policies for the exploration of these worlds and has been a topic of discussion within the COSPAR (Committee on Space Research) Panel on Planetary Protection. This paper summarizes the results of those discussions, reviewing the current knowledge and the history of planetary protection considerations for Icy Worlds as well as suggesting ways forward. Based on those discussions, we therefore suggest to (1) Establish a new definition for Icy Worlds for Planetary Protection that captures the outer Solar System moons and dwarf planets like Pluto, but excludes more primitive bodies such as comets, centaurs, and asteroids: Icy Worlds in our Solar System are defined as all bodies with an outermost layer that is believed to be greater than 50 % water ice by volume and have enough mass to assume a nearly round shape. (2) Establish indices for the lower limits of Earth life with regards to water activity (LLAw) and temperature (LLT) and apply them into all areas of the COSPAR Planetary Protection Policy. These values are currently set at 0.5 and -28 °C and were originally established for defining Mars Special Regions; (3) Establish LLT as a parameter to assign categorization for Icy Worlds missions. The suggested categorization will have a 1000-year period of biological exploration, to be applied to all Icy Worlds and not just Europa and Enceladus as is currently the case. (4) Have all missions consider the possibility of impact. Transient thermal anomalies caused by impact would be acceptable so long as there is less than 10-4 probability of a single microbe reaching deeper environments where temperature is >LLT in the period of biological exploration. (5) Restructure or remove Category II* from the policy as it becomes largely redundant with this new approach, (6) Establish that any sample return from an Icy World should be Category V restricted Earth return.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Planetas , Sistema Solar , Vuelo Espacial , Nave Espacial , Historia del Siglo XX
6.
Astrobiology ; 24(3): 230-274, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38507695

RESUMEN

As focus for exploration of Mars transitions from current robotic explorers to development of crewed missions, it remains important to protect the integrity of scientific investigations at Mars, as well as protect the Earth's biosphere from any potential harmful effects from returned martian material. This is the discipline of planetary protection, and the Committee on Space Research (COSPAR) maintains the consensus international policy and guidelines on how this is implemented. Based on National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) studies that began in 2001, COSPAR adopted principles and guidelines for human missions to Mars in 2008. At that point, it was clear that to move from those qualitative provisions, a great deal of work and interaction with spacecraft designers would be necessary to generate meaningful quantitative recommendations that could embody the intent of the Outer Space Treaty (Article IX) in the design of such missions. Beginning in 2016, COSPAR then sponsored a multiyear interdisciplinary meeting series to address planetary protection "knowledge gaps" (KGs) with the intent of adapting and extending the current robotic mission-focused Planetary Protection Policy to support the design and implementation of crewed and hybrid exploration missions. This article describes the outcome of the interdisciplinary COSPAR meeting series, to describe and address these KGs, as well as identify potential paths to gap closure. It includes the background scientific basis for each topic area and knowledge updates since the meeting series ended. In particular, credible solutions for KG closure are described for the three topic areas of (1) microbial monitoring of spacecraft and crew health; (2) natural transport (and survival) of terrestrial microbial contamination at Mars, and (3) the technology and operation of spacecraft systems for contamination control. The article includes a KG data table on these topic areas, which is intended to be a point of departure for making future progress in developing an end-to-end planetary protection requirements implementation solution for a crewed mission to Mars. Overall, the workshop series has provided evidence of the feasibility of planetary protection implementation for a crewed Mars mission, given (1) the establishment of needed zoning, emission, transport, and survival parameters for terrestrial biological contamination and (2) the creation of an accepted risk-based compliance approach for adoption by spacefaring actors including national space agencies and commercial/nongovernment organizations.


Asunto(s)
Marte , Vuelo Espacial , Humanos , Medio Ambiente Extraterrestre , Exobiología , Contención de Riesgos Biológicos , Nave Espacial
7.
Microbiome ; 12(1): 62, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521963

RESUMEN

BACKGROUND: The International Space Station (ISS) stands as a testament to human achievement in space exploration. Despite its highly controlled environment, characterised by microgravity, increased CO 2 levels, and elevated solar radiation, microorganisms occupy a unique niche. These microbial inhabitants play a significant role in influencing the health and well-being of astronauts on board. One microorganism of particular interest in our study is Enterobacter bugandensis, primarily found in clinical specimens including the human gastrointestinal tract, and also reported to possess pathogenic traits, leading to a plethora of infections. RESULTS: Distinct from their Earth counterparts, ISS E. bugandensis strains have exhibited resistance mechanisms that categorise them within the ESKAPE pathogen group, a collection of pathogens recognised for their formidable resistance to antimicrobial treatments. During the 2-year Microbial Tracking 1 mission, 13 strains of multidrug-resistant E. bugandensis were isolated from various locations within the ISS. We have carried out a comprehensive study to understand the genomic intricacies of ISS-derived E. bugandensis in comparison to terrestrial strains, with a keen focus on those associated with clinical infections. We unravel the evolutionary trajectories of pivotal genes, especially those contributing to functional adaptations and potential antimicrobial resistance. A hypothesis central to our study was that the singular nature of the stresses of the space environment, distinct from any on Earth, could be driving these genomic adaptations. Extending our investigation, we meticulously mapped the prevalence and distribution of E. bugandensis across the ISS over time. This temporal analysis provided insights into the persistence, succession, and potential patterns of colonisation of E. bugandensis in space. Furthermore, by leveraging advanced analytical techniques, including metabolic modelling, we delved into the coexisting microbial communities alongside E. bugandensis in the ISS across multiple missions and spatial locations. This exploration revealed intricate microbial interactions, offering a window into the microbial ecosystem dynamics within the ISS. CONCLUSIONS: Our comprehensive analysis illuminated not only the ways these interactions sculpt microbial diversity but also the factors that might contribute to the potential dominance and succession of E. bugandensis within the ISS environment. The implications of these findings are twofold. Firstly, they shed light on microbial behaviour, adaptation, and evolution in extreme, isolated environments. Secondly, they underscore the need for robust preventive measures, ensuring the health and safety of astronauts by mitigating risks associated with potential pathogenic threats. Video Abstract.


Asunto(s)
Antiinfecciosos , Enterobacter , Microbiota , Vuelo Espacial , Humanos , Genómica , Microbiota/genética , Nave Espacial
8.
PLoS One ; 19(2): e0292539, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422052

RESUMEN

The PbGA-DDPG algorithm, which uses a potential-based GA-optimized reward shaping function, is a versatiledeep reinforcement learning/DRLagent that can control a vehicle in a complex environment without prior knowledge. However, when compared to an established deterministic controller, it consistently falls short in terms of landing distance accuracy. To address this issue, the HYDESTOC Hybrid Deterministic-Stochastic (a combination of DDPG/deep deterministic policy gradient and PID/proportional-integral-derivative) algorithm was introduced to improve terminal distance accuracy while keeping propellant consumption low. Results from extensive cross-validated Monte Carlo simulations show that a miss distance of less than 0.02 meters, landing speed of less than 0.4 m/s, settling time of 20 seconds or fewer, and a constant crash-free performance is achievable using this method.


Asunto(s)
Refuerzo en Psicología , Nave Espacial , Recompensa , Aprendizaje , Algoritmos
9.
Astrobiology ; 24(1): 100-113, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38227836

RESUMEN

The health of astronauts during space travel to new celestial bodies in the Solar System is a critical factor in the planning of a mission. Despite cleaning and decontamination protocols, microorganisms from the Earth have been and will be identified on spacecraft. This raises concerns for human safety and planetary protection, especially if these microorganisms can evolve and adapt to the new environment. In this study, we examined the tolerance of clinically relevant nonfastidious bacterial species that originate from environmental sources (Burkholderia cepacia, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Serratia marcescens) to simulated martian conditions. Our research showed changes in growth and survival of these species in the presence of perchlorates, under desiccating conditions, exposure to ultraviolet radiation, and exposure to martian atmospheric composition and pressure. In addition, our results demonstrate that growth was enhanced by the addition of a martian regolith simulant to the growth media. Additional future research is warranted to examine potential changes in the infectivity, pathogenicity, and virulence of these species with exposure to martian conditions.


Asunto(s)
Marte , Vuelo Espacial , Humanos , Medio Ambiente Extraterrestre , Rayos Ultravioleta , Nave Espacial , Bacterias
10.
Life Sci Space Res (Amst) ; 40: 126-134, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38245337

RESUMEN

The way that a given environment may influence human mental health is widely established, with decades of research linking anxiety, depression, stress, productivity, and general mood with all facets of a given environment, including noise levels, lighting, air quality, and other factors. The environmental conditions of a space habitat have far reaching consequences for human mental health and should be carefully managed. This manuscript serves to briefly review what is known about the main components of a space habitat (e.g., noise levels, lighting, air quality, privacy, plant life, etc.), and provide specific and clear recommendations for mission planners and space habitat designers. Where appropriate, opportunities for future research are highlighted.


Asunto(s)
Vuelo Espacial , Nave Espacial , Humanos , Salud Mental
11.
Life Sci Space Res (Amst) ; 40: 51-61, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38245348

RESUMEN

Numerous technological challenges have been overcome to realize human space exploration. As mission durations gradually lengthen, the next obstacle is a set of physical limitations. Extended exposure to microgravity poses multiple threats to various bodily systems. Two of these systems are of particular concern for the success of future space missions. The vestibular system includes the otolith organs, which are stimulated in gravity but unloaded in microgravity. This impairs perception, posture, and coordination, all of which are relevant to mission success. Similarly, vision is impaired in many space travelers due to possible intracranial pressure changes or fluid shifts in the brain. As humankind prepares for extended missions to Mars and beyond, it is imperative to compensate for these perils in prolonged weightlessness. Possible countermeasures are considered such as exercise regimens, improved nutrition, and artificial gravity achieved with a centrifuge or spacecraft rotation.


Asunto(s)
Gravedad Alterada , Vuelo Espacial , Ingravidez , Humanos , Nave Espacial , Ejercicio Físico
12.
Radiat Res ; 201(2): 93-103, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171489

RESUMEN

The pervasiveness of deep space radiation remains a confounding factor for the transit of humans through our solar system. Spacecraft shielding both protects astronauts but also contributes to absorbed dose through galactic cosmic ray interactions that produce secondary particles. The resultant biological effects drop to a minimum for aluminum shielding around 20 g/cm2 but increase with additional shielding. The present work evaluates for the first time, the impact of secondary pions on central nervous system functionality. The fractional pion dose emanating from thicker shielded spacecraft regions could contribute up to 10% of the total absorbed radiation dose. New results from the Paul Scherrer Institute have revealed that low dose exposures to 150 MeV positive and negative pions, akin to a Mars mission, result in significant, long-lasting cognitive impairments. These surprising findings emphasize the need to carefully evaluate shielding configurations to optimize safe exposure limits for astronauts during deep space travel.


Asunto(s)
Radiación Cósmica , Mesones , Protección Radiológica , Vuelo Espacial , Humanos , Nave Espacial , Radiación Cósmica/efectos adversos , Protección Radiológica/métodos , Astronautas , Cognición , Dosis de Radiación
13.
Z Med Phys ; 34(1): 31-43, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38030484

RESUMEN

The International Partner Agencies of the International Space Station (ISS) present a comparison of the ionizing radiation absorbed dose and risk quantities used to characterize example missions in lunar space. This effort builds on previous collaborative work that characterizes radiation environments in space to support radiation protection for human spaceflight on ISS in low-Earth orbit (LEO) and exploration missions beyond (BLEO). A "shielded" ubiquitous galactic cosmic radiation (GCR) environment combined with--and separate from--the transient challenge of a solar particle event (SPE) was modelled for a simulated 30-day mission period. Simple geometries of relatively thin and uniform shields were chosen to represent the space vehicle and other available shielding, and male or female phantoms were used to represent the body's self-shielding. Absorbed dose in organs and tissues and the effective dose were calculated for males and females. Risk parameters for cancer and other outcomes are presented for selected organs. The results of this intracomparison between ISS Partner Agencies itself provide insights to the level of agreement with which space agencies can perform organ dosimetry and calculate effective dose. This work was performed in collaboration with the advisory and guidance efforts of the International Commission on Radiological Protection (ICRP) Task Group 115 and will be presented in an ICRP Report.


Asunto(s)
Radiación Cósmica , Vuelo Espacial , Femenino , Humanos , Masculino , Dosis de Radiación , Radiometría , Nave Espacial
14.
Life Sci Space Res (Amst) ; 39: 14-25, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945085

RESUMEN

Two DOSimetry TELescopes (DOSTELs) have been measuring the radiation environment in the Columbus module of the International Space Station (ISS) since 2009 in the frame of the DOSIS and DOSIS 3D projects. Both instruments have measured the charged particle flux rate and dose rates in a telescope geometry of two planar silicon detectors. The radiation environment in the ISS orbit is mostly composed by galactic cosmic radiation (GCR) and its secondary radiation and protons from the inner radiation belt in the South Atlantic Anomaly (SAA) with sporadic contributions of solar energetic particles at high latitudes. The data presented in this work cover two solar activity minima and corresponding GCR intensity maxima in 2009 and 2020 and the solar activity maximum and corresponding GCR intensity minimum in 2014/2015. Average dose rates measured in the Columbus laboratory in the ISS orbit from GCR and SAA are presented separately. The data is analyzed with respect to the effective magnetic shielding and grouped into different cut-off rigidity intervals. Using only measurements in magnetically unshielded regions at low cut-off rigidity and applying a factor for the geometrical shielding of the Earth, absorbed dose rates and dose equivalent rates in near-Earth interplanetary space are estimated for the years 2009 to 2022.


Asunto(s)
Radiación Cósmica , Monitoreo de Radiación , Vuelo Espacial , Nave Espacial , Dosis de Radiación , Monitoreo de Radiación/métodos , Radiometría , Actividad Solar
15.
Life Sci Space Res (Amst) ; 39: 26-42, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945086

RESUMEN

The Light Ion Detector for ALTEA (LIDAL) is a new instrument designed to measure flux, energy spectra and Time of Flight of ions in a space habitat. It was installed in the International Space Station (Columbus) on January 19, 2020 and it is still operating. This paper presents the results of LIDAL measurements in the first 17 months of operation (01/2020-05/2022). Particle flux, dose rate, Time of Flight and spectra are presented and studied in the three ISS orthogonal directions and in the different geomagnetic regions (high latitude, low latitude, and South Atlantic Anomaly, SAA). The results are consistent with previous measurements. Dose rates range between 1.8 nGy/s and 2.4 nGy/s, flux between 0.21 particles/(sr cm2 s) and 0.32 particles/(sr cm2 s) as measured across time and directions during the full orbit. These data offer insights concerning the radiation measurements in the ISS and demonstrate the capabilities of LIDAL as a unique tool for the measurement of space radiation in space habitats, also providing novel information relevant to assess radiation risks for astronauts.


Asunto(s)
Radiación Cósmica , Monitoreo de Radiación , Vuelo Espacial , Nave Espacial , Actividad Solar , Monitoreo de Radiación/métodos , Dosis de Radiación , Iones
16.
Life Sci Space Res (Amst) ; 39: 3-13, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945087

RESUMEN

The Radiation monitoring system (RMS) continuously operated in various configurations since the launch of the Zvezda module of the International Space Station (ISS). The RMS consisted of 7 units, namely: the R-16 dosimeter, 4 DB-8 dosimeters, utility and data collection units. The obtained data covers a time of 22 years. This paper analyses the radiation environment variations on board the "Zvezda" module. Variations of the onboard daily dose rate associated with changes of ISS altitude and 11-year cycle galactic cosmic rays' variations are analyzed and discussed. It is shown that the observed increase in the daily dose from 0.20 - 0.25 to 0.35 - 0.50 mGy/day is mostly due to the increase of ISS orbit altitude, resulting in a substantial increase of the dose contribution from the South Atlantic Anomaly (SAA) Region. Dose rate variations in the SAA as well as latitude and longitude dose rate distributions are discussed in detail. Analysis confirms that the well-known westward drift effect of the SAA is clearly visible from radiation dose measurements on the ISS.


Asunto(s)
Radiación Cósmica , Monitoreo de Radiación , Vuelo Espacial , Monitoreo de Radiación/métodos , Nave Espacial , Dosis de Radiación , Federación de Rusia
17.
Life Sci Space Res (Amst) ; 39: 43-51, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945088

RESUMEN

The data from two Bulgarian-German instruments with the basic name "Radiation Risk Radiometer-Dosimeter" (R3D) are discussed. The R3DR instrument worked inside the ESA EXPOSE-R facility (2009-2010), while R3DR2 worked inside the ESA EXPOSE-R2 facility (2014-2016). Both were outside the Russian Zvezda module on the International Space Station (ISS). The data from both instruments were used for calculation of the neutron dose equivalent rate. Similar data, obtained by the Russian "BTNNEUTRON" instrument on the ISS are used to benchmark the R3DR/R2 neutron dose equivalent rate. The analisys reveals that the "BTNNEUTRON" and R3DR/R2 values are comparable both in the equatorial and in the South Atlantic Anomaly (SAA) regions. The R3DR/R2 values are smaller than the "BTNNEUTRON" values in the high latitude regions. The comparison with the Monte Carlo simulations of the secondary galactic cosmic rays (GCR) neutron ambient dose equivalent rates (El-Jaby and Richardson, 2015, 2016) also shows a good coincidence with the R3DR/R2 spectrometer data obtained in the equatorial and high latitude regions.


Asunto(s)
Radiación Cósmica , Monitoreo de Radiación , Vuelo Espacial , Nave Espacial , Dosis de Radiación , Radiometría , Neutrones
18.
Life Sci Space Res (Amst) ; 39: 52-58, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945089

RESUMEN

We detect regular particle showers in several compact pixel detectors, distributed over the International Space Station. These showers are caused by high energy galactic cosmic rays, with energies often in the 10 s of TeV or higher. We survey the frequency of these events, their dependence on location on ISS, and their independence of the location of ISS, on its orbit. The Timepix detectors used allow individual particle tracks to be resolved, providing a possibility to perform physical analysis of shower events, which we demonstrate. In terms of radiation dosimetry, these showers indicate certain possible limitations of traditional dosimetric measures, in that (a) the dose measured in small sensor may be less than that received in a larger distribution of matter, such as a human and (b) the spatial and temporal extent of these events represents a regime of poorly documented biological response.


Asunto(s)
Radiación Cósmica , Monitoreo de Radiación , Vuelo Espacial , Humanos , Dosis de Radiación , Nave Espacial , Radiometría
19.
Life Sci Space Res (Amst) ; 39: 59-66, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945090

RESUMEN

The Hybrid Electronic Radiation Assessor (HERA) system is a Timepix-based ionizing radiation detector built for NASA Exploration-class crewed missions. The HERA performs data analysis on-system and generates telemetry messages for ingestion, display, and relay by the spacecraft. Several iterations of the hardware have been flown aboard the International Space Station as payloads to test system operation and gain experience with the hardware in the space radiation environment. The HERA system and its payload operations are described, and data collected by the various HERA systems are presented.


Asunto(s)
Vuelo Espacial , Nave Espacial , Radiación Ionizante
20.
Life Sci Space Res (Amst) ; 39: 76-85, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945092

RESUMEN

We report the results of the first six years of measurements of so-called fast neutrons on the International Space Station (ISS) with the Radiation Assessment Detector (ISS-RAD), spanning the period from February 2016 to February 2022. ISS-RAD combines two sensor heads, one nearly identical to the single sensor head in the Mars Science Laboratory RAD (MSL-RAD). The latter is described in a companion article to this one. The novel sensor is the FND, or fast neutron detector, designed to measure neutrons with energies in the range from 200 keV to about 8 MeV. ISS-RAD was deployed in February 2016 in the USLAB module, and then served as a survey instrument from March 2017 until May 2020. Data were acquired in Node3, the Japanese Pressurized Module, Columbus, and Node2. At the conclusion of the survey portion of RAD's planned 10-year campaign on ISS, the instrument was stationed in the USLAB; current plans call for it to remain there indefinitely. The radiation environment on the ISS consists of a complex mix of charged and neutral particles that varies on short time scales owing to the Station's orbit. Neutral particles, and neutrons in particular, are of concern from a radiation protection viewpoint, because they are both highly penetrating (since they do not lose energy via direct ionization) and, at some energies, have high biological effectiveness. Neutrons are copiously produced by GCRs and other incident energetic particles when they undergo nuclear interactions in shielding. As different ISS modules have varying amounts of shielding, they also have varying neutron environments. We report results for neutron fluences and dose equivalent rates in various positions in the ISS.


Asunto(s)
Radiación Cósmica , Monitoreo de Radiación , Vuelo Espacial , Nave Espacial , Neutrones Rápidos , Monitoreo de Radiación/métodos , Neutrones , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...