Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.971
Filtrar
2.
PLoS One ; 19(5): e0298116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722850

RESUMEN

Spatial navigation is a multi-faceted behaviour drawing on many different aspects of cognition. Visuospatial abilities, such as mental rotation and visuospatial working memory, in particular, may be key factors. A range of tests have been developed to assess visuospatial processing and memory, but how such tests relate to navigation ability remains unclear. This understanding is important to advance tests of navigation for disease monitoring in various disorders (e.g., Alzheimer's disease) where spatial impairment is an early symptom. Here, we report the use of an established mobile gaming app, Sea Hero Quest (SHQ), as a measure of navigation ability in a sample of young, predominantly female university students (N = 78; 20; female = 74.3%; mean age = 20.33 years). We used three separate tests of navigation embedded in SHQ: wayfinding, path integration and spatial memory in a radial arm maze. In the same participants, we also collected measures of mental rotation (Mental Rotation Test), visuospatial processing (Design Organization Test) and visuospatial working memory (Digital Corsi). We found few strong correlations across our measures. Being good at wayfinding in a virtual navigation test does not mean an individual will also be good at path integration, have a superior memory in a radial arm maze, or rate themself as having a strong sense of direction. However, we observed that participants who were good in the wayfinding task of SHQ tended to perform well on the three visuospatial tasks examined here, and to also use a landmark strategy in the radial maze task. These findings help clarify the associations between different abilities involved in spatial navigation.


Asunto(s)
Navegación Espacial , Humanos , Femenino , Navegación Espacial/fisiología , Masculino , Adulto Joven , Adulto , Memoria a Corto Plazo/fisiología , Memoria Espacial/fisiología , Aprendizaje por Laberinto/fisiología , Percepción Espacial/fisiología , Adolescente , Aplicaciones Móviles
3.
Commun Biol ; 7(1): 614, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773301

RESUMEN

Uncertainty abounds in the real world, and in environments with multiple layers of unobservable hidden states, decision-making requires resolving uncertainties based on mutual inference. Focusing on a spatial navigation problem, we develop a Tiger maze task that involved simultaneously inferring the local hidden state and the global hidden state from probabilistically uncertain observation. We adopt a Bayesian computational approach by proposing a hierarchical inference model. Applying this to human task behaviour, alongside functional magnetic resonance brain imaging, allows us to separate the neural correlates associated with reinforcement and reassessment of belief in hidden states. The imaging results also suggest that different layers of uncertainty differentially involve the basal ganglia and dorsomedial prefrontal cortex, and that the regions responsible are organised along the rostral axis of these areas according to the type of inference and the level of abstraction of the hidden state, i.e. higher-order state inference involves more anterior parts.


Asunto(s)
Teorema de Bayes , Imagen por Resonancia Magnética , Navegación Espacial , Navegación Espacial/fisiología , Humanos , Masculino , Adulto , Femenino , Incertidumbre , Corteza Prefrontal/fisiología , Corteza Prefrontal/diagnóstico por imagen , Adulto Joven , Toma de Decisiones/fisiología , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos
4.
Nat Commun ; 15(1): 4122, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750027

RESUMEN

Visual information is important for accurate spatial coding and memory-guided navigation. As a crucial area for spatial cognition, the medial entorhinal cortex (MEC) harbors diverse spatially tuned cells and functions as the major gateway relaying sensory inputs to the hippocampus containing place cells. However, how visual information enters the MEC has not been fully understood. Here, we identify a pathway originating in the secondary visual cortex (V2) and directly targeting MEC layer 5a (L5a). L5a neurons served as a network hub for visual processing in the MEC by routing visual inputs from multiple V2 areas to other local neurons and hippocampal CA1. Interrupting this pathway severely impaired visual stimulus-evoked neural activity in the MEC and performance of mice in navigation tasks. These observations reveal a visual cortical-entorhinal pathway highlighting the role of MEC L5a in sensory information transmission, a function typically attributed to MEC superficial layers before.


Asunto(s)
Corteza Entorrinal , Neuronas , Navegación Espacial , Corteza Visual , Animales , Corteza Entorrinal/fisiología , Corteza Visual/fisiología , Navegación Espacial/fisiología , Ratones , Neuronas/fisiología , Masculino , Ratones Endogámicos C57BL , Estimulación Luminosa , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología , Vías Visuales/fisiología , Percepción Visual/fisiología
5.
Commun Biol ; 7(1): 578, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755224

RESUMEN

Path integration is a powerful navigational mechanism whereby individuals continuously update their distance and angular vector of movement to calculate their position in relation to their departure location, allowing them to return along the most direct route even across unfamiliar terrain. While path integration has been investigated in several terrestrial animals, it has never been demonstrated in aquatic vertebrates, where movement occurs through volumetric space and sensory cues available for navigation are likely to differ substantially from those in terrestrial environments. By performing displacement experiments with Lamprologus ocellatus, we show evidence consistent with fish using path integration to navigate alongside other mechanisms (allothetic place cues and route recapitulation). These results indicate that the use of path integration is likely to be deeply rooted within the vertebrate phylogeny irrespective of the environment, and suggests that fish may possess a spatial encoding system that parallels that of mammals.


Asunto(s)
Señales (Psicología) , Animales , Navegación Espacial/fisiología , Peces/fisiología
6.
Nat Commun ; 15(1): 4053, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744848

RESUMEN

The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.


Asunto(s)
Callithrix , Hipocampo , Navegación Espacial , Animales , Callithrix/fisiología , Navegación Espacial/fisiología , Hipocampo/fisiología , Masculino , Locomoción/fisiología , Visión Ocular/fisiología , Células Piramidales/fisiología , Movimientos de la Cabeza/fisiología , Interneuronas/fisiología , Femenino , Conducta Animal/fisiología , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/citología
7.
PLoS One ; 19(5): e0298867, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728266

RESUMEN

U.S. service members maintain constant situational awareness (SA) due to training and experience operating in dynamic and complex environments. Work examining how military experience impacts SA during visual search of a complex naturalistic environment, is limited. Here, we compare Active Duty service members and Civilians' physiological behavior during a navigational visual search task in an open-world virtual environment (VE) while cognitive load was manipulated. We measured eye-tracking and electroencephalogram (EEG) outcomes from Active Duty (N = 21) and Civilians (N = 15) while they navigated a desktop VE at a self-regulated pace. Participants searched and counted targets (N = 15) presented among distractors, while cognitive load was manipulated with an auditory Math Task. Results showed Active Duty participants reported significantly greater/closer to the correct number of targets compared to Civilians. Overall, Active Duty participants scanned the VE with faster peak saccade velocities and greater average saccade magnitudes compared to Civilians. Convolutional Neural Network (CNN) response (EEG P-300) was significantly weighted more to initial fixations for the Active Duty group, showing reduced attentional resources on object refixations compared to Civilians. There were no group differences in fixation outcomes or overall CNN response when comparing targets versus distractor objects. When cognitive load was manipulated, only Civilians significantly decreased their average dwell time on each object and the Active Duty group had significantly fewer numbers of correct answers on the Math Task. Overall, the Active Duty group explored the VE with increased scanning speed and distance and reduced cognitive re-processing on objects, employing a different, perhaps expert, visual search strategy indicative of increased SA. The Active Duty group maintained SA in the main visual search task and did not appear to shift focus to the secondary Math Task. Future work could compare how a stress inducing environment impacts these groups' physiological or cognitive markers and performance for these groups.


Asunto(s)
Concienciación , Electroencefalografía , Personal Militar , Humanos , Personal Militar/psicología , Masculino , Femenino , Adulto , Concienciación/fisiología , Adulto Joven , Cognición/fisiología , Realidad Virtual , Atención/fisiología , Navegación Espacial/fisiología , Movimientos Sacádicos/fisiología
8.
Nat Commun ; 15(1): 3221, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622129

RESUMEN

The hippocampus creates a cognitive map of the external environment by encoding spatial and self-motion-related information. However, it is unclear whether hippocampal neurons could also incorporate internal cognitive states reflecting an animal's exploratory intention, which is not driven by rewards or unexpected sensory stimuli. In this study, a subgroup of CA1 neurons was found to encode both spatial information and animals' investigatory intentions in male mice. These neurons became active before the initiation of exploration behaviors at specific locations and were nearly silent when the same fields were traversed without exploration. Interestingly, this neuronal activity could not be explained by object features, rewards, or mismatches in environmental cues. Inhibition of the lateral entorhinal cortex decreased the activity of these cells during exploration. Our findings demonstrate that hippocampal neurons may bridge external and internal signals, indicating a potential connection between spatial representation and intentional states in the construction of internal navigation systems.


Asunto(s)
Intención , Navegación Espacial , Masculino , Ratones , Animales , Percepción Espacial/fisiología , Hipocampo/fisiología , Corteza Entorrinal , Señales (Psicología) , Navegación Espacial/fisiología
9.
J Comput Neurosci ; 52(2): 133-144, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581476

RESUMEN

Spatial navigation through novel spaces and to known goal locations recruits multiple integrated structures in the mammalian brain. Within this extended network, the hippocampus enables formation and retrieval of cognitive spatial maps and contributes to decision making at choice points. Exploration and navigation to known goal locations produce synchronous activity of hippocampal neurons resulting in rhythmic oscillation events in local networks. Power of specific oscillatory frequencies and numbers of these events recorded in local field potentials correlate with distinct cognitive aspects of spatial navigation. Typically, oscillatory power in brain circuits is analyzed with Fourier transforms or short-time Fourier methods, which involve assumptions about the signal that are likely not true and fail to succinctly capture potentially informative features. To avoid such assumptions, we applied a method that combines manifold discovery techniques with dynamical systems theory, namely diffusion maps and Takens' time-delay embedding theory, that avoids limitations seen in traditional methods. This method, called diffusion mapped delay coordinates (DMDC), when applied to hippocampal signals recorded from juvenile rats freely navigating a Y-maze, replicates some outcomes seen with standard approaches and identifies age differences in dynamic states that traditional analyses are unable to detect. Thus, DMDC may serve as a suitable complement to more traditional analyses of LFPs recorded from behaving subjects that may enhance information yield.


Asunto(s)
Hipocampo , Animales , Hipocampo/fisiología , Masculino , Ratas , Ratas Long-Evans , Neuronas/fisiología , Navegación Espacial/fisiología , Aprendizaje por Laberinto/fisiología , Modelos Neurológicos , Potenciales de Acción/fisiología
10.
Nat Commun ; 15(1): 3476, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658530

RESUMEN

Cognitive maps in the hippocampal-entorhinal system are central for the representation of both spatial and non-spatial relationships. Although this system, especially in humans, heavily relies on vision, the role of visual experience in shaping the development of cognitive maps remains largely unknown. Here, we test sighted and early blind individuals in both imagined navigation in fMRI and real-world navigation. During imagined navigation, the Human Navigation Network, constituted by frontal, medial temporal, and parietal cortices, is reliably activated in both groups, showing resilience to visual deprivation. However, neural geometry analyses highlight crucial differences between groups. A 60° rotational symmetry, characteristic of a hexagonal grid-like coding, emerges in the entorhinal cortex of sighted but not blind people, who instead show a 90° (4-fold) symmetry, indicative of a square grid. Moreover, higher parietal cortex activity during navigation in blind people correlates with the magnitude of 4-fold symmetry. In sum, early blindness can alter the geometry of entorhinal cognitive maps, possibly as a consequence of higher reliance on parietal egocentric coding during navigation.


Asunto(s)
Ceguera , Mapeo Encefálico , Corteza Entorrinal , Imagen por Resonancia Magnética , Humanos , Ceguera/fisiopatología , Masculino , Adulto , Femenino , Corteza Entorrinal/diagnóstico por imagen , Corteza Entorrinal/fisiopatología , Corteza Entorrinal/fisiología , Mapeo Encefálico/métodos , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiopatología , Persona de Mediana Edad , Navegación Espacial/fisiología , Adulto Joven , Personas con Daño Visual , Cognición/fisiología , Imaginación/fisiología
11.
Sci Rep ; 14(1): 7911, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575713

RESUMEN

Spatial localization is important for social interaction and safe mobility, and relies heavily on vision and hearing. While people with vision or hearing impairment compensate with their intact sense, people with dual sensory impairment (DSI) may require rehabilitation strategies that take both impairments into account. There is currently no tool for assessing the joint effect of vision and hearing impairment on spatial localization in this large and increasing population. To this end, we developed a novel Dual Sensory Spatial Localization Questionnaire (DS-SLQ) that consists of 35 everyday spatial localization tasks. The DS-SLQ asks participants about their difficulty completing different tasks using only vision or hearing, as well as the primary sense they rely on for each task. We administered the DS-SLQ to 104 participants with heterogenous vision and hearing status. Rasch analysis confirmed the psychometric validity of the DS-SLQ and the feasibility of comparing vision and hearing spatial abilities in a unified framework. Vision and hearing impairment were associated with decreased visual and auditory spatial abilities. Differences between vision and hearing abilities predicted overall sensory reliance patterns. In DSI rehabilitation, DS-SLQ may be useful for measuring vision and hearing spatial localization abilities and predicting the better sense for completing different spatial localization tasks.


Asunto(s)
Pérdida Auditiva , Navegación Espacial , Humanos , Trastornos de la Visión/epidemiología , Pérdida Auditiva/epidemiología , Audición , Encuestas y Cuestionarios
12.
Sci Rep ; 14(1): 8331, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594309

RESUMEN

With the rapid accumulation of online information, efficient web navigation has grown vital yet challenging. To create an easily navigable cyberspace catering to diverse demographics, understanding how people navigate differently is paramount. While previous research has unveiled individual differences in spatial navigation, such differences in knowledge space navigation remain sparse. To bridge this gap, we conducted an online experiment where participants played a navigation game on Wikipedia and completed personal information questionnaires. Our analysis shows that age negatively affects knowledge space navigation performance, while multilingualism enhances it. Under time pressure, participants' performance improves across trials and males outperform females, an effect not observed in games without time pressure. In our experiment, successful route-finding is usually not related to abilities of innovative exploration of routes. Our results underline the importance of age, multilingualism and time constraint in the knowledge space navigation.


Asunto(s)
Multilingüismo , Navegación Espacial , Masculino , Femenino , Humanos , Individualidad
13.
Proc Natl Acad Sci U S A ; 121(17): e2403858121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38635638

RESUMEN

Functional neuroimaging studies indicate that the human brain can represent concepts and their relational structure in memory using coding schemes typical of spatial navigation. However, whether we can read out the internal representational geometries of conceptual spaces solely from human behavior remains unclear. Here, we report that the relational structure between concepts in memory might be reflected in spontaneous eye movements during verbal fluency tasks: When we asked participants to randomly generate numbers, their eye movements correlated with distances along the left-to-right one-dimensional geometry of the number space (mental number line), while they scaled with distance along the ring-like two-dimensional geometry of the color space (color wheel) when they randomly generated color names. Moreover, when participants randomly produced animal names, eye movements correlated with low-dimensional similarity in word frequencies. These results suggest that the representational geometries used to internally organize conceptual spaces might be read out from gaze behavior.


Asunto(s)
Movimientos Oculares , Navegación Espacial , Humanos , Encéfalo , Movimiento , Neuroimagen Funcional
14.
Behav Processes ; 217: 105026, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38582301

RESUMEN

Species of crab have been shown to spatially track and navigate to consequential locations through different processes, such as path integration and landmark orienting. Few investigations examine their ability to wayfind in complex environments, like mazes, with multiple intersections and how they may utilize specific features to benefit this process. Spatial learning potentially would lend a fitness advantage to animals living in complicated habitats, and ghost crab (Ocypode quadrata) is a semiterrestrial species that typically occupies extensive beach environments, which present many navigational challenges. Despite their potential, there are currently no studies that investigate forms of spatial cognition in these animals. To better diversify our knowledge of this trait, the current research exposed ghost crab to a maze with seven intersections. Animals were given multiple trials to learn the location of a reward destination to a specific criterion proficiency. In one condition several landmarks were distributed throughout the maze, and in another the environment was completely empty. Results showed that ghost crab in the landmark present group were able to learn the maze faster, they required significantly fewer trials to reach the learning criterion than those in the landmark absent group. However, only approximately half of the total sample met the learning criterion, indicating the maze was rather difficult. These findings are interpreted through theories of route learning that suggest animals may navigate by establishing landmark-turn associations. Such processes have implications for the cognitive ability of ghost crab, and spatial learning in this species may support the notion of convergent evolution for this trait.


Asunto(s)
Braquiuros , Aprendizaje por Laberinto , Navegación Espacial , Animales , Braquiuros/fisiología , Aprendizaje por Laberinto/fisiología , Navegación Espacial/fisiología , Masculino , Percepción Espacial/fisiología , Señales (Psicología) , Aprendizaje Espacial/fisiología
15.
Anim Cogn ; 27(1): 37, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684551

RESUMEN

For most primates living in tropical forests, food resources occur in patchworks of different habitats that vary seasonally in quality and quantity. Efficient navigation (i.e., spatial memory-based orientation) towards profitable food patches should enhance their foraging success. The mechanisms underpinning primate navigating ability remain nonetheless mostly unknown. Using GPS long-term tracking (596 days) of one group of wild western lowland gorillas (Gorilla gorilla gorilla), we investigated their ability to navigate at long distances, and tested for how the sun was used to navigate at any scale by improving landmark visibility and/or by acting as a compass. Long episodic movements ending at a distant swamp, a unique place in the home range where gorillas could find mineral-rich aquatic plants, were straighter and faster than their everyday foraging movements relying on spatial memory. This suggests intentional targeting of the swamp based on long-distance navigation skills, which can thus be efficient over a couple of kilometres. Interestingly, for both long-distance movements towards the swamp and everyday foraging movements, gorillas moved straighter under sunlight conditions even under a dense vegetation cover. By contrast, movement straightness was not markedly different when the sun elevation was low (the sun azimuth then being potentially usable as a compass) or high (so providing no directional information) and the sky was clear or overcast. This suggests that gorillas navigate their home range by relying on visual place recognition but do not use the sun azimuth as a compass. Like humans, who rely heavily on vision to navigate, gorillas should benefit from better lighting to help them identify landmarks as they move through shady forests. This study uncovers a neglected aspect of primate navigation. Spatial memory and vision might have played an important role in the evolutionary success of diurnal primate lineages.


Asunto(s)
Gorilla gorilla , Animales , Gorilla gorilla/fisiología , Masculino , Femenino , Navegación Espacial , Luz Solar , Memoria Espacial , Movimiento , Fenómenos de Retorno al Lugar Habitual
16.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 335-341, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38686415

RESUMEN

Place cell with location tuning characteristics play an important role in brain spatial cognition and navigation, but there is relatively little research on place cell screening and its influencing factors. Taking pigeons as model animals, the screening process of pigeon place cell was given by using the spike signal in pigeon hippocampus under free activity. The effects of grid number and filter kernel size on the place field of place cells during the screening process were analyzed. The results from the real and simulation data showed that the proposed place cell screening method presented in this study could effectively screen out place cell, and the research found that the size of place field was basically inversely proportional to the number of grids divided, and was basically proportional to the size of Gaussian filter kernel in the overall trend. This result will not only help to determine the appropriate parameters in the place cell screening process, but also promote the research on the neural mechanism of spatial cognition and navigation of birds such as pigeons.


Asunto(s)
Columbidae , Hipocampo , Columbidae/fisiología , Animales , Hipocampo/citología , Hipocampo/fisiología , Células de Lugar/fisiología , Navegación Espacial/fisiología , Cognición , Potenciales de Acción
17.
eNeuro ; 11(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519127

RESUMEN

The efficient use of various spatial cues within a setting is crucial for successful navigation. Two fundamental forms of spatial navigation, landmark-based and self-motion-based, engage distinct cognitive mechanisms. The question of whether these modes invoke shared or separate spatial representations in the brain remains unresolved. While nonhuman animal studies have yielded inconsistent results, human investigation is limited. In our previous work (Chen et al., 2019), we introduced a novel spatial navigation paradigm utilizing ultra-high field fMRI to explore neural coding of positional information. We found that different entorhinal subregions in the right hemisphere encode positional information for landmarks and self-motion cues. The present study tested the generalizability of our previous finding with a modified navigation paradigm. Although we did not replicate our previous finding in the entorhinal cortex, we identified adaptation-based allocentric positional codes for both cue types in the retrosplenial cortex (RSC), which were not confounded by the path to the spatial location. Crucially, the multi-voxel patterns of these spatial codes differed between the cue types, suggesting cue-specific positional coding. The parahippocampal cortex exhibited positional coding for self-motion cues, which was not dissociable from path length. Finally, the brain regions involved in successful navigation differed from our previous study, indicating overall distinct neural mechanisms recruited in our two studies. Taken together, the current findings demonstrate cue-specific allocentric positional coding in the human RSC in the same navigation task for the first time and that spatial representations in the brain are contingent on specific experimental conditions.


Asunto(s)
Señales (Psicología) , Navegación Espacial , Humanos , Animales , Giro del Cíngulo , Corteza Entorrinal , Encéfalo , Percepción Espacial
18.
Cogn Res Princ Implic ; 9(1): 13, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499841

RESUMEN

Spatial ability is defined as a cognitive or intellectual skill used to represent, transform, generate, and recall information of an object or the environment. Individual differences across spatial tasks have been strongly linked to science, technology, engineering, and mathematics (STEM) interest and success. Several variables have been proposed to explain individual differences in spatial ability, including affective factors such as one's confidence and anxiety. However, research is lacking on whether affective variables such as confidence and anxiety relate to individual differences in both a mental rotation task (MRT) and a perspective-taking and spatial orientation task (PTSOT). Using a sample of 100 college students completing introductory STEM courses, the present study investigated the effects of self-reported spatial confidence, spatial anxiety, and general anxiety on MRT and PTSOT. Spatial confidence, after controlling for effects of general anxiety and biological sex, was significantly related to performance on both the MRT and PTSOT. Spatial anxiety, after controlling for effects of general anxiety and biological sex, was not related to either PTSOT or MRT scores. Together these findings suggest some affective factors, but not others, contribute to spatial ability performance to a degree that merits advanced investigation in future studies.


Asunto(s)
Individualidad , Navegación Espacial , Adulto , Humanos , Percepción Espacial , Autoinforme , Ansiedad
19.
Cogn Res Princ Implic ; 9(1): 16, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504081

RESUMEN

Given how commonly GPS is now used in everyday navigation, it is surprising how little research has been dedicated to investigating variations in its use and how such variations may relate to navigation ability. The present study investigated general GPS dependence, how people report using GPS in various navigational scenarios, and the relationship between these measures and spatial abilities (assessed by self-report measures and the ability to learn the layout of a novel environment). GPS dependence is an individual's perceived need to use GPS in navigation, and GPS usage is the frequency with which they report using different functions of GPS. The study also assessed whether people modulate reported use of GPS as a function of their familiarity with the location in which they are navigating. In 249 participants over two preregistered studies, reported GPS dependence was negatively correlated with objective navigation performance and self-reported sense of direction, and positively correlated with spatial anxiety. Greater reported use of GPS for turn-by-turn directions was associated with a poorer sense of direction and higher spatial anxiety. People reported using GPS most frequently for time and traffic estimation, regardless of ability. Finally, people reported using GPS less, regardless of ability, when they were more familiar with an environment. Collectively these findings suggest that people moderate their use of GPS, depending on their knowledge, ability, and confidence in their own abilities, and often report using GPS to augment rather than replace spatial environmental knowledge.


Asunto(s)
Navegación Espacial , Humanos , Aprendizaje , Reconocimiento en Psicología , Autoinforme
20.
Hippocampus ; 34(6): 284-301, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520305

RESUMEN

Our ability to navigate in a new environment depends on learning new locations. Mental representations of locations are quickly accessible during navigation and allow us to know where we are regardless of our current viewpoint. Recent functional magnetic resonance imaging (fMRI) research using pattern classification has shown that these location-based representations emerge in the retrosplenial cortex and parahippocampal gyrus, regions theorized to be critically involved in spatial navigation. However, little is currently known about the oscillatory dynamics that support the formation of location-based representations. We used magnetoencephalogram (MEG) recordings to investigate region-specific oscillatory activity in a task where participants could form location-based representations. Participants viewed videos showing that two perceptually distinct scenes (180° apart) belonged to the same location. This "overlap" video allowed participants to bind the two distinct scenes together into a more coherent location-based representation. Participants also viewed control "non-overlap" videos where two distinct scenes from two different locations were shown, where no location-based representation could be formed. In a post-video behavioral task, participants successfully matched the two viewpoints shown in the overlap videos, but not the non-overlap videos, indicating they successfully learned the locations in the overlap condition. Comparing oscillatory activity between the overlap and non-overlap videos, we found greater theta and alpha/beta power during the overlap relative to non-overlap videos, specifically at time-points when we expected scene integration to occur. These oscillations localized to regions in the medial parietal cortex (precuneus and retrosplenial cortex) and the medial temporal lobe, including the hippocampus. Therefore, we find that theta and alpha/beta oscillations in the hippocampus and medial parietal cortex are likely involved in the formation of location-based representations.


Asunto(s)
Ritmo alfa , Hipocampo , Magnetoencefalografía , Lóbulo Parietal , Ritmo Teta , Humanos , Lóbulo Parietal/fisiología , Lóbulo Parietal/diagnóstico por imagen , Magnetoencefalografía/métodos , Masculino , Ritmo Teta/fisiología , Hipocampo/fisiología , Hipocampo/diagnóstico por imagen , Femenino , Adulto Joven , Adulto , Ritmo alfa/fisiología , Estimulación Luminosa/métodos , Percepción Espacial/fisiología , Navegación Espacial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...