Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1868(1): 166297, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34718119

RESUMEN

Cell death is now understood to be a highly regulated process that contributes to normal development and tissue homeostasis, alongside its role in the etiology of various pathological conditions. Through detailed molecular analysis, we have come to know that all cells do not always die in the same way, and that there are at least 7 processes involved, including: apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, and autophagy-mediated cell death. These processes act as pieces in the mosaic of cardiomyocyte cell death, which come together depending on context and stimulus. This review details each individual process, as well as highlights how they come together to produce various cardiac pathologies. By knowing how the pieces go together we can aim towards the development of efficacious therapeutics, which will enable us to prevent cardiomyocyte loss in the face of stress, both reducing mortality and improving quality of life.


Asunto(s)
Autofagia/genética , Sistema Cardiovascular/metabolismo , Muerte Celular/genética , Homeostasis/genética , Sistema Cardiovascular/patología , Ferroptosis/genética , Humanos , Necrosis por Permeabilidad de la Transmembrana Mitocondrial/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Necroptosis/genética , Necrosis/genética , Parthanatos/genética , Piroptosis/genética
2.
J Biol Chem ; 297(1): 100850, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34087234

RESUMEN

Reperfusion therapy, the standard treatment for acute myocardial infarction, can trigger necrotic death of cardiomyocytes and provoke ischemia/reperfusion (I/R) injury. However, signaling pathways that regulate cardiomyocyte necrosis remain largely unknown. Our recent genome-wide RNAi screen has identified a potential necrosis suppressor gene PRKAR1A, which encodes PKA regulatory subunit 1α (R1α). R1α is primarily known for regulating PKA activity by sequestering PKA catalytic subunits in the absence of cAMP. Here, we showed that depletion of R1α augmented cardiomyocyte necrosis in vitro and in vivo, resulting in exaggerated myocardial I/R injury and contractile dysfunction. Mechanistically, R1α loss downregulated the Nrf2 antioxidant transcription factor and aggravated oxidative stress following I/R. Degradation of the endogenous Nrf2 inhibitor Keap1 through p62-dependent selective autophagy was blocked by R1α depletion. Phosphorylation of p62 at Ser349 by mammalian target of rapamycin complex 1 (mTORC1), a critical step in p62-Keap1 interaction, was induced by I/R, but diminished by R1α loss. Activation of PKA by forskolin or isoproterenol almost completely abolished hydrogen-peroxide-induced p62 phosphorylation. In conclusion, R1α loss induces unrestrained PKA activation and impairs the mTORC1-p62-Keap1-Nrf2 antioxidant defense system, leading to aggravated oxidative stress, necrosis, and myocardial I/R injury. Our findings uncover a novel role of PKA in oxidative stress and necrosis, which may be exploited to develop new cardioprotective therapies.


Asunto(s)
Complejo de Carney/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Proteína 1 Asociada A ECH Tipo Kelch/genética , Daño por Reperfusión Miocárdica/genética , Factor 2 Relacionado con NF-E2/genética , Adenilil Ciclasas/genética , Animales , Complejo de Carney/patología , Complejo de Carney/terapia , Catecolaminas/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Necrosis por Permeabilidad de la Transmembrana Mitocondrial/genética , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/terapia , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo/genética , Fosforilación/genética , Proteínas de Unión al ARN/genética , Ratas , Receptores Adrenérgicos/genética , Transducción de Señal/efectos de los fármacos
3.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165674, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31926263

RESUMEN

Duchenne muscular dystrophy (DMD) is characterized by a pronounced and progressive degradation of the structure of skeletal muscles, which decreases their strength and lowers endurance of the organism. At muscular dystrophy, mitochondria are known to undergo significant functional changes, which is manifested in a decreased efficiency of oxidative phosphorylation and impaired energy metabolism of the cell. It is believed that the DMD-induced functional changes of mitochondria are mainly associated with the dysregulation of Ca2+ homeostasis. This work examines the kinetic parameters of Ca2+ transport and the opening of the Ca2+-dependent MPT pore in the skeletal-muscle mitochondria of the dystrophin-deficient C57BL/10ScSn-mdx mice. As compared to the organelles of wild-type animals, skeletal-muscle mitochondria of mdx mice have been found to be much less efficient in respect to Ca2+ uniport, with the kinetics of Na+-dependent Ca2+ efflux not changing. The data obtained indicate that the decreased rate of Ca2+ uniport in the mitochondria of mdx mice may be associated with the increased level of the dominant negative subunit of Ca2+ uniporter (MCUb). The experiments have also shown that in mdx mice, skeletal-muscle mitochondria have low resistance to the induction of MPT, which may be related to a significantly increased expression of adenylate translocator (ANT2), a possible structural element of the MPT pore. The paper discusses how changes in the expression of calcium uniporter and putative components of the MPT pore caused by the development of DMD can affect Ca2+ homeostasis of skeletal-muscle mitochondria.


Asunto(s)
Calcio/metabolismo , Mitocondrias Musculares/patología , Necrosis por Permeabilidad de la Transmembrana Mitocondrial/genética , Distrofia Muscular de Duchenne/patología , Translocador 2 del Nucleótido Adenina/genética , Translocador 2 del Nucleótido Adenina/metabolismo , Animales , Cationes Bivalentes/metabolismo , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Humanos , Transporte Iónico/genética , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos mdx , Microscopía Electrónica , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Distrofia Muscular de Duchenne/genética , Fosforilación Oxidativa
4.
Sci Adv ; 5(8): eaaw4597, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31489369

RESUMEN

The mitochondrial permeability transition pore (MPTP) has resisted molecular identification. The original model of the MPTP that proposed the adenine nucleotide translocator (ANT) as the inner membrane pore-forming component was challenged when mitochondria from Ant1/2 double null mouse liver still had MPTP activity. Because mice express three Ant genes, we reinvestigated whether the ANTs comprise the MPTP. Liver mitochondria from Ant1, Ant2, and Ant4 deficient mice were highly refractory to Ca2+-induced MPTP formation, and when also given cyclosporine A (CsA), the MPTP was completely inhibited. Moreover, liver mitochondria from mice with quadruple deletion of Ant1, Ant2, Ant4, and Ppif (cyclophilin D, target of CsA) lacked Ca2+-induced MPTP formation. Inner-membrane patch clamping in mitochondria from Ant1, Ant2, and Ant4 triple null mouse embryonic fibroblasts showed a loss of MPTP activity. Our findings suggest a model for the MPTP consisting of two distinct molecular components: The ANTs and an unknown species requiring CypD.


Asunto(s)
Nucleótidos de Adenina/genética , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Necrosis por Permeabilidad de la Transmembrana Mitocondrial/genética , Peptidil-Prolil Isomerasa F/genética , Eliminación de Secuencia/genética , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Noqueados , Poro de Transición de la Permeabilidad Mitocondrial
5.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31340541

RESUMEN

Apoptotic cell death is usually a response to the cell's microenvironment. In the kidney, apoptosis contributes to parenchymal cell loss in the course of acute and chronic renal injury, but does not trigger an inflammatory response. What distinguishes necrosis from apoptosis is the rupture of the plasma membrane, so necrotic cell death is accompanied by the release of unprocessed intracellular content, including cellular organelles, which are highly immunogenic proteins. The relative contribution of apoptosis and necrosis to injury varies, depending on the severity of the insult. Regulated cell death may result from immunologically silent apoptosis or from immunogenic necrosis. Recent advances have enhanced the most revolutionary concept of regulated necrosis. Several modalities of regulated necrosis have been described, such as necroptosis, ferroptosis, pyroptosis, and mitochondrial permeability transition-dependent regulated necrosis. We review the different modalities of apoptosis, necrosis, and regulated necrosis in kidney injury, focusing particularly on evidence implicating cell death in ectopic renal calcification. We also review the evidence for the role of cell death in kidney injury, which may pave the way for new therapeutic opportunities.


Asunto(s)
Lesión Renal Aguda/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Calcinosis/metabolismo , Células Epiteliales/metabolismo , Riñón/metabolismo , Necrosis/metabolismo , Daño por Reperfusión/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/clasificación , Proteínas Reguladoras de la Apoptosis/metabolismo , Calcinosis/genética , Calcinosis/patología , Calcinosis/prevención & control , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Regulación de la Expresión Génica , Humanos , Muerte Celular Inmunogénica/efectos de los fármacos , Muerte Celular Inmunogénica/genética , Riñón/efectos de los fármacos , Riñón/patología , Necrosis por Permeabilidad de la Transmembrana Mitocondrial/efectos de los fármacos , Necrosis por Permeabilidad de la Transmembrana Mitocondrial/genética , Necroptosis/efectos de los fármacos , Necroptosis/genética , Necrosis/genética , Necrosis/patología , Necrosis/prevención & control , Sustancias Protectoras/farmacología , Piroptosis/efectos de los fármacos , Piroptosis/genética , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/genética , Daño por Reperfusión/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...