Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 426
Filtrar
1.
Nucleic Acids Res ; 50(18): 10343-10359, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36130284

RESUMEN

Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined transcriptomic, genomic and proteomic approaches to characterize gene regulation by Eya1 in the NPCs. We identified Eya1 target genes, associated cis-regulatory elements and partner proteins. Eya1 preferentially occupies promoter sequences and interacts with general transcription factors (TFs), RNA polymerases, different types of TFs, chromatin-remodeling factors with ATPase or helicase activity, and DNA replication/repair proteins. Intriguingly, we identified REST-binding motifs in 76% of Eya1-occupied sites without H3K27ac-deposition, which were present in many Eya1 target genes upregulated in Eya1-deficient NPCs. Eya1 copurified REST-interacting chromatin-remodeling factors, histone deacetylase/lysine demethylase, and corepressors. Coimmunoprecipitation validated physical interaction between Eya1 and Rest/Hdac1/Cdyl/Hltf in the kidneys. Collectively, our results suggest that through interactions with chromatin-remodeling factors and specialized DNA-binding proteins, Eya1 may modify chromatin structure to facilitate the assembly of regulatory complexes that regulate transcription positively or negatively. These findings provide a mechanistic basis for how Eya1 exerts its activity by forming unique multiprotein complexes in various biological processes to maintain the cellular state of NPCs.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Nefronas/citología , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Animales , Cromatina/genética , Proteínas Co-Represoras , Proteínas de Unión al ADN/genética , Histona Desacetilasas/metabolismo , Ratones , Complejos Multiproteicos/genética , Nefronas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Proteómica , Factores Generales de Transcripción/genética
2.
Cell Rep ; 39(11): 110933, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35705028

RESUMEN

Generation of new kidneys can be useful in various research fields, including organ transplantation. However, generating renal stroma, an important component tissue for structural support, endocrine function, and kidney development, remains difficult. Organ generation using an animal developmental niche can provide an appropriate in vivo environment for renal stroma differentiation. Here, we generate rat renal stroma with endocrine capacity by removing mouse stromal progenitor cells (SPCs) from the host developmental niche and transplanting rat SPCs. Furthermore, we develop a method to replace both nephron progenitor cells (NPCs) and SPCs, called the interspecies dual replacement of the progenitor (i-DROP) system, and successfully generate functional chimeric kidneys containing rat nephrons and stroma. This method can generate renal tissue from progenitors and reduce xenotransplant rejection. Moreover, it is a safe method, as donor cells do not stray into nontarget organs, thus accelerating research on stem cells, chimeras, and xenotransplantation.


Asunto(s)
Riñón , Nefronas , Nicho de Células Madre , Células Madre , Animales , Diferenciación Celular , Quimera , Riñón/citología , Ratones , Nefronas/citología , Ratas , Células Madre/citología
3.
Am J Physiol Renal Physiol ; 322(2): F121-F137, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34894726

RESUMEN

Normal pregnancy is characterized by massive increases in plasma volume and electrolyte retention. Given that the kidneys regulate homeostasis of electrolytes and volume, the organ undergoes major adaptations in morphology, hemodynamics, and transport to achieve the volume and electrolyte retention required in pregnancy. These adaptations are complex, sometimes counterintuitive, and not fully understood. In addition, the demands of the developing fetus and placenta change throughout pregnancy. For example, during late pregnancy, K+ retention and thus enhanced renal K+ reabsorption are required despite many kaliuretic factors. The goal of this study was to unravel how known adaptive changes along the nephrons contribute to the ability of the kidney to meet volume and electrolyte requirements in mid and late pregnancy. We developed computational models of solute and water transport in the superficial nephron of the kidney of a rat in mid and late pregnancy. The midpregnant and late-pregnant rat superficial nephron models predicted that morphological adaptations and increased activity of Na+/H+ exchanger 3 (NHE3) and epithelial Na+ channel are essential for the enhanced Na+ reabsorption observed during pregnancy. Model simulations showed that for sufficient K+ reabsorption, increased activity of H+-K+-ATPase and decreased K+ secretion along the distal segments is required in both mid and late pregnancy. The model results also suggested that certain known sex differences in renal transporter pattern (e.g., the higher NHE3 protein abundance but lower activity in the proximal tubules of virgin female rats compared with male rats) may serve to better prepare females for the increased transport demand in pregnancy.NEW & NOTEWORTHY Normal pregnancy in mammals is generally characterized by massive changes in plasma volume and electrolyte retention. This study provides insights into how the volume and electrolyte requirement in different pregnancy stages are met by coordinated adaptive changes in the kidney. The model results also suggested that certain known sex differences in the renal transporter pattern may serve to better prepare females for the increased transport demand in pregnancy.


Asunto(s)
Células Epiteliales/metabolismo , Tasa de Filtración Glomerular , Modelos Biológicos , Nefronas/metabolismo , Potasio/metabolismo , Reabsorción Renal , Sodio/metabolismo , Equilibrio Hidroelectrolítico , Adaptación Fisiológica , Animales , Acuaporinas/metabolismo , Canales Epiteliales de Sodio/metabolismo , Femenino , Masculino , Nefronas/citología , Volumen Plasmático , Embarazo , Ratas , Factores Sexuales , Intercambiador 3 de Sodio-Hidrógeno/metabolismo
4.
Nat Commun ; 12(1): 6332, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34732708

RESUMEN

Mammalian nephron endowment is determined by the coordinated cessation of nephrogenesis in independent niches. Here we report that translatome analysis in Tsc1+/- nephron progenitor cells from mice with elevated nephron numbers reveals how differential translation of Wnt antagonists over agonists tips the balance between self-renewal and differentiation. Wnt agonists are poorly translated in young niches, resulting in an environment with low R-spondin and high Fgf20 promoting self-renewal. In older niches we find increased translation of Wnt agonists, including R-spondin and the signalosome-promoting Tmem59, and low Fgf20, promoting differentiation. This suggests that the tipping point for nephron progenitor exit from the niche is controlled by the gradual increase in stability and possibly clustering of Wnt/Fzd complexes in individual cells, enhancing the response to ureteric bud-derived Wnt9b inputs and driving synchronized differentiation. As predicted by these findings, removing one Rspo3 allele in nephron progenitors delays cessation and increases nephron numbers in vivo.


Asunto(s)
Organogénesis/fisiología , Percepción/fisiología , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Animales , Diferenciación Celular , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Homeodominio , Riñón/citología , Riñón/patología , Masculino , Proteínas de la Membrana , Ratones , Nefronas/citología , Proteínas del Tejido Nervioso , Nicho de Células Madre , Células Madre/citología , Factores de Transcripción/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Vía de Señalización Wnt
5.
J Am Soc Nephrol ; 32(11): 2815-2833, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34716243

RESUMEN

BACKGROUND: Eya1 is a critical regulator of nephron progenitor cell specification and interacts with Six2 to promote NPC self-renewal. Haploinsufficiency of these genes causes kidney hypoplasia. However, how the Eya1-centered network operates remains unknown. METHODS: We engineered a 2×HA-3×Flag-Eya1 knock-in mouse line and performed coimmunoprecipitation with anti-HA or -Flag to precipitate the multitagged-Eya1 and its associated proteins. Loss-of-function, transcriptome profiling, and genome-wide binding analyses for Eya1's interacting chromatin-remodeling ATPase Brg1 were carried out. We assayed the activity of the cis-regulatory elements co-occupied by Brg1/Six2 in vivo. RESULTS: Eya1 and Six2 interact with the Brg1-based SWI/SNF complex during kidney development. Knockout of Brg1 results in failure of metanephric mesenchyme formation and depletion of nephron progenitors, which has been linked to loss of Eya1 expression. Transcriptional profiling shows conspicuous downregulation of important regulators for nephrogenesis in Brg1-deficient cells, including Lin28, Pbx1, and Dchs1-Fat4 signaling, but upregulation of podocyte lineage, oncogenic, and cell death-inducing genes, many of which Brg1 targets. Genome-wide binding analysis identifies Brg1 occupancy to a distal enhancer of Eya1 that drives nephron progenitor-specific expression. We demonstrate that Brg1 enrichment to two distal intronic enhancers of Pbx1 and a proximal promoter region of Mycn requires Six2 activity and that these Brg1/Six2-bound enhancers govern nephron progenitor-specific expression in response to Six2 activity. CONCLUSIONS: Our results reveal an essential role for Brg1, its downstream pathways, and its interaction with Eya1-Six2 in mediating the fine balance among the self-renewal, differentiation, and survival of nephron progenitors.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas/fisiología , Elementos de Facilitación Genéticos , Proteínas de Homeodominio/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Nefronas/citología , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Proteínas Tirosina Fosfatasas/metabolismo , Células Madre/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Animales , Secuencia de Bases , Diferenciación Celular , Autorrenovación de las Células , Inmunoprecipitación de Cromatina , Técnicas de Sustitución del Gen , Células HEK293 , Proteínas de Homeodominio/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Riñón/embriología , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Complejos Multiproteicos , Proteínas Nucleares/genética , Mapeo de Interacción de Proteínas , Proteínas Tirosina Fosfatasas/genética , Células Madre/metabolismo , Factores de Transcripción/genética , Transcriptoma
6.
Dev Cell ; 56(16): 2381-2398.e6, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34428401

RESUMEN

Congenital abnormalities of the kidney and urinary tract are among the most common birth defects, affecting 3% of newborns. The human kidney forms around a million nephrons from a pool of nephron progenitors over a 30-week period of development. To establish a framework for human nephrogenesis, we spatially resolved a stereotypical process by which equipotent nephron progenitors generate a nephron anlage, then applied data-driven approaches to construct three-dimensional protein maps on anatomical models of the nephrogenic program. Single-cell RNA sequencing identified progenitor states, which were spatially mapped to the nephron anatomy, enabling the generation of functional gene networks predicting interactions within and between nephron cell types. Network mining identified known developmental disease genes and predicted targets of interest. The spatially resolved nephrogenic program made available through the Human Nephrogenesis Atlas (https://sckidney.flatironinstitute.org/) will facilitate an understanding of kidney development and disease and enhance efforts to generate new kidney structures.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Nefronas/metabolismo , Transcriptoma , Animales , Humanos , Ratones , Nefronas/citología , Nefronas/embriología , Proteoma/genética , Proteoma/metabolismo , RNA-Seq , Análisis de la Célula Individual
7.
Nat Commun ; 12(1): 2277, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859189

RESUMEN

Determining the epigenetic program that generates unique cell types in the kidney is critical for understanding cell-type heterogeneity during tissue homeostasis and injury response. Here, we profile open chromatin and gene expression in developing and adult mouse kidneys at single cell resolution. We show critical reliance of gene expression on distal regulatory elements (enhancers). We reveal key cell type-specific transcription factors and major gene-regulatory circuits for kidney cells. Dynamic chromatin and expression changes during nephron progenitor differentiation demonstrates that podocyte commitment occurs early and is associated with sustained Foxl1 expression. Renal tubule cells follow a more complex differentiation, where Hfn4a is associated with proximal and Tfap2b with distal fate. Mapping single nucleotide variants associated with human kidney disease implicates critical cell types, developmental stages, genes, and regulatory mechanisms. The single cell multi-omics atlas reveals key chromatin remodeling events and gene expression dynamics associated with kidney development.


Asunto(s)
Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Nefronas/crecimiento & desarrollo , Organogénesis/genética , Insuficiencia Renal Crónica/genética , Animales , Comunicación Celular , Elementos de Facilitación Genéticos/genética , Epigénesis Genética , Epigenómica , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Sitios Genéticos/genética , Estudio de Asociación del Genoma Completo , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Ratones , Nefronas/citología , Podocitos/fisiología , Polimorfismo de Nucleótido Simple , RNA-Seq , Insuficiencia Renal Crónica/patología , Análisis de la Célula Individual , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo
8.
Sci Rep ; 11(1): 9123, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33907292

RESUMEN

PAX2 is a transcription factor essential for kidney development and the main causative gene for renal coloboma syndrome (RCS). The mechanisms of PAX2 action during kidney development have been evaluated in mice but not in humans. This is a critical gap in knowledge since important differences have been reported in kidney development in the two species. In the present study, we hypothesized that key human PAX2-dependent kidney development genes are differentially expressed in nephron progenitor cells from induced pluripotent stem cells (iPSCs) in patients with RCS relative to healthy individuals. Cap analysis of gene expression revealed 189 candidate promoters and 71 candidate enhancers that were differentially activated by PAX2 in this system in three patients with RCS with PAX2 mutations. By comparing this list with the list of candidate Pax2-regulated mouse kidney development genes obtained from the Functional Annotation of the Mouse/Mammalian (FANTOM) database, we prioritized 17 genes. Furthermore, we ranked three genes-PBX1, POSTN, and ITGA9-as the top candidates based on closely aligned expression kinetics with PAX2 in the iPSC culture system and susceptibility to suppression by a Pax2 inhibitor in cultured mouse embryonic kidney explants. Identification of these genes may provide important information to clarify the pathogenesis of RCS, human kidney development, and kidney regeneration.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Riñón/crecimiento & desarrollo , Factor de Transcripción PAX2/genética , Adulto , Animales , Moléculas de Adhesión Celular/genética , Linaje de la Célula , Coloboma/patología , Femenino , Humanos , Células Madre Pluripotentes Inducidas , Integrinas/genética , Riñón/citología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Persona de Mediana Edad , Nefronas/citología , Nefronas/fisiología , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Insuficiencia Renal/patología
9.
Int J Mol Sci ; 22(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33669059

RESUMEN

The renin-angiotensin-aldosterone system (RAAS) is implicated in hypertension and kidney disease. The developing kidney can be programmed by various early-life insults by so-called renal programming, resulting in hypertension and kidney disease in adulthood. This theory is known as developmental origins of health and disease (DOHaD). Conversely, early RAAS-based interventions could reverse program processes to prevent a disease from occurring by so-called reprogramming. In the current review, we mainly summarize (1) the current knowledge on the RAAS implicated in renal programming; (2) current evidence supporting the connections between the aberrant RAAS and other mechanisms behind renal programming, such as oxidative stress, nitric oxide deficiency, epigenetic regulation, and gut microbiota dysbiosis; and (3) an overview of how RAAS-based reprogramming interventions may prevent hypertension and kidney disease of developmental origins. To accelerate the transition of RAAS-based interventions for prevention of hypertension and kidney disease, an extended comprehension of the RAAS implicated in renal programming is needed, as well as a greater focus on further clinical translation.


Asunto(s)
Hipertensión/metabolismo , Enfermedades Renales/metabolismo , Riñón/crecimiento & desarrollo , Nefronas/crecimiento & desarrollo , Sistema Renina-Angiotensina , Renina/metabolismo , Adulto , Animales , Modelos Animales de Enfermedad , Disbiosis/metabolismo , Epigénesis Genética , Humanos , Hipertensión/genética , Riñón/metabolismo , Enfermedades Renales/enzimología , Enfermedades Renales/genética , Nefronas/citología , Nefronas/metabolismo , Óxido Nítrico/deficiencia , Óxido Nítrico/metabolismo , Estrés Oxidativo/genética , Estrés Oxidativo/fisiología , Sistema Renina-Angiotensina/genética , Sistema Renina-Angiotensina/fisiología
10.
Elife ; 102021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33587034

RESUMEN

The canonical Wnt pathway transcriptional co-activator ß-catenin regulates self-renewal and differentiation of mammalian nephron progenitor cells (NPCs). We modulated ß-catenin levels in NPC cultures using the GSK3 inhibitor CHIR99021 (CHIR) to examine opposing developmental actions of ß-catenin. Low CHIR-mediated maintenance and expansion of NPCs are independent of direct engagement of TCF/LEF/ß-catenin transcriptional complexes at low CHIR-dependent cell-cycle targets. In contrast, in high CHIR, TCF7/LEF1/ß-catenin complexes replaced TCF7L1/TCF7L2 binding on enhancers of differentiation-promoting target genes. Chromosome confirmation studies showed pre-established promoter-enhancer connections to these target genes in NPCs. High CHIR-associated de novo looping was observed in positive transcriptional feedback regulation to the canonical Wnt pathway. Thus, ß-catenin's direct transcriptional role is restricted to the induction of NPCs, where rising ß-catenin levels switch inhibitory TCF7L1/TCF7L2 complexes to activating LEF1/TCF7 complexes at primed gene targets poised for rapid initiation of a nephrogenic program.


Asunto(s)
Factor de Unión 1 al Potenciador Linfoide/metabolismo , Nefronas/metabolismo , Células Madre/metabolismo , Proteína 1 Similar al Factor de Transcripción 7/metabolismo , Factores de Transcripción/metabolismo , beta Catenina/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Regulación de la Expresión Génica , Factor de Unión 1 al Potenciador Linfoide/genética , Ratones , Nefronas/citología , Nefronas/embriología , Regiones Promotoras Genéticas , Unión Proteica , Células Madre/citología , Proteína 1 Similar al Factor de Transcripción 7/genética , Factores de Transcripción/genética
11.
Sci Rep ; 11(1): 73, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420268

RESUMEN

Kidney development requires the coordinated growth and differentiation of multiple cells. Despite recent single cell profiles in nephrogenesis research, tools for data analysis are rapidly developing, and offer an opportunity to gain additional insight into kidney development. In this study, single-cell RNA sequencing data obtained from embryonic mouse kidney were re-analyzed. Manifold learning based on partition-based graph-abstraction coordinated cells, reflecting their expected lineage relationships. Consequently, the coordination in combination with ForceAtlas2 enabled the inference of parietal epithelial cells of Bowman's capsule and the inference of cells involved in the developmental process from the S-shaped body to each nephron segment. RNA velocity suggested developmental sequences of proximal tubules and podocytes. In combination with a Markov chain algorithm, RNA velocity suggested the self-renewal processes of nephron progenitors. NicheNet analyses suggested that not only cells belonging to ureteric bud and stroma, but also endothelial cells, macrophages, and pericytes may contribute to the differentiation of cells from nephron progenitors. Organ culture of embryonic mouse kidney demonstrated that nerve growth factor, one of the nephrogenesis-related factors inferred by NicheNet, contributed to mitochondrial biogenesis in developing distal tubules. These approaches suggested previously unrecognized aspects of the underlying mechanisms for kidney development.


Asunto(s)
Comunicación Celular , Riñón/embriología , Análisis de Secuencia de ARN , Análisis de la Célula Individual/métodos , Animales , Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica/genética , Riñón/citología , Ratones , Ratones Endogámicos C57BL , Nefronas/citología , Nefronas/embriología , Análisis de Secuencia de ARN/métodos
12.
Biochem Biophys Res Commun ; 558: 231-238, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32113685

RESUMEN

Several groups have developed in vitro expansion cultures for mouse metanephric nephron progenitor cells (NPCs) using cocktails of small molecules and growth factors including BMP7. However, the detailed mechanisms by which BMP7 acts in the NPC expansion remain to be elucidated. Here, by performing chemical screening for BMP substitutes, we identified a small molecule, TCS21311, that can replace BMP7 and revealed a novel inhibitory role of BMP7 in JAK3-STAT3 signaling in NPC expansion culture. Further, we found that TCS21311 facilitates the proliferation of mouse embryonic NPCs and human induced pluripotent stem cell-derived NPCs when added to the expansion culture. These results will contribute to understanding the mechanisms of action of BMP7 in NPC proliferation in vitro and in vivo and to the stable supply of NPCs for regenerative therapy, disease modeling and drug discovery for kidney diseases.


Asunto(s)
Proteína Morfogenética Ósea 7/metabolismo , Inhibidores de las Cinasas Janus/farmacología , Nefronas/citología , Nefronas/efectos de los fármacos , Animales , Proteína Morfogenética Ósea 7/administración & dosificación , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Medios de Cultivo , Evaluación Preclínica de Medicamentos , Humanos , Técnicas In Vitro , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Janus Quinasa 3/antagonistas & inhibidores , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Nefronas/metabolismo , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas
13.
J Dev Orig Health Dis ; 12(2): 179-183, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31983353

RESUMEN

The mammalian kidney is a complex organ, requiring the concerted function of up to millions of nephrons. The number of nephrons is constant after nephrogenesis during development, and nephron loss over a life span can lead to susceptibility to acute or chronic kidney disease. New technologies are under development to count individual nephrons in the kidney in vivo. This review outlines these technologies and highlights their relevance to studies of human renal development and disease.


Asunto(s)
Investigación Biomédica/tendencias , Diagnóstico por Imagen/métodos , Enfermedades Renales/patología , Nefronas/citología , Organogénesis , Animales , Humanos , Enfermedades Renales/diagnóstico por imagen , Nefronas/diagnóstico por imagen
14.
Cell Rep ; 32(11): 108130, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937125

RESUMEN

Animal fetuses may be used for the regeneration of human organs. We have previously generated a transgenic mouse model that allows diphtheria toxin (DT)-induced ablation of Six2-positive nephron progenitor cells (NPCs). Elimination of existing native host NPCs enables their replacement with donor NPCs, which can generate neo-nephrons. However, this system cannot be applied to human NPCs, because DT induces apoptosis in human cells. Therefore, the present study presents a transgenic mouse model for the ablation of NPCs using tamoxifen, which does not affect human cells. Using this system, we successfully regenerate interspecies neo-nephrons, which exhibit urine-producing abilities, from transplanted rat NPCs in a mouse host. Transplantation of human induced pluripotent stem cell (iPSC)-derived NPCs results in differentiation into renal vesicles, which connect to the ureteric bud of the host. Thus, we demonstrate the possibility of the regeneration of human kidneys derived from human iPSC-derived NPCs via NPC replacement.


Asunto(s)
Nefronas/citología , Regeneración , Células Madre/citología , Animales , Proteínas de Homeodominio/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones Endogámicos C57BL , Nefronas/efectos de los fármacos , Nefronas/ultraestructura , Especificidad de Órganos , Ratas Sprague-Dawley , Regeneración/efectos de los fármacos , Especificidad de la Especie , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Tamoxifeno/farmacología , Factores de Transcripción/metabolismo , Vejiga Urinaria/embriología , Micción/efectos de los fármacos
15.
J Am Soc Nephrol ; 31(10): 2253-2262, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32826325

RESUMEN

BACKGROUND: There is intense interest in replacing kidneys from stem cells. It is now possible to produce, from embryonic or induced pluripotent stem cells, kidney organoids that represent immature kidneys and display some physiologic functions. However, current techniques have not yet resulted in renal tissue with a ureter, which would be needed for engineered kidneys to be clinically useful. METHODS: We used a published sequence of growth factors and drugs to induce mouse embryonic stem cells to differentiate into ureteric bud tissue. We characterized isolated engineered ureteric buds differentiated from embryonic stem cells in three-dimensional culture and grafted them into ex fetu mouse kidney rudiments. RESULTS: Engineered ureteric buds branched in three-dimensional culture and expressed Hoxb7, a transcription factor that is part of a developmental regulatory system and a ureteric bud marker. When grafted into the cortex of ex fetu kidney rudiments, engineered ureteric buds branched and induced nephron formation; when grafted into peri-Wolffian mesenchyme, still attached to a kidney rudiment or in isolation, they did not branch but instead differentiated into multilayer ureter-like epithelia displaying robust expression of the urothelial marker uroplakin. This engineered ureteric bud tissue also organized the mesenchyme into smooth muscle that spontaneously contracted, with a period a little slower than that of natural ureteric peristalsis. CONCLUSIONS: Mouse embryonic stem cells can be differentiated into ureteric bud cells. Grafting those UB-like structures into peri-Wolffian mesenchyme of cultured kidney rudiments can induce production of urothelium and organize the mesenchyme to produce rhythmically contracting smooth muscle layers. This development may represent a significant step toward the goal of renal regeneration.


Asunto(s)
Células Madre Embrionarias/citología , Riñón/citología , Mesodermo/citología , Nefronas/citología , Uréter/citología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Ratones , Técnicas de Cultivo de Órganos
16.
Saudi J Kidney Dis Transpl ; 31(4): 717-726, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32801232

RESUMEN

The worldwide prevalence of noncommunicable diseases (NCDs) is projected to increase substantially over the next few decades. Chronic kidney disease (CKD) is a key determinant of poor health outcomes for major NCD. Genetic predisposition and environmental exposures are contributory factors, but increasingly, it is being recognized that fetal development is also an important modulator of the NCD risk. Low birth weight (LBW) and CKD affect more disadvantaged populations and ethnic minorities and, therefore, causes a disproportionate burden on the poor. Human nephron number is highly variable and may range from under half a million to almost over two million. Significant variability is already present at birth, highlighting the importance of early nephrogenesis. Nearly 60% of nephrons are developed in the third-trimester of pregnancy. Nephron numbers increase in proportion to birth weight and gestational age. This wide-variability probably contributes to individual susceptibility to develop CKD where individuals with nephron numbers on the lower side of the spectrum are those at higher risk of developing kidney dysfunction at higher rate and progress more toward end-stage CKD. This article aims at discussing LBW and the susceptibility to CKD. Furthermore, in postnatal environment, the weight gain or change at adult life increases the metabolic demand and determines the phenotypic expression of disease along with the spectrum of nephron number. Hence, a cycle of hyperfiltration mechanism of these nephrons leads to proteinuria, glomerulo- sclerosis, and progressive development of larger glomeruli, a greater risk of proteinuria and progressive CKD. Therefore, LBW offspring are at risk of developing CKD (defined as albuminuria, a reduced glomerular filtration rate, or renal failure) in later life. Furthermore, the impact of prenatal programming is expected to be compounded with age, and the association of LBW with the risk of CKD seen in younger adults may become greater with age. It would be prudent, to adopt policies of intensified life-long surveillance of LBW people, anticipating this risk.


Asunto(s)
Peso al Nacer/fisiología , Riñón , Insuficiencia Renal Crónica , Adulto , Susceptibilidad a Enfermedades , Femenino , Edad Gestacional , Humanos , Recién Nacido , Riñón/citología , Riñón/embriología , Nefronas/citología , Omán , Embarazo
17.
Methods Mol Biol ; 2161: 29-36, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32681503

RESUMEN

Despite recent advance in our understanding on the role of long noncoding RNAs (lncRNAs), the function of the vast majority of lncRNAs remains poorly understood. To characterize the function of lncRNAs, knockdown studies are essential. However, the conventional silencing methods for mRNA, such as RNA interference (RNAi), may not be as efficient against lncRNAs, partly due to the mismatch of the localization of lncRNAs and RNAi machinery. To circumvent such limitation, a new technique has recently been developed, i.e., locked nucleic acid (LNA) gapmers. This system utilizes RNase H that distributes evenly in both nucleus and cytoplasm and is expected to knock down lncRNAs of interest more consistently regardless of their localization in the cell. In this chapter, we describe the procedure with tips to silence lncRNAs by LNA gapmers, by using mouse nephron progenitor cells as an example.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , Células Madre Embrionarias de Ratones/metabolismo , Oligonucleótidos/genética , ARN Largo no Codificante/genética , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Nefronas/citología , Nefronas/embriología , Oligonucleótidos/química , ARN Largo no Codificante/metabolismo , Ribonucleasa H/metabolismo
18.
Cells ; 9(7)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32659887

RESUMEN

The kidney is essential for systemic calcium homeostasis. Urinary calcium excretion can be viewed as an integrative renal response to endocrine and local stimuli. The extracellular calcium-sensing receptor (CaSR) elicits a number of adaptive reactions to increased plasma Ca2+ levels including the control of parathyroid hormone release and regulation of the renal calcium handling. Calcium reabsorption in the distal nephron of the kidney is functionally coupled to sodium transport. Apart from Ca2+ transport systems, CaSR signaling affects relevant distal Na+-(K+)-2Cl- cotransporters, NKCC2 and NCC. NKCC2 and NCC are activated by a kinase cascade comprising with-no-lysine [K] kinases (WNKs) and two homologous Ste20-related kinases, SPAK and OSR1. Gain-of-function mutations within the WNK-SPAK/OSR1-NKCC2/NCC pathway lead to renal salt retention and hypertension, whereas loss-of-function mutations have been associated with salt-losing tubulopathies such as Bartter or Gitelman syndromes. A Bartter-like syndrome has been also described in patients carrying gain-of-function mutations in the CaSR gene. Recent work suggested that CaSR signals via the WNK-SPAK/OSR1 cascade to modulate salt reabsorption along the distal nephron. The review presented here summarizes the latest progress in understanding of functional interactions between CaSR and WNKs and their potential impact on the renal salt handling and blood pressure.


Asunto(s)
Riñón/enzimología , Riñón/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Sensibles al Calcio/metabolismo , Animales , Humanos , Riñón/citología , Nefronas/citología , Nefronas/enzimología , Nefronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Receptores Sensibles al Calcio/genética , Transducción de Señal/fisiología
19.
Dev Biol ; 464(2): 176-187, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32504627

RESUMEN

Chromatin-remodeling complexes play critical roles in establishing gene expression patterns in response to developmental signals. How these epigenetic regulators determine the fate of progenitor cells during development of specific organs is not well understood. We found that genetic deletion of Brg1 (Smarca4), the core enzymatic protein in SWI/SNF, in nephron progenitor cells leads to severe renal hypoplasia. Nephron progenitor cells were depleted in Six2-Cre, Brg1flx/flx mice due to reduced cell proliferation. This defect in self-renewal, together with impaired differentiation resulted in a profound nephron deficit in Brg1 mutant kidneys. Sall1, a transcription factor that is required for expansion and maintenance of nephron progenitors, associates with SWI/SNF. Brg1 and Sall1 bind promoters of many progenitor cell genes and regulate expression of key targets that promote their proliferation.


Asunto(s)
Diferenciación Celular , Proliferación Celular , ADN Helicasas/metabolismo , Nefronas/embriología , Proteínas Nucleares/metabolismo , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Células COS , Chlorocebus aethiops , ADN Helicasas/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Transgénicos , Nefronas/citología , Proteínas Nucleares/genética , Células Madre/citología , Factores de Transcripción/genética
20.
J Biol Chem ; 295(33): 11542-11558, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32554463

RESUMEN

SIX2 (SIX homeobox 2)-positive nephron progenitor cells (NPCs) give rise to all epithelial cell types of the nephron, the filtering unit of the kidney. NPCs have a limited lifespan and are depleted near the time of birth. Epigenetic factors are implicated in the maintenance of organ-restricted progenitors such as NPCs, but the chromatin-based mechanisms are incompletely understood. Here, using a combination of gene targeting, chromatin profiling, and single-cell RNA analysis, we examined the role of the murine histone 3 Lys-27 (H3K27) methyltransferases EZH1 (enhancer of zeste 1) and EZH2 in NPC maintenance. We found that EZH2 expression correlates with NPC growth potential and that EZH2 is the dominant H3K27 methyltransferase in NPCs and epithelial descendants. Surprisingly, NPCs lacking H3K27 trimethylation maintained their progenitor state but cycled slowly, leading to a smaller NPC pool and formation of fewer nephrons. Unlike Ezh2 loss of function, dual inactivation of Ezh1 and Ezh2 triggered overexpression of the transcriptional repressor Hes-related family BHLH transcription factor with YRPW motif 1 (Hey1), down-regulation of Six2, and unscheduled activation of Wnt4-driven differentiation, resulting in early termination of nephrogenesis and severe renal dysgenesis. Double-mutant NPCs also overexpressed the SIX family member Six1 However, in this context, SIX1 failed to maintain NPC stemness. At the chromatin level, EZH1 and EZH2 restricted accessibility to AP-1-binding motifs, and their absence promoted a regulatory landscape akin to differentiated and nonlineage cells. We conclude that EZH2 is required for NPC renewal potential and that tempering of the differentiation program requires cooperation of both EZH1 and EZH2.


Asunto(s)
Cromatina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Nefronas/citología , Complejo Represivo Polycomb 2/metabolismo , Células Madre/citología , Animales , Supervivencia Celular , Células Cultivadas , Ratones , Nefronas/metabolismo , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...