Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Clin Epigenetics ; 16(1): 87, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970137

RESUMEN

Pediatric central nervous system tumors remain challenging to diagnose. Imaging approaches do not provide sufficient detail to discriminate between different tumor types, while the histopathological examination of tumor tissue shows high inter-observer variability. Recent studies have demonstrated the accurate classification of central nervous system tumors based on the DNA methylation profile of a tumor biopsy. However, a brain biopsy holds significant risk of bleeding and damaging the surrounding tissues. Liquid biopsy approaches analyzing circulating tumor DNA show high potential as an alternative and less invasive tool to study the DNA methylation pattern of tumors. Here, we explore the potential of classifying pediatric brain tumors based on methylation profiling of the circulating cell-free DNA (cfDNA) in cerebrospinal fluid (CSF). For this proof-of-concept study, we collected cerebrospinal fluid samples from 19 pediatric brain cancer patients via a ventricular drain placed for reasons of increased intracranial pressure. Analyses on the cfDNA showed high variability of cfDNA quantities across patients ranging from levels below the limit of quantification to 40 ng cfDNA per milliliter of CSF. Classification based on methylation profiling of cfDNA from CSF was correct for 7 out of 20 samples in our cohort. Accurate results were mostly observed in samples of high quality, more specifically those with limited high molecular weight DNA contamination. Interestingly, we show that centrifugation of the CSF prior to processing increases the fraction of fragmented cfDNA to high molecular weight DNA. In addition, classification was mostly correct for samples with high tumoral cfDNA fraction as estimated by computational deconvolution (> 40%). In summary, analysis of cfDNA in the CSF shows potential as a tool for diagnosing pediatric nervous system tumors especially in patients with high levels of tumoral cfDNA in the CSF. Further optimization of the collection procedure, experimental workflow and bioinformatic approach is required to also allow classification for patients with low tumoral fractions in the CSF.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias del Sistema Nervioso Central , ADN Tumoral Circulante , Metilación de ADN , Humanos , Metilación de ADN/genética , Niño , Masculino , Femenino , Preescolar , Biopsia Líquida/métodos , ADN Tumoral Circulante/líquido cefalorraquídeo , ADN Tumoral Circulante/genética , ADN Tumoral Circulante/sangre , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/sangre , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/diagnóstico , Adolescente , Lactante , Biomarcadores de Tumor/líquido cefalorraquídeo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/sangre , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/líquido cefalorraquídeo , Prueba de Estudio Conceptual
2.
BMC Neurol ; 24(1): 250, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039441

RESUMEN

BACKGROUND: Diagnosis of primary diffuse large B-cell lymphoma of the central nervous system (PCNSL) is challenging and often delayed. MRI imaging, CSF cytology and flow cytometry have a low sensitivity and even brain biopsies can be misleading. We report three cases of PCNSL with various clinical presentation and radiological findings where the diagnosis was suggested by novel CSF biomarkers and subsequently confirmed by brain biopsy or autopsy. CASE PRESENTATIONS: The first case is a 79-year-old man with severe neurocognitive dysfunction and static ataxia evolving over 5 months. Brain MRI revealed a nodular ventriculitis. An open brain biopsy was inconclusive. The second case is a 60-year-old woman with progressive sensory symptoms in all four limbs, evolving over 1 year. Brain and spinal MRI revealed asymmetric T2 hyperintensities of the corpus callosum, corona radiata and corticospinal tracts. The third case is a 72-year-old man recently diagnosed with primary vitreoretinal lymphoma of the right eye. A follow-up brain MRI performed 4 months after symptom onset revealed a T2 hyperintense fronto-sagittal lesion, with gadolinium uptake and perilesional edema. In all three cases, CSF flow cytometry and cytology were negative. Mutation analysis on the CSF (either by digital PCR or by next generation sequencing) identified the MYD88 L265P hotspot mutation in all three cases. A B-cell clonality study, performed in case 1 and 2, identified a monoclonal rearrangement of the immunoglobulin light chain lambda (IGL) and kappa (IGK) gene. CSF CXCL-13 and IL-10 levels were high in all three cases, and IL-10/IL-6 ratio was high in two. Diagnosis of PCNSL was later confirmed by autopsy in case 1, and by brain biopsy in case 2 and 3. CONCLUSIONS: Taken together, 5 CSF biomarkers (IL-10, IL-10/IL-6 ratio, CXCL13, MYD88 mutation and monoclonal IG gene rearrangements) were strongly indicative of a PCNSL. Using innovative CSF biomarkers can be sensitive and complementary to traditional CSF analysis and brain biopsy in the diagnosis of PCNSL, potentially allowing for earlier diagnosis and treatment.


Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Masculino , Anciano , Linfoma de Células B Grandes Difuso/líquido cefalorraquídeo , Linfoma de Células B Grandes Difuso/diagnóstico , Persona de Mediana Edad , Femenino , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/diagnóstico por imagen , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/patología , Biomarcadores de Tumor/líquido cefalorraquídeo , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética
3.
Neurology ; 102(12): e209527, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38830184

RESUMEN

OBJECTIVES: Despite a high response rate at the first evaluation during induction chemotherapy, the risk of early relapse remains high and unpredictable in primary CNS lymphomas (PCSNLs). We aimed to assess the prognostic value of early IL-10 levels in CSF (e-IL-10) after 2 months of induction chemotherapy. METHODS: We retrospectively selected from the LOC (Lymphomes Oculo-Cérébraux) network database patients with PCSNLs who had complete or partial response at the 2-month evaluation of a high-dose methotrexate-based first-line chemotherapy for whom e-IL-10 was available. RESULTS: Thirty patients (median age: 62 years, brain involvement in 30/30, CSF involvement in 10/30, median baseline CSF IL-10: 27.5 pg/mL) met the selection criteria. e-IL-10 was undetectable in 22 patients and detectable in 8 patients. At the end of induction treatment, 7 of 8 and 4 of 22 of the patients with detectable and undetectable e-IL-10 had experienced progressive disease, respectively (p = 0.001, OR: 26.8, 95% CI 2-1,478). The median progression-free survival times were 5.8 months (95% CI 2.8-8.8) and 28.7 months (95% CI 13.4-43.9) in the groups with detectable and undetectable e-IL-10, respectively (p < 0.001). DISCUSSION: Our results suggest that despite an objective response, the persistence of detectable e-IL-10 is associated with a high risk of early relapse in PCNSL. A closer follow-up of such patients is warranted.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Quimioterapia de Inducción , Interleucina-10 , Humanos , Persona de Mediana Edad , Femenino , Masculino , Interleucina-10/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Anciano , Estudios Retrospectivos , Pronóstico , Adulto , Linfoma/líquido cefalorraquídeo , Linfoma/tratamiento farmacológico , Metotrexato/uso terapéutico , Metotrexato/administración & dosificación
4.
J Clin Oncol ; 42(16): 1961-1974, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608213

RESUMEN

Effective diagnosis, prognostication, and management of CNS malignancies traditionally involves invasive brain biopsies that pose significant risk to the patient. Sampling and molecular profiling of cerebrospinal fluid (CSF) is a safer, rapid, and noninvasive alternative that offers a snapshot of the intracranial milieu while overcoming the challenge of sampling error that plagues conventional brain biopsy. Although numerous biomarkers have been identified, translational challenges remain, and standardization of protocols is necessary. Here, we systematically reviewed 141 studies (Medline, SCOPUS, and Biosis databases; between January 2000 and September 29, 2022) that molecularly profiled CSF from adults with brain malignancies including glioma, brain metastasis, and primary and secondary CNS lymphomas. We provide an overview of promising CSF biomarkers, propose CSF reporting guidelines, and discuss the various considerations that go into biomarker discovery, including the influence of blood-brain barrier disruption, cell of origin, and site of CSF acquisition (eg, lumbar and ventricular). We also performed a meta-analysis of proteomic data sets, identifying biomarkers in CNS malignancies and establishing a resource for the research community.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Humanos , Biomarcadores de Tumor/líquido cefalorraquídeo , Neoplasias Encefálicas/líquido cefalorraquídeo , Proteómica/métodos , Proteómica/normas , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/diagnóstico
5.
Neuro Oncol ; 26(6): 993-1011, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38598668

RESUMEN

BACKGROUND: The utility of liquid biopsies is well documented in several extracranial and intracranial (brain/leptomeningeal metastases, gliomas) tumors. METHODS: The RANO (Response Assessment in Neuro-Oncology) group has set up a multidisciplinary Task Force to critically review the role of blood and cerebrospinal fluid (CSF)-liquid biopsy in CNS lymphomas, with a main focus on primary central nervous system lymphomas (PCNSL). RESULTS: Several clinical applications are suggested: diagnosis of PCNSL in critical settings (elderly or frail patients, deep locations, and steroid responsiveness), definition of minimal residual disease, early indication of tumor response or relapse following treatments, and prediction of outcome. CONCLUSIONS: Thus far, no clinically validated circulating biomarkers for managing both primary and secondary CNS lymphomas exist. There is need of standardization of biofluid collection, choice of analytes, and type of technique to perform the molecular analysis. The various assays should be evaluated through well-organized central testing within clinical trials.


Asunto(s)
Biomarcadores de Tumor , Neoplasias del Sistema Nervioso Central , Linfoma , Humanos , Biopsia Líquida/métodos , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Linfoma/diagnóstico , Linfoma/patología , Linfoma/sangre , Biomarcadores de Tumor/sangre , Pronóstico
6.
J Neurochem ; 168(6): 1157-1167, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38332527

RESUMEN

For CNS lymphomas (CNSL), there is a high need for minimally invasive and easily obtainable diagnostic markers. Intrathecal IgM synthesis can easily be determined in routine CSF diagnostics. The aim of this study was to systematically investigate the diagnostic potential of intrathecal IgM synthesis in primary and secondary CNSL (PCNSL and SCNSL). In this retrospective study, patients with a biopsy-proven diagnosis of PCNSL or SCNSL were compared with patients with other neurological diseases in whom CNSL was initially the primary radiological differential diagnosis based on MRI. Sensitivity and specificity of intrathecal IgM synthesis were calculated using receiver operating characteristic curves. Seventy patients with CNSL were included (49 PCNSL and 21 SCNSL) and compared to 70 control patients. The sensitivity and specificity for the diagnosis of CNSL were 49% and 87%, respectively, for the entire patient population and 66% and 91% after selection for cases with tumor access to the CSF system and isolated intrathecal IgM synthesis. In cases with MRI-based radiological suspicion of CNSL, intrathecal IgM synthesis has good specificity but limited sensitivity. Because of its low-threshold availability, analysis of intrathecal IgM synthesis has the potential to lead to higher diagnostic accuracy, especially in resource-limited settings, and deserves further study.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Inmunoglobulina M , Linfoma , Humanos , Inmunoglobulina M/líquido cefalorraquídeo , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/inmunología , Anciano , Linfoma/líquido cefalorraquídeo , Linfoma/diagnóstico , Adulto , Biomarcadores de Tumor/líquido cefalorraquídeo , Imagen por Resonancia Magnética , Anciano de 80 o más Años , Sensibilidad y Especificidad , Adulto Joven
7.
Fluids Barriers CNS ; 21(1): 14, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350915

RESUMEN

BACKGROUND: The cerebrospinal fluid (CSF) proteome could offer important insights into central nervous system (CNS) malignancies. To advance proteomic research in pediatric CNS cancer, the current study aims to (1) evaluate past mass spectrometry-based workflows and (2) synthesize previous CSF proteomic data, focusing on both qualitative summaries and quantitative re-analysis. MAIN: In our analysis of 11 studies investigating the CSF proteome in pediatric patients with acute lymphoblastic leukemia (ALL) or primary brain tumors, we observed significant methodological variability. This variability negatively affects comparative analysis of the included studies, as per GRADE criteria for quality of evidence. The qualitative summaries covered 161 patients and 134 non-tumor controls, while the application of validation cohort varied among the studies. The quantitative re-analysis comprised 15 B-ALL vs 6 "healthy" controls and 15 medulloblastoma patients vs 22 non-tumor controls. Certain CSF proteins were identified as potential indicators of specific malignancies or stages of neurotoxicity during chemotherapy, yet definitive conclusions were impeded by inconsistent data. There were no proteins with statistically significant differences when comparing cases versus controls that were corroborated across studies where quantitative reanalysis was feasible. From a gene ontology enrichment, we observed that age disparities between unmatched case and controls may mislead to protein correlations more indicative of age-related CNS developmental stages rather than neuro-oncological disease. Despite efforts to batch correct (HarmonizR) and impute missing values, merging of dataset proved unfeasible and thereby limited meaningful data integration across different studies. CONCLUSION: Infrequent publications on rare pediatric cancer entities, which often involve small sample sizes, are inherently prone to result in heterogeneous studies-particularly when conducted within a rapidly evolving field like proteomics. As a result, obtaining clear evidence, such as CSF proteome biomarkers for CNS dissemination or early-stage neurotoxicity, is currently impractical. Our general recommendations comprise the need for standardized methodologies, collaborative efforts, and improved data sharing in pediatric CNS malignancy research. We specifically emphasize the possible importance of considering natural age-related variations in CSF due to different CNS development stages when matching cases and controls in future studies.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Espectrometría de Masas , Proteómica , Humanos , Proteómica/métodos , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/diagnóstico , Niño , Proteoma , Proteínas del Líquido Cefalorraquídeo/análisis , Proteínas del Líquido Cefalorraquídeo/líquido cefalorraquídeo
8.
Ann Hematol ; 103(6): 2033-2039, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38180535

RESUMEN

Acute lymphoblastic leukemia (ALL) is highly associated with central nervous system (CNS) infiltration and can be associated with higher risk of relapse. Conventional cytology (CC) is the traditional method for diagnosing CNS infiltration, although the use of immunophenotyping by flow cytometry (FC) has gained prominence in recent years due to its higher sensitivity. Also, some authors have proposed that CSF contamination by a traumatic lumbar puncture (TLP) could have a clinical impact. This retrospective study accessed the impact of CNS infiltration by CC or FC on overall survival, event-free survival, and relapse rate. In a cohort of 105 newly diagnosed ALL patients, CNS1, CNS2, and CNS3 status were found in 84%, 14%, and 2%, respectively. We found that extramedullary disease at the diagnosis, higher leukocyte counts, and higher blast percentage were associated with a positive CC. Sensitivity and specificity of CC were 53% and 98%, respectively. Three-year overall survival was 42.5%. Conversely, TLP was not associated with a positive CC nor had an impact on relapse rates. In multivariate analysis, a positive CC was associated with an increased relapse rate (HR 2.074, p = 0.037), while its detection by FC did not associate with this endpoint. Survival rates seem to be increasing over the last years by the adoption of a stratified CNS prophylaxis risk strategy. CSF contamination does not represent a major concern according to our report, as it did not increase CNS involvement or relapse rates.


Asunto(s)
Infiltración Leucémica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/líquido cefalorraquídeo , Femenino , Masculino , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Infiltración Leucémica/líquido cefalorraquídeo , Adolescente , Anciano , Adulto Joven , Pronóstico , Tasa de Supervivencia , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/mortalidad , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Citometría de Flujo , Inmunofenotipificación , Supervivencia sin Enfermedad
9.
Clin Cancer Res ; 30(14): 2974-2985, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38295147

RESUMEN

PURPOSE: Primary central nervous system (CNS) gliomas can be classified by characteristic genetic alterations. In addition to solid tissue obtained via surgery or biopsy, cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) is an alternative source of material for genomic analyses. EXPERIMENTAL DESIGN: We performed targeted next-generation sequencing of CSF cfDNA in a representative cohort of 85 patients presenting at two neurooncological centers with suspicion of primary or recurrent glioma. Copy-number variation (CNV) profiles, single-nucleotide variants (SNV), and small insertions/deletions (indel) were combined into a molecular-guided tumor classification. Comparison with the solid tumor was performed for 38 cases with matching solid tissue available. RESULTS: Cases were stratified into four groups: glioblastoma (n = 32), other glioma (n = 19), nonmalignant (n = 17), and nondiagnostic (n = 17). We introduced a molecular-guided tumor classification, which enabled identification of tumor entities and/or cancer-specific alterations in 75.0% (n = 24) of glioblastoma and 52.6% (n = 10) of other glioma cases. The overlap between CSF and matching solid tissue was highest for CNVs (26%-48%) and SNVs at predefined gene loci (44%), followed by SNVs/indels identified via uninformed variant calling (8%-14%). A molecular-guided tumor classification was possible for 23.5% (n = 4) of nondiagnostic cases. CONCLUSIONS: We developed a targeted sequencing workflow for CSF cfDNA as well as a strategy for interpretation and reporting of sequencing results based on a molecular-guided tumor classification in glioma. See related commentary by Abdullah, p. 2860.


Asunto(s)
Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células , Variaciones en el Número de Copia de ADN , Glioma , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Glioma/genética , Glioma/líquido cefalorraquídeo , Glioma/patología , Glioma/diagnóstico , Femenino , Persona de Mediana Edad , Masculino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Anciano , Adulto , Biomarcadores de Tumor/líquido cefalorraquídeo , Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/genética , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/patología , Polimorfismo de Nucleótido Simple , Adulto Joven , Anciano de 80 o más Años , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/líquido cefalorraquídeo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico
10.
Cell Rep Med ; 4(8): 101148, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37552989

RESUMEN

It is often challenging to distinguish cancerous from non-cancerous lesions in the brain using conventional diagnostic approaches. We introduce an analytic technique called Real-CSF (repetitive element aneuploidy sequencing in CSF) to detect cancers of the central nervous system from evaluation of DNA in the cerebrospinal fluid (CSF). Short interspersed nuclear elements (SINEs) are PCR amplified with a single primer pair, and the PCR products are evaluated by next-generation sequencing. Real-CSF assesses genome-wide copy-number alterations as well as focal amplifications of selected oncogenes. Real-CSF was applied to 280 CSF samples and correctly identified 67% of 184 cancerous and 96% of 96 non-cancerous brain lesions. CSF analysis was considerably more sensitive than standard-of-care cytology and plasma cell-free DNA analysis in the same patients. Real-CSF therefore has the capacity to be used in combination with other clinical, radiologic, and laboratory-based data to inform the diagnosis and management of patients with suspected cancers of the brain.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Humanos , Reacción en Cadena de la Polimerasa/métodos , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Técnicas de Amplificación de Ácido Nucleico , Elementos de Nucleótido Esparcido Corto , Sistema Nervioso Central
11.
Cancer Med ; 12(16): 16972-16984, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37501501

RESUMEN

BACKGROUND: Distinguishing between central nervous system lymphoma (CNSL) and CNS infectious and/or demyelinating diseases, although clinically important, is sometimes difficult even using imaging strategies and conventional cerebrospinal fluid (CSF) analyses. To determine whether detection of genetic mutations enables differentiation between these diseases and the early detection of CNSL, we performed mutational analysis using CSF liquid biopsy technique. METHODS: In this study, we extracted cell-free DNA from the CSF (CSF-cfDNA) of CNSL (N = 10), CNS infectious disease (N = 10), and demyelinating disease (N = 10) patients, and performed quantitative mutational analysis by droplet-digital PCR. Conventional analyses were also performed using peripheral blood and CSF to confirm the characteristics of each disease. RESULTS: Blood hemoglobin and albumin levels were significantly lower in CNSL than CNS infectious and demyelinating diseases, CSF cell counts were significantly higher in infectious diseases than CNSL and demyelinating diseases, and CSF-cfDNA concentrations were significantly higher in infectious diseases than CNSL and demyelinating diseases. Mutation analysis using CSF-cfDNA detected MYD88L265P and CD79Y196 mutations in 60% of CNSLs each, with either mutation detected in 80% of cases. Mutual existence of both mutations was identified in 40% of cases. These mutations were not detected in either infectious or demyelinating diseases, and the sensitivity and specificity of detecting either MYD88/CD79B mutations in CNSL were 80% and 100%, respectively. In the four cases biopsied, the median time from collecting CSF with the detected mutations to definitive diagnosis by conventional methods was 22.5 days (range, 18-93 days). CONCLUSIONS: These results suggest that mutation analysis using CSF-cfDNA might be useful for differentiating CNSL from CNS infectious/demyelinating diseases and for early detection of CNSL, even in cases where brain biopsy is difficult to perform.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias del Sistema Nervioso Central , Enfermedades Transmisibles , Enfermedades Desmielinizantes , Linfoma no Hodgkin , Humanos , Factor 88 de Diferenciación Mieloide , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Biopsia Líquida
12.
Analyst ; 148(15): 3594-3602, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37403840

RESUMEN

Primary central nervous system lymphoma (PCNSL) is a rare but highly aggressive extra-nodal non-Hodgkin's lymphoma, mostly of the diffuse large B-cell lymphoma (DLBCL) type. The present invasive diagnosis and poor prognosis of PCNSL propose an urgent need to develop molecular markers for early detection, real-time monitoring and treatment evaluation. Cerebrospinal fluid (CSF)-derived extracellular vesicles (EVs) are promising biomarker carriers for liquid biopsy of CNS diseases and brain tumors; however, research remains challenging due to the low concentration of EVs in the limited available volume of CSF from each individual patient and the low efficiency of existing methods for EV enrichment. Here, we introduce functionalized magnetic beads called EVTRAP (extracellular vesicles total recovery and purification) for rapid and efficient EV isolation from CSF. By coupling with high-performance mass spectrometry, over 19 000 peptides representing 1841 proteins were identified from just 30 µL of CSF. Furthermore, up to 3000 phosphopeptides representing over 1000 phosphoproteins were identified from about 2 mL of CSF. Finally, we analyzed the EV phosphoproteomics of CSF samples from PCNSL patients and non-PCNSL controls. Among them, multiple phosphoproteins related to PCNSL, including SPP1, MARCKS, NPM1 and VIM, were shown to be up-regulated in the PCNSL group. These results demonstrated the feasibility of the EVTRAP-based analytical strategy in CSF EV phosphoproteomic analysis of PCNSL molecular markers.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Vesículas Extracelulares , Linfoma , Humanos , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/patología , Biomarcadores , Proteoma , Fosfoproteínas , Vesículas Extracelulares/patología , Linfoma/diagnóstico , Sistema Nervioso Central/patología
13.
J Neurooncol ; 162(1): 1-13, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36820955

RESUMEN

Acquired mutations or altered gene expression patterns in brain metastases (BM) and/or leptomeningeal metastases (LM) of breast cancer may play a role in therapy-resistance and offer new molecular targets and treatment options. Despite expanding knowledge of genetic alterations in breast cancer and their metastases, clinical applications for patients with central nervous system (CNS) metastases are currently limited. An emerging tool are DNA-techniques that may detect genetic alterations of the CNS metastases in the cerebrospinal fluid (CSF). In this review we discuss genetic studies in breast cancer and CNS metastases and the role of liquid biopsies in CSF.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Neoplasias del Sistema Nervioso Central , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/terapia , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Biopsia Líquida/métodos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/líquido cefalorraquídeo , Mutación
14.
Cancer Med ; 12(4): 4679-4689, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35941814

RESUMEN

PURPOSE: Primary central nervous system lymphoma (PCNSL) is an uncommon extranodal non-Hodgkin's lymphoma. Here, the feasibility of nuclear magnetic resonance (NMR) metabolomics for the diagnosis and prognosis prediction of PCNSL, as well as its correlation with magnetic resonance imaging (MRI) characteristics, was assessed. PATIENTS AND METHODS: Cerebrospinal fluid (CSF) samples from PCNSL and normal groups (n = 41 for each) were obtained along with MRI data including pre- and postcontrast as well as T1-, T2-, and diffusion-weighted imaging for the treatment-naïve PCNSL patients (n = 24). The CSF samples were analyzed using nuclear magnetic resonance (NMR). RESULTS: The CSF NMR metabolomic exhibited clear differences with a diagnostic sensitivity of 100% and a specificity of 97.6%. The citrate level of the leptomeningeal enhancement (LE) (+) group was significantly lower than that of the LE (-) group (p = 0.018). In addition, the MRI apparent diffusion coefficient (ADC) value of the tumor was positively correlated with the glucose level (p = 0.025). However, none of the marker metabolites were significant prognosis predictors in univariate analysis. CONCLUSIONS: In conclusion, the NMR metabolomics could be helpful to diagnose PCNSL, but not for the prognosis, and MRI features (LE or ADC) can reflect the metabolic profiles of PCNSL.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Linfoma no Hodgkin , Linfoma , Humanos , Neoplasias del Sistema Nervioso Central/diagnóstico por imagen , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Linfoma/diagnóstico por imagen , Linfoma/patología , Imagen por Resonancia Magnética/métodos , Linfoma no Hodgkin/diagnóstico por imagen , Linfoma no Hodgkin/patología , Espectroscopía de Resonancia Magnética
16.
Sci Rep ; 12(1): 15491, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109530

RESUMEN

We report here the identification and validation of prefoldin 5-alpha (PFDN5-α) for the first time as prognostic biomarker for prediction of central nervous system (CNS) leukemia of B cell acute lymphoblastic leukemia (B-ALL) origin. Since cerebrospinal fluid (CSF) cytology being the gold standard of diagnosis for CNS leukemia with poor sensitivity, mandatory prophylactic intrathecal chemotherapy is administered irrespective of patients develop CNS leukemia. Thus, using interactome studies, we identified PFDN5-α as a prognostic biomarker for predicting CNS leukemia by interacting lymphoblastic proteins and CSF from B-ALL patients using far-western clinical proteomics approach. Validation by both western and ELISA methods confirmed our results. For further clinical translation, we performed Receiver Operating Characteristic (ROC) curve analysis generated from CNS +ve (n = 25) and -ve (n = 40) CSF samples from B-ALL patients and identified PFDN5-α-CSF reactivity cut-off value as 0.456. Values below 0.456 indicate the patient is at risk of developing CNS leukemia and suggestive of having intrathecal chemotherapy. Further flow cytometry validation for CNS leukemia positivity revealed that with increasing blast cells, a decrease in PFDN5-α-CSF reactivity confirming ELISA based PFDN5α-CSF reactivity assay. Predicting CNS leukemia development risk by ELISA based PFDN5-α-CSF reactivity assay could have potential in the clinical management of CNS leukemia.


Asunto(s)
Linfoma de Burkitt , Neoplasias del Sistema Nervioso Central , Leucemia-Linfoma Linfoblástico de Células Precursoras , Enfermedad Aguda , Biomarcadores , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/diagnóstico , Humanos , Chaperonas Moleculares , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico
18.
Cancer Sci ; 112(11): 4702-4710, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34523186

RESUMEN

The current standard of diagnosing central nervous system (CNS) lymphoma is stereotactic biopsy, however the procedure has a risk of surgical complication. Liquid biopsy of the CSF is a less invasive, non-surgical method that can be used for diagnosing CNS lymphoma. In this study, we established a clinically applicable protocol for determining mutations in MYD88 in the CSF of patients with CNS lymphoma. CSF was collected prior to the start of chemotherapy from 42 patients with CNS lymphoma and matched tumor specimens. Mutations in MYD88 in 33 tumor samples were identified using pyrosequencing. Using 10 ng each of cellular DNA and cell-free DNA (cfDNA) extracted from the CSF, the MYD88 L265P mutation was detected using digital PCR. The conditions to judge mutation were rigorously determined. The median Target/Total value of cases with MYD88 mutations in the tumors was 5.1% in cellular DNA and 22.0% in cfDNA. The criteria to judge mutation were then determined, with a Target/Total value of 0.25% as the cutoff. When MYD88 mutations were determined based on these criteria, the sensitivity and specificity were 92.2% and 100%, respectively, with cellular DNA; and the sensitivity and specificity were 100% with cfDNA. Therefore, the DNA yield, mutated allele fraction, and accuracy were significantly higher in cfDNA compared with that in cellular DNA. Taken together, this study highlights the importance of detecting the MYD88 L265P mutation in cfDNA of the CSF for diagnosing CNS lymphoma using digital PCR, a highly accurate and clinically applicable method.


Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Biopsia Líquida/métodos , Linfoma/genética , Mutación , Factor 88 de Diferenciación Mieloide/genética , Adulto , Anciano , Anciano de 80 o más Años , Ácidos Nucleicos Libres de Células/líquido cefalorraquídeo , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/aislamiento & purificación , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/diagnóstico , ADN de Neoplasias/líquido cefalorraquídeo , ADN de Neoplasias/genética , ADN de Neoplasias/aislamiento & purificación , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Linfoma/líquido cefalorraquídeo , Linfoma/diagnóstico , Masculino , Persona de Mediana Edad , Factor 88 de Diferenciación Mieloide/líquido cefalorraquídeo , Reacción en Cadena de la Polimerasa/métodos , Sensibilidad y Especificidad
19.
JAMA Neurol ; 78(11): 1355-1366, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34515766

RESUMEN

Importance: Cerebrospinal fluid (CSF) cytologic testing and flow cytometry are insensitive for diagnosing neoplasms of the central nervous system (CNS). Such clinical phenotypes can mimic infectious and autoimmune causes of meningoencephalitis. Objective: To ascertain whether CSF metagenomic next-generation sequencing (mNGS) can identify aneuploidy, a hallmark of malignant neoplasms, in difficult-to-diagnose cases of CNS malignant neoplasm. Design, Setting, and Participants: Two case-control studies were performed at the University of California, San Francisco (UCSF). The first study used CSF specimens collected at the UCSF Clinical Laboratories between July 1, 2017, and December 31, 2019, and evaluated test performance in specimens from patients with a CNS malignant neoplasm (positive controls) or without (negative controls). The results were compared with those from CSF cytologic testing and/or flow cytometry. The second study evaluated patients who were enrolled in an ongoing prospective study between April 1, 2014, and July 31, 2019, with presentations that were suggestive of neuroinflammatory disease but who were ultimately diagnosed with a CNS malignant neoplasm. Cases of individuals whose tumors could have been detected earlier without additional invasive testing are discussed. Main Outcomes and Measures: The primary outcome measures were the sensitivity and specificity of aneuploidy detection by CSF mNGS. Secondary subset analyses included a comparison of CSF and tumor tissue chromosomal abnormalities and the identification of neuroimaging characteristics that were associated with test performance. Results: Across both studies, 130 participants were included (median [interquartile range] age, 57.5 [43.3-68.0] years; 72 men [55.4%]). The test performance study used 125 residual laboratory CSF specimens from 47 patients with a CNS malignant neoplasm and 56 patients with other neurological diseases. The neuroinflammatory disease study enrolled 12 patients and 17 matched control participants. The sensitivity of the CSF mNGS assay was 75% (95% CI, 63%-85%), and the specificity was 100% (95% CI, 96%-100%). Aneuploidy was detected in 64% (95% CI, 41%-83%) of the patients in the test performance study with nondiagnostic cytologic testing and/or flow cytometry, and in 55% (95% CI, 23%-83%) of patients in the neuroinflammatory disease study who were ultimately diagnosed with a CNS malignant neoplasm. Of the patients in whom aneuploidy was detected, 38 (90.5%) had multiple copy number variations with tumor fractions ranging from 31% to 49%. Conclusions and Relevance: This case-control study showed that CSF mNGS, which has low specimen volume requirements, does not require the preservation of cell integrity, and was orginally developed to diagnose neurologic infections, can also detect genetic evidence of a CNS malignant neoplasm in patients in whom CSF cytologic testing and/or flow cytometry yielded negative results with a low risk of false-positive results.


Asunto(s)
Biomarcadores de Tumor/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Metagenómica , Persona de Mediana Edad , Sensibilidad y Especificidad , Análisis de Secuencia de ADN/métodos
20.
Blood ; 138(4): 331-343, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33684941

RESUMEN

To identify the prognostic factors that are useful to improve central nervous system (CNS) control in children with acute lymphoblastic leukemia (ALL), we analyzed the outcome of 7640 consecutive patients treated on Chinese Children's Cancer Group ALL-2015 protocol between 2015 and 2019. This protocol featured prephase dexamethasone treatment before conventional remission induction and subsequent risk-directed therapy, including 16 to 22 triple intrathecal treatments, without prophylactic cranial irradiation. The 5-year event-free survival was 80.3% (95% confidence interval [CI], 78.9-81.7), and overall survival 91.1% (95% CI, 90.1-92.1). The cumulative risk of isolated CNS relapse was 1.9% (95% CI, 1.5-2.3), and any CNS relapse 2.7% (95% CI, 2.2-3.2). The isolated CNS relapse rate was significantly lower in patients with B-cell ALL (B-ALL) than in those with T-cell ALL (T-ALL) (1.6%; 95% CI, 1.2-2.0 vs 4.6%; 95% CI, 2.9-6.3; P < .001). Independent risk factors for isolated CNS relapse included male sex (hazard ratio [HR], 1.8; 95% CI, 1.1-3.0; P = .03), the presence of BCR-ABL1 fusion (HR, 3.8; 95% CI, 2.0-7.3; P < .001) in B-ALL, and presenting leukocyte count ≥50×109/L (HR, 4.3; 95% CI, 1.5-12.2; P = .007) in T-ALL. Significantly lower isolated CNS relapse was associated with the use of total intravenous anesthesia during intrathecal therapy (HR, 0.2; 95% CI, 0.04-0.7; P = .02) and flow cytometry examination of diagnostic cerebrospinal fluid (CSF) (HR, 0.2; 95% CI, 0.06-0.6; P = .006) among patients with B-ALL. Prephase dexamethasone treatment, delayed intrathecal therapy, use of total intravenous anesthesia during intrathecal therapy, and flow cytometry examination of diagnostic CSF may improve CNS control in childhood ALL. This trial was registered with the Chinese Clinical Trial Registry (ChiCTR-IPR-14005706).


Asunto(s)
Neoplasias del Sistema Nervioso Central , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adolescente , Factores de Edad , Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/mortalidad , Neoplasias del Sistema Nervioso Central/terapia , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/líquido cefalorraquídeo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/líquido cefalorraquídeo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidad , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Factores de Riesgo , Factores Sexuales , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA