Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.943
Filtrar
1.
J Indian Prosthodont Soc ; 24(2): 175-185, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38650343

RESUMEN

AIM: To evaluate the potential of iron nanoparticles (FeNPs) in conjunction with magnetic fields (MFs) to enhance osteoblast cytomechanics, promote cell homing, bone development activity, and antibacterial capabilities, and to assess their in vivo angiogenic viability using the chicken egg chorioallantoic membrane (CAM) model. SETTINGS AND DESIGN: Experimental study conducted in a laboratory setting to investigate the effects of FeNPs and MFs on osteoblast cells and angiogenesis using a custom titanium (Ti) substrate coated with FeNPs. MATERIALS AND METHODS: A custom titanium (Ti) was coated with FeNPs. Evaluations were conducted to analyze the antibacterial properties, cell adhesion, durability, physical characteristics, and nanoparticle absorption associated with FeNPs. Cell physical characteristics were assessed using protein markers, and microscopy, CAM model, was used to quantify blood vessel formation and morphology to assess the FeNP-coated Ti's angiogenic potential. This in vivo study provided critical insights into tissue response and regenerative properties for biomedical applications. STATISTICAL ANALYSIS: Statistical analysis was performed using appropriate tests to compare experimental groups and controls. Significance was determined at P < 0.05. RESULTS: FeNPs and MFs notably improved osteoblast cell mechanical properties facilitated the growth and formation of new blood vessels and bone tissue and promoted cell migration to targeted sites. In the group treated with FeNPs and exposed to MFs, there was a significant increase in vessel percentage area (76.03%) compared to control groups (58.11%), along with enhanced mineralization and robust antibacterial effects (P < 0.05). CONCLUSION: The study highlights the promising potential of FeNPs in fostering the growth of new blood vessels, promoting the formation of bone tissue, and facilitating targeted cell migration. These findings underscore the importance of further investigating the mechanical traits of FeNPs, as they could significantly advance the development of effective bone tissue engineering techniques, ultimately enhancing clinical outcomes in the field.


Asunto(s)
Membrana Corioalantoides , Campos Magnéticos , Neovascularización Fisiológica , Osteoblastos , Ingeniería de Tejidos , Titanio , Animales , Ingeniería de Tejidos/métodos , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/fisiología , Osteoblastos/efectos de los fármacos , Titanio/química , Titanio/farmacología , Embrión de Pollo , Pollos , Hierro/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Adhesión Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Angiogénesis
2.
J Appl Oral Sci ; 32: e20230448, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655988

RESUMEN

OBJECTIVE: Platelet-rich fibrin (PRF) contains a variety of growth factors and bioactive molecules that play crucial roles in wound healing and angiogenesis. We aimed to evaluate the effects of PRF on tissue thickness and vascularization of the palatal donor site by ultrasound (USG) following subepithelial connective tissue harvesting. METHODOLOGY: A subepithelial connective tissue graft was harvested from the palatal region with a single incision for root coverage in 20 systemically healthy patients. In the test group (n = 10), the PRF membrane was placed at the donor site, whereas no material was applied in the control group (n=10). Palatal tissue thickness (PTT) and pulsatility index (PI) were evaluated by USG at baseline and on the 3rd, 7th, 14th, 30th, and 90th days after surgery. The early healing index (EHI) was used to evaluate donor site healing for 30 days. RESULTS: PTT was significantly higher in the PRF group on the 3rd and 14th days after surgery when compared to the controls. In the PRF-treated group, PI levels were significantly higher than in the controls, especially on the 14th day. PTT increased significantly 90 days after surgery compared to the test group baseline, but controls showed a significant decrease. The PRF group showed statistically significant improvements in EHI scores compared to controls on days 3, 7, and 14. This study found a negative correlation between PI values and EHI scores on postoperative days three and seven in the test group. CONCLUSION: USG is a non-invasive, objective method to radiographically evaluate the regenerative effects of PRF on palatal wound healing after soft tissue harvesting. To overcome graft inadequacy in reharvesting procedures, PRF application may enhance clinical success and reduce possible complications by increasing tissue thickness and revascularization in the donor area.


Asunto(s)
Tejido Conectivo , Hueso Paladar , Fibrina Rica en Plaquetas , Sitio Donante de Trasplante , Ultrasonografía , Cicatrización de Heridas , Humanos , Cicatrización de Heridas/fisiología , Masculino , Femenino , Adulto , Tejido Conectivo/trasplante , Hueso Paladar/cirugía , Hueso Paladar/diagnóstico por imagen , Factores de Tiempo , Resultado del Tratamiento , Ultrasonografía/métodos , Adulto Joven , Estadísticas no Paramétricas , Reproducibilidad de los Resultados , Valores de Referencia , Persona de Mediana Edad , Recolección de Tejidos y Órganos/métodos , Neovascularización Fisiológica/fisiología
3.
BMC Biol ; 22(1): 91, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654271

RESUMEN

BACKGROUND: Elephant seals exhibit extreme hypoxemic tolerance derived from repetitive hypoxia/reoxygenation episodes they experience during diving bouts. Real-time assessment of the molecular changes underlying protection against hypoxic injury in seals remains restricted by their at-sea inaccessibility. Hence, we developed a proliferative arterial endothelial cell culture model from elephant seals and used RNA-seq, functional assays, and confocal microscopy to assess the molecular response to prolonged hypoxia. RESULTS: Seal and human endothelial cells exposed to 1% O2 for up to 6 h respond differently to acute and prolonged hypoxia. Seal cells decouple stabilization of the hypoxia-sensitive transcriptional regulator HIF-1α from angiogenic signaling. Rapid upregulation of genes involved in glutathione (GSH) metabolism supports the maintenance of GSH pools, and intracellular succinate increases in seal but not human cells. High maximal and spare respiratory capacity in seal cells after hypoxia exposure occurs in concert with increasing mitochondrial branch length and independent from major changes in extracellular acidification rate, suggesting that seal cells recover oxidative metabolism without significant glycolytic dependency after hypoxia exposure. CONCLUSIONS: We found that the glutathione antioxidant system is upregulated in seal endothelial cells during hypoxia, while this system remains static in comparable human cells. Furthermore, we found that in contrast to human cells, hypoxia exposure rapidly activates HIF-1 in seal cells, but this response is decoupled from the canonical angiogenesis pathway. These results highlight the unique mechanisms that confer extraordinary tolerance to limited oxygen availability in a champion diving mammal.


Asunto(s)
Antioxidantes , Células Endoteliales , Phocidae , Transducción de Señal , Regulación hacia Arriba , Animales , Phocidae/fisiología , Phocidae/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Antioxidantes/metabolismo , Humanos , Hipoxia/metabolismo , Hipoxia de la Célula , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/fisiología , Células Cultivadas , Glutatión/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética
4.
Cells ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474378

RESUMEN

BACKGROUND: Diabetic foot ulcers (DFU) pose a significant health risk in diabetic patients, with insufficient revascularization during wound healing being the primary cause. This study aimed to assess microvessel sprouting and wound healing capabilities using vascular endothelial growth factor (VEGF-A) and a modified fibroblast growth factor (FGF1). METHODS: An ex vivo aortic ring rodent model and an in vivo wound healing model in diabetic mice were employed to evaluate the microvessel sprouting and wound healing capabilities of VEGF-A and a modified FGF1 both as monotherapies and in combination. RESULTS: The combination of VEGF-A and FGF1 demonstrated increased vascular sprouting in the ex vivo mouse aortic ring model, and topical administration of a combination of VEGF-A and FGF1 mRNAs formulated in lipid nanoparticles (LNPs) in mouse skin wounds promoted faster wound closure and increased neovascularization seven days post-surgical wound creation. RNA-sequencing analysis of skin samples at day three post-wound creation revealed a strong transcriptional response of the wound healing process, with the combined treatment showing significant enrichment of genes linked to skin growth. CONCLUSION: f-LNPs encapsulating VEGF-A and FGF1 mRNAs present a promising approach to improving the scarring process in DFU.


Asunto(s)
Diabetes Mellitus Experimental , Pie Diabético , Humanos , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor 1 de Crecimiento de Fibroblastos , Neovascularización Fisiológica/fisiología , Cicatrización de Heridas/fisiología , Modelos Animales de Enfermedad
5.
Exp Eye Res ; 241: 109837, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382576

RESUMEN

The lens is an avascular tissue, where epithelial cells (LECs) are the primary living cells. The role of LECs-derived exosomes (LEC-exos) is largely unknown. In our study, we determined the anti-angiogenic role of LEC-exos, manifested as regressed retinal neovascularization (NV) using the oxygen-induced retinopathy (OIR), and reduced choroidal NV size and pathological vascular leakage using the laser-induced choroidal neovascularization (laser-induced CNV). Furthermore, the activation and accumulation of microglia were also restricted by LEC-exos. Based on Luminex multiplex assays, the expressions of chemokines such as SCYB16/CXCL16, MCP-1/CCL2, I-TAC/CXCL11, and MIP 3beta/CCL19 were decreased after treatment with LEC-exos. Transwell assays showed that LEC-exos restricted the migration of the mouse microglia cell line (BV2 cells). After incubation with LEC-exos-treated BV2 cells, human umbilical vein endothelial cells (hUVECs) were collected for further evaluation using tube formation, Transwell assays, and 5-ethynyl-2'-deoxyuridine (EDU) assays. Using in vitro experiments, the pro-angiogenic effect of microglia was restricted by LEC-exos. Hence, it was investigated that LEC-exos attenuated ocular NV, which might attribute to the inhibition of microglial activation and accumulation.


Asunto(s)
Neovascularización Coroidal , Exosomas , Células Madre Mesenquimatosas , Ratones , Animales , Humanos , Microglía , Exosomas/metabolismo , Angiogénesis , Neovascularización Fisiológica/fisiología , Células Endoteliales de la Vena Umbilical Humana , Neovascularización Coroidal/metabolismo
6.
Spine (Phila Pa 1976) ; 49(10): E142-E151, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38329420

RESUMEN

STUDY DESIGN: Basic science study using a hemisection spinal cord injury (SCI) model. OBJECTIVE: We sought to assess the effect of blocking osteopontin (OPN) upregulation on motor function recovery and pain behavior after SCI and to further investigate the possible downstream target of OPN in the injured spinal cord. SUMMARY OF BACKGROUND DATA: OPN is a noncollagenous extracellular matrix protein widely expressed across different tissues. Its expression substantially increases following SCI. A previous study suggested that this protein might contribute to locomotor function recovery after SCI. However, its neuroprotective potential was not fully explored, nor were the underlying mechanisms. MATERIALS AND METHODS: We constructed a SCI mouse model and analyzed the expression of OPN at different time points and the particular cell distribution in the injured spinal cord. Then, we blocked OPN upregulation with lentivirus-delivering siRNA targeting OPN specifically and examined its effect on motor function impairment and neuropathic pain after SCI. The underlying mechanisms were explored in the OPN-knockdown mice model and cultured vascular endothelial cells. RESULTS: The proteome study revealed that OPN was the most dramatically increased protein following SCI. OPN in the spinal cord was significantly increased three weeks after SCI. Suppressing OPN upregulation through siRNA exacerbated motor function impairment and neuropathic pain. In addition, SCI resulted in an increase in vascular endothelial growth factor (VEGF), AKT phosphorylation, and angiogenesis within the spinal cord, all of which were curbed by OPN reduction. Similarly, OPN knockdown suppressed VEGF expression, AKT phosphorylation, cell migration, invasion, and angiogenesis in cultured vascular endothelial cells. CONCLUSION: OPN demonstrates a protective influence against motor function impairment and neuropathic pain following SCI. This phenomenon may result from the proangiogenetic effect of OPN, possibly due to activation of the VEGF and/or AKT pathways.


Asunto(s)
Neuralgia , Osteopontina , Recuperación de la Función , Traumatismos de la Médula Espinal , Médula Espinal , Animales , Masculino , Ratones , Angiogénesis , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Neovascularización Fisiológica/fisiología , Neovascularización Fisiológica/efectos de los fármacos , Neuralgia/etiología , Neuralgia/metabolismo , Neuralgia/prevención & control , Osteopontina/metabolismo , Recuperación de la Función/fisiología , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Biofabrication ; 16(2)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38277671

RESUMEN

Tissue engineering has emerged as a strategy for producing functional tissues and organs to treat diseases and injuries. Many chronic conditions directly or indirectly affect normal blood vessel functioning, necessary for material exchange and transport through the body and within tissue-engineered constructs. The interest in vascular tissue engineering is due to two reasons: (1) functional grafts can be used to replace diseased blood vessels, and (2) engineering effective vasculature within other engineered tissues enables connection with the host's circulatory system, supporting their survival. Among various practices, (bio)printing has emerged as a powerful tool to engineer biomimetic constructs. This has been made possible with precise control of cell deposition and matrix environment along with the advancements in biomaterials. (Bio)printing has been used for both engineering stand-alone vascular grafts as well as vasculature within engineered tissues for regenerative applications. In this review article, we discuss various conditions associated with blood vessels, the need for artificial blood vessels, the anatomy and physiology of different blood vessels, available 3D (bio)printing techniques to fabricate tissue-engineered vascular grafts and vasculature in scaffolds, and the comparison among the different techniques. We conclude our review with a brief discussion about future opportunities in the area of blood vessel tissue engineering.


Asunto(s)
Bioimpresión , Neovascularización Fisiológica , Neovascularización Fisiológica/fisiología , Ingeniería de Tejidos/métodos , Materiales Biocompatibles , Andamios del Tejido , Arterias , Impresión Tridimensional , Bioimpresión/métodos , Vasos Sanguíneos/fisiología
8.
WIREs Mech Dis ; 16(2): e1634, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38084799

RESUMEN

Angiogenesis is the process wherein endothelial cells (ECs) form sprouts that elongate from the pre-existing vasculature to create new vascular networks. In addition to its essential role in normal development, angiogenesis plays a vital role in pathologies such as cancer, diabetes and atherosclerosis. Mathematical and computational modeling has contributed to unraveling its complexity. Many existing theoretical models of angiogenic sprouting are based on the "snail-trail" hypothesis. This framework assumes that leading ECs positioned at sprout tips migrate toward low-oxygen regions while other ECs in the sprout passively follow the leaders' trails and proliferate to maintain sprout integrity. However, experimental results indicate that, contrary to the snail-trail assumption, ECs exchange positions within developing vessels, and the elongation of sprouts is primarily driven by directed migration of ECs. The functional role of cell rearrangements remains unclear. This review of the theoretical modeling of angiogenesis is the first to focus on the phenomenon of cell mixing during early sprouting. We start by describing the biological processes that occur during early angiogenesis, such as phenotype specification, cell rearrangements and cell interactions with the microenvironment. Next, we provide an overview of various theoretical approaches that have been employed to model angiogenesis, with particular emphasis on recent in silico models that account for the phenomenon of cell mixing. Finally, we discuss when cell mixing should be incorporated into theoretical models and what essential modeling components such models should include in order to investigate its functional role. This article is categorized under: Cardiovascular Diseases > Computational Models Cancer > Computational Models.


Asunto(s)
Neoplasias , Neovascularización Fisiológica , Humanos , Neovascularización Fisiológica/fisiología , Células Endoteliales/fisiología , Angiogénesis , Simulación por Computador , Neoplasias/irrigación sanguínea , Microambiente Tumoral
9.
Mol Oral Microbiol ; 39(2): 47-61, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37188376

RESUMEN

We found that GroEL in Porphyromonas gingivalis accelerated tumor growth and increased mortality in tumor-bearing mice; GroEL promoted proangiogenic function, which may be the reason for promoting tumor growth. To understand the regulatory mechanisms by which GroEL increases the proangiogenic function of endothelial progenitor cells (EPCs), we explored in this study. In EPCs, MTT assay, wound-healing assay, and tube formation assay were performed to analyze its activity. Western blot and immunoprecipitation were used to study the protein expression along with next-generation sequencing for miRNA expression. Finally, a murine tumorigenesis animal model was used to confirm the results of in vitro. The results indicated that thrombomodulin (TM) direct interacts with PI3 K/Akt to inhibit the activation of signaling pathways. When the expression of TM is decreased by GroEL stimulation, molecules in the PI3 K/Akt signaling axis are released and activated, resulting in increased migration and tube formation of EPCs. In addition, GroEL inhibits TM mRNA expression by activating miR-1248, miR-1291, and miR-5701. Losing the functions of miR-1248, miR-1291, and miR-5701 can effectively alleviate the GroEL-induced decrease in TM protein levels and inhibit the proangiogenic abilities of EPCs. These results were also confirmed in animal experiments. In conclusion, the intracellular domain of the TM of EPCs plays a negative regulatory role in the proangiogenic capabilities of EPCs, mainly through direct interaction between TM and PI3 K/Akt to inhibit the activation of signaling pathways. The effects of GroEL on tumor growth can be reduced by inhibiting the proangiogenic properties of EPCs through the inhibition of the expression of specific miRNAs.


Asunto(s)
Células Progenitoras Endoteliales , MicroARNs , Neoplasias , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/patología , Porphyromonas gingivalis/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Trombomodulina/genética , Trombomodulina/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Neovascularización Fisiológica/fisiología
10.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38069025

RESUMEN

Intussusceptive pillars, regarded as a hallmark of intussusceptive angiogenesis, have been described in developing vasculature of many organs and organisms. The aim of this study was to resolve the question about pillar formation and their further maturation employing zebrafish caudal vein plexus (CVP). The CVP development was monitored by in vivo confocal microscopy in high spatio-temporal resolution using the transgenic zebrafish model Fli1a:eGPF//Gata1:dsRed. We tracked back the formation of pillars (diameter ≤ 4 µm) and intercapillary meshes (diameter > 4 µm) and analysed their morphology and behaviour. Transluminal pillars in the CVP arose via a combination of sprouting, lumen expansion, and/or the creation of intraluminal folds, and those mechanisms were not associated directly with blood flow. The follow-up of pillars indicated that one-third of them disappeared between 28 and 48 h post fertilisation (hpf), and of the remaining ones, only 1/17 changed their cross-section area by >50%. The majority of the bigger meshes (39/62) increased their cross-section area by >50%. Plexus simplification and the establishment of hierarchy were dominated by the dynamics of intercapillary meshes, which formed mainly via sprouting angiogenesis. These meshes were observed to grow, reshape, and merge with each other. Our observations suggested an alternative view on intussusceptive angiogenesis in the CVP.


Asunto(s)
Intususcepción , Pez Cebra , Animales , Morfogénesis , Hemodinámica , Microscopía Intravital , Neovascularización Fisiológica/fisiología
11.
Nat Commun ; 14(1): 8307, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097553

RESUMEN

The endothelial cell (EC) outgrowth in both vasculogenesis and angiogenesis starts with remodeling surrounding matrix and proceeds with the crosstalk between cells for the multicellular vasculature formation. The mechanical plasticity of matrix, defined as the ability to permanently deform by external traction, is pivotal in modulating cell behaviors. Nevertheless, the implications of matrix plasticity on cell-to-cell interactions during EC outgrowth, along with the molecular pathways involved, remain elusive. Here we develop a collagen-hyaluronic acid based hydrogel platform with tunable plasticity by using compositing strategy of dynamic and covalent networks. We show that although the increasing plasticity of the hydrogel facilitates the matrix remodeling by ECs, the largest tubular lumens and the longest invading distance unexpectedly appear in hydrogels with medium plasticity instead of the highest ones. We unravel that the high plasticity of the hydrogels promotes stable integrin cluster of ECs and recruitment of focal adhesion kinase with an overenhanced contractility which downregulates the vascular endothelial cadherin expression and destabilizes the adherens junctions between individual ECs. Our results, further validated with mathematical simulations and in vivo angiogenic tests, demonstrate that a balance of matrix plasticity facilitates both cell-matrix binding and cell-to-cell adherens, for promoting vascular assembly and invasion.


Asunto(s)
Angiogénesis , Hidrogeles , Hidrogeles/química , Colágeno/metabolismo , Células Endoteliales/metabolismo , Diferenciación Celular , Neovascularización Fisiológica/fisiología
12.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139026

RESUMEN

Adipose-derived stem cells (ASCs) have been used as a therapeutic intervention for peripheral artery disease (PAD) in clinical trials. To further explore the therapeutic mechanism of these mesenchymal multipotent stromal/stem cells in PAD, this study was designed to test the effect of xenogeneic ASCs extracted from human adipose tissue on hypoxic endothelial cells (ECs) and terminal unfolded protein response (UPR) in vitro and in an atherosclerosis-prone apolipoprotein E-deficient mice (ApoE-/- mice) hindlimb ischemia model in vivo. ASCs were added to Cobalt (II) chloride-treated ECs; then, metabolic activity, cell migration, and tube formation were evaluated. Fluorescence-based sensors were used to assess dynamic changes in Ca2+ levels in the cytosolic- and endoplasmic reticulum (ER) as well as changes in reactive oxygen species. Western blotting was used to observe the UPR pathway. To simulate an acute-on-chronic model of PAD, ApoE-/- mice were subjected to a double ligation of the femoral artery (DLFA). An assessment of functional recovery after DFLA was conducted, as well as histology of gastrocnemius. Hypoxia caused ER stress in ECs, but ASCs reduced it, thereby promoting cell survival. Treatment with ASCs ameliorated the effects of ischemia on muscle tissue in the ApoE-/- mice hindlimb ischemia model. Animals showed less muscle necrosis, less inflammation, and lower levels of muscle enzymes after ASC injection. In vitro and in vivo results revealed that all ER stress sensors (BIP, ATF6, CHOP, and XBP1) were activated. We also observed that the expression of these proteins was reduced in the ASCs treatment group. ASCs effectively alleviated endothelial dysfunction under hypoxic conditions by strengthening ATF6 and initiating a transcriptional program to restore ER homeostasis. In general, our data suggest that ASCs may be a meaningful treatment option for patients with PAD who do not have traditional revascularization options.


Asunto(s)
Células Endoteliales , Células Madre Mesenquimatosas , Humanos , Animales , Ratones , Células Endoteliales/metabolismo , Neovascularización Fisiológica/fisiología , Tejido Adiposo/metabolismo , Células Madre Mesenquimatosas/metabolismo , Hipoxia/metabolismo , Respuesta de Proteína Desplegada , Isquemia/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo
13.
Nat Commun ; 14(1): 7334, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957174

RESUMEN

Despite improvements in medical and surgical therapies, a significant portion of patients with critical limb ischemia (CLI) are considered as "no option" for revascularization. In this work, a nitric oxide (NO)-boosted and activated nanovesicle regeneration kit (n-BANK) is constructed by decorating stem cell-derived nanoscale extracellular vesicles with NO nanocages. Our results demonstrate that n-BANKs could store NO in endothelial cells for subsequent release upon pericyte recruitment for CLI revascularization. Notably, n-BANKs enable endothelial cells to trigger eNOS activation and form tube-like structures. Subsequently, eNOS-derived NO robustly recruits pericytes to invest nascent endothelial cell tubes, giving rise to mature blood vessels. Consequently, n-BANKs confer complete revascularization in female mice following CLI, and thereby achieve limb preservation and restore the motor function. In light of n-BANK evoking pericyte-endothelial interactions to create functional vascular networks, it features promising therapeutic potential in revascularization to reduce CLI-related amputations, which potentially impact regeneration medicine.


Asunto(s)
Células Endoteliales , Pericitos , Humanos , Femenino , Ratones , Animales , Células Endoteliales/fisiología , Óxido Nítrico , Isquemia/terapia , Células Madre , Neovascularización Fisiológica/fisiología
14.
Proc Natl Acad Sci U S A ; 120(46): e2307480120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37943835

RESUMEN

Ischemic diseases lead to considerable morbidity and mortality, yet conventional clinical treatment strategies for therapeutic angiogenesis fall short of being impactful. Despite the potential of biomaterials to deliver pro-angiogenic molecules at the infarct site to induce angiogenesis, their efficacy has been impeded by aberrant vascular activation and off-target circulation. Here, we present a semisynthetic low-molecular sulfated chitosan oligosaccharide (SCOS) that efficiently induces therapeutic arteriogenesis with a spontaneous generation of collateral circulation and blood reperfusion in rodent models of hind limb ischemia and myocardial infarction. SCOS elicits anti-inflammatory macrophages' (Mφs') differentiation into perivascular Mφs, which in turn directs artery formation via a cell-to-cell communication rather than secretory factor regulation. SCOS-mediated arteriogenesis requires a canonical Notch signaling pathway in Mφs via the glycosylation of protein O-glucosyltransferases 2, which results in promoting arterial differentiation and tissue repair in ischemia. Thus, this highly bioactive oligosaccharide can be harnessed to direct efficiently therapeutic arteriogenesis and perfusion for the treatment of ischemic diseases.


Asunto(s)
Neovascularización Fisiológica , Sulfatos , Ratones , Animales , Neovascularización Fisiológica/fisiología , Sulfatos/metabolismo , Ratones Noqueados , Músculo Esquelético/metabolismo , Isquemia/metabolismo , Macrófagos/metabolismo , Miembro Posterior/irrigación sanguínea , Modelos Animales de Enfermedad
15.
Biomaterials ; 303: 122397, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37979513

RESUMEN

Critical limb ischemia (CLI) occurs when blood flow is restricted through the arteries, resulting in ulcers, necrosis, and chronic wounds in the downstream extremities. The development of collateral arterioles (i.e. arteriogenesis), either by remodeling of pre-existing vascular networks or de novo growth of new vessels, can prevent or reverse ischemic damage, but it remains challenging to stimulate collateral arteriole development in a therapeutic context. Here, we show that a gelatin-based hydrogel, devoid of growth factors or encapsulated cells, promotes arteriogenesis and attenuates tissue damage in a murine CLI model. The gelatin hydrogel is functionalized with a peptide derived from the extracellular epitope of Type 1 cadherins. Mechanistically, these "GelCad" hydrogels promote arteriogenesis by recruiting smooth muscle cells to vessel structures in both ex vivo and in vivo assays. In a murine femoral artery ligation model of CLI, delivery of in situ crosslinking GelCad hydrogels was sufficient to restore limb perfusion and maintain tissue health for 14 days, whereas mice treated with gelatin hydrogels had extensive necrosis and autoamputated within 7 days. A small cohort of mice receiving the GelCad hydrogels were aged out to 5 months and exhibited no decline in tissue quality, indicating durability of the collateral arteriole networks. Overall, given the simplicity and off-the-shelf format of the GelCad hydrogel platform, we suggest it could have utility for CLI treatment and potentially other indications that would benefit from arteriole development.


Asunto(s)
Circulación Colateral , Neovascularización Fisiológica , Humanos , Ratones , Animales , Anciano , Neovascularización Fisiológica/fisiología , Circulación Colateral/fisiología , Hidrogeles/uso terapéutico , Gelatina/uso terapéutico , Isquemia Crónica que Amenaza las Extremidades , Modelos Animales de Enfermedad , Arteria Femoral/metabolismo , Isquemia/tratamiento farmacológico , Isquemia/metabolismo , Necrosis , Péptidos/farmacología , Péptidos/uso terapéutico , Miembro Posterior/metabolismo
16.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834069

RESUMEN

Three-dimensional (3D) culture systems have been widely used to promote the viability and metabolic activity of mesenchymal stem cells (MSCs). The aim of this study was to explore the synergistic benefits of using dual 3D MSC culture systems to promote vascular regeneration and enhance therapeutic potential. We used various experimental assays, including dual 3D cultures of human adipose MSCs (hASCs), quantitative reverse transcription polymerase chain reaction (qRT-PCR), in vitro cell migration, Matrigel tube network formation, Matrigel plug assay, therapeutic assays using an ischemic hind limb mouse model, and immunohistochemical analysis. Our qRT-PCR results revealed that fibroblast growth factor 2 (FGF-2), granulocyte chemotactic protein-2 (GCP-2), and vascular endothelial growth factor-A (VEGF-A) were highly upregulated in conventional 3D-cultured hASCs (ASC-3D) than in two-dimensional (2D)-cultured hASCs. Hepatocyte growth factor (HGF), insulin-like growth factor-1 (IGF-1), and stromal-cell-derived factor-1 (SDF-1) showed higher expression levels in cytokine-cocktail-based, 3D-cultured hASCs (ASC-3Dc). A conditioned medium (CM) mixture of dual 3D ASCs (D-3D; ASC-3D + ASC-3Dc) resulted in higher migration and Matrigel tube formation than the CM of single 3D ASCs (S-3D; ASC-3D). Matrigel plugs containing D-3D contained more red blood cells than those containing S-3D. D-3D transplantation into ischemic mouse hind limbs prevented limb loss and augmented blood perfusion when compared to S-3D transplantation. Transplanted D-3D also revealed a high capillary density and angiogenic cytokine levels and transdifferentiated into endothelial-like cells in the hind limb muscle. These findings highlight the benefits of using the dual 3D culture system to optimize stem-cell-based therapeutic strategies, thereby advancing the therapeutic strategy for ischemic vascular disease and tissue regeneration.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Neovascularización Fisiológica/fisiología , Células Madre Mesenquimatosas/metabolismo , Isquemia/terapia , Isquemia/metabolismo , Medios de Cultivo Condicionados/metabolismo , Citocinas/metabolismo , Tejido Adiposo/metabolismo
17.
Curr Opin Cell Biol ; 85: 102254, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37832167

RESUMEN

Vessel formation and differentiation to a proper hierarchical vasculature requires a coordinated effort from endothelial and mural cells. Over the last decade Notch was identified as a key player in this process by promoting vascular arterialization and modulating endothelial tip-stalk phenotypes. Recent work has identified that Notch fine-tunes the diverse endothelial phenotypes through regulation of canonical cell-cycle and metabolism regulators, such as ERK and Myc. During arterialization, Notch signaling inhibits the cell-cycle and metabolism of endothelial cells which coincides with the acquisition of arterial identity. During angiogenesis, the same molecular machinery prevents the hypermitogenic arrest and excessive sprouting of vessels. Notch also signals in pericytes and smooth muscle cells promoting vascular coverage and maturation. Here, we will review the latest findings on how Notch signals regulate the differentiation and interactions among vascular cells during organ development and homeostasis.


Asunto(s)
Células Endoteliales , Receptores Notch , Células Endoteliales/metabolismo , Receptores Notch/metabolismo , Comunicación Celular , Transducción de Señal/fisiología , Diferenciación Celular , Neovascularización Fisiológica/fisiología
18.
Differentiation ; 134: 20-30, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37774549

RESUMEN

The vascular system plays a crucial role in bone tissue. Angiogenic and osteogenic processes are coupled through a spatial-temporal connection. Recent studies have identified three types of capillaries in the skeletal system. Compared with type L and E vessels, type H vessels express high levels of CD31 and endomucin, and function to couple angiogenesis and osteogenesis. Endothelial cells in type H vessels interact with osteolineage cells (e.g., osteoblasts, osteoclasts, and osteocytes) through cytokines or signaling pathways to maintain bone growth and homeostasis. In imbalanced bone homeostases, such as osteoporosis and osteoarthritis, it may be a new therapeutic strategy to regulate the endothelial cell activity in type H vessels to repair the imbalance. Here, we reviewed the latest progress in relevant factors or signaling pathways in coupling angiogenesis and osteogenesis. This review would contribute to further understanding the role and mechanisms of type H vessels in coupling angiogenic and osteogenic processes. Furthermore, it will facilitate the development of therapeutic approaches for bone disorders by targeting type H vessels.


Asunto(s)
Células Endoteliales , Osteogénesis , Osteogénesis/genética , Células Endoteliales/metabolismo , Neovascularización Fisiológica/fisiología , Huesos , Homeostasis
19.
Acta Biomater ; 171: 114-130, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37717711

RESUMEN

The increasing gap between clinical demand for tissue or organ transplants and the availability of donated tissue highlights the emerging opportunities for lab-grown or synthetically engineered tissue. While the field of tissue engineering has existed for nearly half a century, its clinical translation remains unrealised, in part, due to a limited ability to engineer sufficient vascular supply into fabricated tissue, which is necessary to enable nutrient and waste exchange, prevent cellular necrosis, and support tissue proliferation. Techniques to develop anatomically relevant, functional vascular networks in vitro have made significant progress in the last decade, however, the challenge now remains as to how best incorporate these throughout dense parenchymal tissue-like structures to address diffusion-limited development and allow for the fabrication of large-scale vascularised tissue. This review explores advances made in the laboratory engineering of vasculature structures and summarises recent attempts to integrate vascular networks together with sophisticated in vitro avascular tissue and organ-like structures. STATEMENT OF SIGNIFICANCE: The ability to grow full scale, functional tissue and organs in vitro is primarily limited by an inability to adequately diffuse oxygen and nutrients throughout developing cellularised structures, which generally results from the absence of perfusable vessel networks. Techniques to engineering both perfusable vascular networks and avascular miniaturised organ-like structures have recently increased in complexity, sophistication, and physiological relevance. However, integrating these two essential elements into a single functioning vascularised tissue structure represents a significant spatial and temporal engineering challenge which is yet to be surmounted. Here, we explore a range of vessel morphogenic phenomena essential for tissue-vascular co-development, as well as evaluate a range of recent noteworthy approaches for generating vascularised tissue products in vitro.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Neovascularización Fisiológica/fisiología
20.
Sci Rep ; 13(1): 12542, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532879

RESUMEN

Flap surgery is a common treatment for severe wounds and a major determinant of surgical outcome. Flap survival and healing depends on adaptation of the local flap vasculature. Using a novel and defined model of fasciocutaneous flap surgery, we demonstrate that the Notch ligand Delta-like 1 (Dll1), expressed in vascular endothelial cells, regulates flap arteriogenesis, inflammation and flap survival. Utilizing the stereotyped anatomy of dorsal skin arteries, ligation of the major vascular pedicle induced strong collateral vessel development by end-to-end anastomosis in wildtype mice, which supported flap perfusion recovery over time. In mice with heterozygous deletion of Dll1, collateral vessel formation was strongly impaired, resulting in aberrant vascularization and subsequent necrosis of the tissue. Furthermore, Dll1 deficient mice showed severe inflammation in the flap dominated by monocytes and macrophages. This process is controlled by endothelial Dll1 in vivo, since the results were recapitulated in mice with endothelial-specific deletion of Dll1. Thus, our model provides a platform to study vascular adaptation to flap surgery and molecular and cellular regulators influencing flap healing and survival.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Ratones , Animales , Neovascularización Fisiológica/fisiología , Proteínas de Unión al Calcio/genética , Cicatrización de Heridas , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...