Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.593
Filtrar
1.
J Neuroinflammation ; 21(1): 145, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824526

RESUMEN

BACKGROUND: Recent experimental studies of neuroinflammation in glaucoma pointed to cFLIP as a molecular switch for cell fate decisions, mainly regulating cell type-specific caspase-8 functions in cell death and inflammation. This study aimed to determine the importance of cFLIP for regulating astroglia-driven neuroinflammation in experimental glaucoma by analyzing the outcomes of astroglia-targeted transgenic deletion of cFLIP or cFLIPL. METHODS: Glaucoma was modeled by anterior chamber microbead injections to induce ocular hypertension in mouse lines with or without conditional deletion of cFLIP or cFLIPL in astroglia. Morphological analysis of astroglia responses assessed quantitative parameters in retinal whole mounts immunolabeled for GFAP and inflammatory molecules or assayed for TUNEL. The molecular analysis included 36-plexed immunoassays of the retina and optic nerve cytokines and chemokines, NanoString-based profiling of inflammation-related gene expression, and Western blot analysis of selected proteins in freshly isolated samples of astroglia. RESULTS: Immunoassays and immunolabeling of retina and optic nerve tissues presented reduced production of various proinflammatory cytokines, including TNFα, in GFAP/cFLIP and GFAP/cFLIPL relative to controls at 12 weeks of ocular hypertension with no detectable alteration in TUNEL. Besides presenting a similar trend of the proinflammatory versus anti-inflammatory molecules displayed by immunoassays, NanoString-based molecular profiling detected downregulated NF-κB/RelA and upregulated RelB expression of astroglia in ocular hypertensive samples of GFAP/cFLIP compared to ocular hypertensive controls. Analysis of protein expression also revealed decreased phospho-RelA and increased phospho-RelB in parallel with an increase in caspase-8 cleavage products. CONCLUSIONS: A prominent response limiting neuroinflammation in ocular hypertensive eyes with cFLIP-deletion in astroglia values the role of cFLIP in the molecular regulation of glia-driven neuroinflammation during glaucomatous neurodegeneration. The molecular responses accompanying the lessening of neurodegenerative inflammation also seem to maintain astroglia survival despite increased caspase-8 cleavage with cFLIP deletion. A transcriptional autoregulatory response, dampening RelA but boosting RelB for selective expression of NF-κB target genes, might reinforce cell survival in cFLIP-deleted astroglia.


Asunto(s)
Astrocitos , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD , Glaucoma , Enfermedades Neuroinflamatorias , Animales , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Ratones , Astrocitos/metabolismo , Astrocitos/patología , Glaucoma/metabolismo , Glaucoma/patología , Glaucoma/genética , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Ratones Transgénicos , Modelos Animales de Enfermedad , Citocinas/metabolismo , Retina/metabolismo , Retina/patología , Ratones Endogámicos C57BL , Nervio Óptico/patología , Nervio Óptico/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo
2.
Invest Ophthalmol Vis Sci ; 65(5): 15, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38717426

RESUMEN

Purpose: Mutations in the genes encoding type IV collagen alpha 1 (COL4A1) and alpha 2 (COL4A2) cause a multisystem disorder that includes ocular anterior segment dysgenesis (ASD) and glaucoma. We previously showed that transforming growth factor beta (TGFß) signaling was elevated in developing anterior segments from Col4a1 mutant mice and that reducing TGFß signaling ameliorated ASD, supporting a role for the TGFß pathway in disease pathogenesis. Here, we tested whether altered TGFß signaling also contributes to glaucoma-related phenotypes in Col4a1 mutant mice. Methods: To test the role of TGFß signaling in glaucoma-relevant phenotypes, we genetically reduced TGFß signaling using mice with mutated Tgfbr2, which encodes the common receptor for all TGFß ligands in Col4a1+/G1344D mice. We performed slit-lamp biomicroscopy and optical coherence tomography for qualitative and quantitative analyses of anterior and posterior ocular segments, histological analyses of ocular tissues and optic nerves, and intraocular pressure assessments using rebound tonometry. Results: Col4a1+/G1344D mice showed defects of the ocular drainage structures, including iridocorneal adhesions, and phenotypes consistent with glaucomatous neurodegeneration, including thinning of the nerve fiber layer, retinal ganglion cell loss, optic nerve head excavation, and optic nerve degeneration. We found that reducing TGFß receptor 2 (TGFBR2) was protective for ASD, ameliorated ocular drainage structure defects, and protected against glaucomatous neurodegeneration in Col4a1+/G1344D mice. Conclusions: Our results suggest that elevated TGFß signaling contributes to glaucomatous neurodegeneration in Col4a1 mutant mice.


Asunto(s)
Colágeno Tipo IV , Glaucoma , Presión Intraocular , Receptor Tipo II de Factor de Crecimiento Transformador beta , Transducción de Señal , Tomografía de Coherencia Óptica , Factor de Crecimiento Transformador beta , Animales , Ratones , Colágeno Tipo IV/metabolismo , Colágeno Tipo IV/genética , Transducción de Señal/fisiología , Presión Intraocular/fisiología , Glaucoma/metabolismo , Glaucoma/genética , Glaucoma/patología , Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Modelos Animales de Enfermedad , Enfermedades del Nervio Óptico/metabolismo , Enfermedades del Nervio Óptico/genética , Ratones Endogámicos C57BL , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Segmento Anterior del Ojo/metabolismo , Segmento Anterior del Ojo/patología , Nervio Óptico/patología , Nervio Óptico/metabolismo , Microscopía con Lámpara de Hendidura , Fenotipo , Tonometría Ocular , Mutación
3.
Acta Neuropathol Commun ; 12(1): 82, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812004

RESUMEN

Neurons pose a particular challenge to degradative processes like autophagy due to their long and thin processes. Autophagic vesicles (AVs) are formed at the tip of the axon and transported back to the soma. This transport is essential since the final degradation of the vesicular content occurs only close to or in the soma. Here, we established an in vivo live-imaging model in the rat optic nerve using viral vector mediated LC3-labeling and two-photon-microscopy to analyze axonal transport of AVs. Under basal conditions in vivo, 50% of the AVs are moving with a majority of 85% being transported in the retrograde direction. Transport velocity is higher in the retrograde than in the anterograde direction. A crush lesion of the optic nerve results in a rapid breakdown of retrograde axonal transport while the anterograde transport stays intact over several hours. Close to the lesion site, the formation of AVs is upregulated within the first 6 h after crush, but the clearance of AVs and the levels of lysosomal markers in the adjacent axon are reduced. Expression of p150Glued, an adaptor protein of dynein, is significantly reduced after crush lesion. In vitro, fusion and colocalization of the lysosomal marker cathepsin D with AVs are reduced after axotomy. Taken together, we present here the first in vivo analysis of axonal AV transport in the mammalian CNS using live-imaging. We find that axotomy leads to severe defects of retrograde motility and a decreased clearance of AVs via the lysosomal system.


Asunto(s)
Autofagia , Transporte Axonal , Nervio Óptico , Animales , Transporte Axonal/fisiología , Nervio Óptico/patología , Nervio Óptico/metabolismo , Ratas , Autofagia/fisiología , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Masculino , Axones/patología , Axones/metabolismo , Degeneración Nerviosa/patología , Degeneración Nerviosa/metabolismo , Ratas Sprague-Dawley , Femenino
4.
Nat Commun ; 15(1): 2206, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467611

RESUMEN

Previous studies of neuronal survival have primarily focused on identifying intrinsic mechanisms controlling the process. This study explored how intercellular communication contributes to retinal ganglion cell (RGC) survival following optic nerve crush based on single-cell RNA-seq analysis. We observed transcriptomic changes in retinal cells in response to the injury, with astrocytes and Müller glia having the most interactions with RGCs. By comparing RGC subclasses characterized by distinct resilience to cell death, we found that the high-survival RGCs tend to have more ligand-receptor interactions with neighboring cells. We identified 47 interactions stronger in high-survival RGCs, likely mediating neuroprotective effects. We validated one identified target, the µ-opioid receptor (Oprm1), to be neuroprotective in three retinal injury models. Although the endogenous Oprm1 is preferentially expressed in intrinsically photosensitive RGCs, its neuroprotective effect can be transferred to other subclasses by pan-RGC overexpression of Oprm1. Lastly, manipulating the Oprm1 activity improved visual functions in mice.


Asunto(s)
Fármacos Neuroprotectores , Traumatismos del Nervio Óptico , Animales , Ratones , Comunicación Celular , Muerte Celular , Supervivencia Celular , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/fisiología
5.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474322

RESUMEN

Visual loss in acute optic neuritis is typically attributed to axonal conduction block due to inflammatory demyelination, but the mechanisms remain unclear. Recent research has highlighted tissue hypoxia as an important cause of neurological deficits and tissue damage in both multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) and, here, we examine whether the optic nerves are hypoxic in experimental optic neuritis induced in Dark Agouti rats. At both the first and second peaks of disease expression, inflamed optic nerves labelled significantly for tissue hypoxia (namely, positive for hypoxia inducible factor-1α (HIF1α) and intravenously administered pimonidazole). Acutely inflamed nerves were also labelled significantly for innate markers of oxidative and nitrative stress and damage, including superoxide, nitric oxide and 3-nitrotyrosine. The density and diameter of capillaries were also increased. We conclude that in acute optic neuritis, the optic nerves are hypoxic and come under oxidative and nitrative stress and damage. Tissue hypoxia can cause mitochondrial failure and thus explains visual loss due to axonal conduction block. Tissue hypoxia can also induce a damaging oxidative and nitrative environment. The findings indicate that treatment to prevent tissue hypoxia in acute optic neuritis may help to restore vision and protect from damaging reactive oxygen and nitrogen species.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Neuritis Óptica , Ratas , Animales , Ratones , Neuritis Óptica/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Nervio Óptico/metabolismo , Hipoxia/metabolismo , Factores Inmunológicos/metabolismo , Ratones Endogámicos C57BL
6.
Pflugers Arch ; 476(5): 847-859, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38421407

RESUMEN

Increases in the current threshold occur in optic nerve axons with the application of infra-red laser light, whose mechanism is only partly understood. In isolated rat optic nerve, laser light was applied near the site of electrical stimulation, via a flexible fibre optic. Paired applications of light produced increases in threshold that were reduced on the second application, the response recovering with increasing delays, with a time constant of 24 s. 3-min duration single applications of laser light gave rise to a rapid increase in threshold followed by a fade, whose time-constant was between 40 and 50 s. After-effects were sometimes apparent following the light application, where the resting threshold was reduced. The increase in threshold was partially blocked by 38.6 mM Li+ in combination with 5  µ M bumetanide, a manoeuvre increasing refractoriness and consistent with axonal depolarization. Assessing the effect of laser light on the nerve input resistance ruled out a previously suggested fall in myelin resistance as contributing to threshold changes. These data appear consistent with an axonal membrane potential that partly relies on temperature-dependent electroneutral Na+ influx, and where fade in the response to the laser may be caused by a gradually diminishing Na+ pump-induced hyperpolarization, in response to falling intracellular [Na+].


Asunto(s)
Axones , Rayos Láser , Nervio Óptico , Sodio , Animales , Ratas , Nervio Óptico/metabolismo , Sodio/metabolismo , Axones/metabolismo , Axones/fisiología , Axones/efectos de la radiación , Potenciales de la Membrana/fisiología , Masculino , Bumetanida/farmacología , Ratas Sprague-Dawley
7.
Acta Neuropathol Commun ; 12(1): 23, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331947

RESUMEN

Glaucoma is one of the leading causes of irreversible blindness worldwide and vision loss in the disease results from the deterioration of retinal ganglion cells (RGC) and their axons. Metabolic dysfunction of RGC plays a significant role in the onset and progression of the disease in both human patients and rodent models, highlighting the need to better define the mechanisms regulating cellular energy metabolism in glaucoma. This study sought to determine if Sarm1, a gene involved in axonal degeneration and NAD+ metabolism, contributes to glaucomatous RGC loss in a mouse model with chronic elevated intraocular pressure (IOP). Our data demonstrate that after 16 weeks of elevated IOP, Sarm1 knockout (KO) mice retain significantly more RGC than control animals. Sarm1 KO mice also performed significantly better when compared to control mice during optomotor testing, indicating that visual function is preserved in this group. Our findings also indicate that Sarm1 KO mice display mild ocular developmental abnormalities, including reduced optic nerve axon diameter and lower visual acuity than controls. Finally, we present data to indicate that SARM1 expression in the optic nerve is most prominently associated with oligodendrocytes. Taken together, these data suggest that attenuating Sarm1 activity through gene therapy, pharmacologic inhibition, or NAD+ supplementation, may be a novel therapeutic approach for patients with glaucoma.


Asunto(s)
Glaucoma , Células Ganglionares de la Retina , Humanos , Ratones , Animales , Células Ganglionares de la Retina/metabolismo , Presión Intraocular , NAD/metabolismo , Glaucoma/genética , Nervio Óptico/metabolismo , Axones/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo
8.
Genomics ; 116(1): 110776, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163571

RESUMEN

The death of retinal ganglion cells (RGCs) can cause irreversible injury in visual function. Clarifying the mechanism of RGC degeneration is critical for the development of therapeutic strategies. Circular RNAs (circRNAs) are important regulators in many biological and pathological processes. Herein, we performed circRNA microarrays to identify dysregulated circRNAs following optic nerve crush (ONC). The results showed that 221 circRNAs were differentially expressed between ONC retinas and normal retinas. Notably, the levels of circular RNA-Dcaf6 (cDcaf6) expression in aqueous humor of glaucoma patients were higher than that in cataract patients. cDcaf6 silencing could reduce oxidative stress-induced RGC apoptosis in vitro and alleviate retinal neurodegeneration in vivo as shown by increased neuronal nuclei antigen (NeuN, neuronal bodies) and beta-III-tubulin (TUBB3, neuronal filaments) staining and reduced glial fibrillary acidic protein (GFAP, activated glial cells) and vimentin (activated glial cells) staining. Collectively, this study identifies a promising target for treating retinal neurodegeneration.


Asunto(s)
Traumatismos del Nervio Óptico , ARN Circular , Animales , Humanos , Modelos Animales de Enfermedad , Nervio Óptico/metabolismo , Nervio Óptico/patología , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/metabolismo , Retina , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , ARN Circular/genética , ARN Circular/metabolismo
9.
Fluids Barriers CNS ; 21(1): 1, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178155

RESUMEN

It has been proposed that cerebrospinal fluid (CSF) can enter and leave the retina and optic nerve along perivascular spaces surrounding the central retinal vessels as part of an aquaporin-4 (AQP4) dependent ocular 'glymphatic' system. Here, we injected fluorescent dextrans and antibodies into the CSF of mice at the cisterna magna and measured their distribution in the optic nerve and retina. We found that uptake of dextrans in the perivascular spaces and parenchyma of the optic nerve is highly sensitive to the cisternal injection rate, where high injection rates, in which dextran disperses fully in the sub-arachnoid space, led to uptake along the full length of the optic nerve. Accumulation of dextrans in the optic nerve did not differ significantly in wild-type and AQP4 knockout mice. Dextrans did not enter the retina, even when intracranial pressure was greatly increased over intraocular pressure. However, elevation of intraocular pressure reduced accumulation of fluorescent dextrans in the optic nerve head, and intravitreally injected dextrans left the retina via perivascular spaces surrounding the central retinal vessels. Human IgG distributed throughout the perivascular and parenchymal areas of the optic nerve to a similar extent as dextran following cisternal injection. However, uptake of a cisternally injected AQP4-IgG antibody, derived from a seropositive neuromyelitis optica spectrum disorder subject, was limited by AQP4 binding. We conclude that large molecules injected in the CSF can accumulate along the length of the optic nerve if they are fully dispersed in the optic nerve sub-arachnoid space but that they do not enter the retina.


Asunto(s)
Dextranos , Neuromielitis Óptica , Ratones , Humanos , Animales , Dextranos/metabolismo , Nervio Óptico/metabolismo , Retina/metabolismo , Neuromielitis Óptica/metabolismo , Acuaporina 4/metabolismo , Autoanticuerpos/metabolismo
10.
Mol Aspects Med ; 94: 101217, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37839231

RESUMEN

The optic nerve consists of the glia, vessels, and axons including myelin and axoplasm. Since axonal degeneration precedes retinal ganglion cell death in glaucoma, the preceding axonal degeneration model may be helpful for understanding the molecular mechanisms of optic nerve degeneration. Optic nerve samples from these models can provide information on several aspects of autophagy. Autophagosomes, the most typical organelles expressing autophagy, are found much more frequently inside axons than around the glia. Thus, immunoblot findings from the optic nerve can reflect the autophagy state in axons. Autophagic flux impairment may occur in degenerating optic nerve axons, as in other central nervous system neurodegenerative diseases. Several molecular candidates are involved in autophagy enhancement, leading to axonal protection. This concept is an attractive approach to the prevention of further retinal ganglion cell death. In this review, we describe the factors affecting autophagy, including nicotinamide riboside, p38, ULK, AMPK, ROCK, and SIRT1, in the optic nerve and propose potential methods of axonal protection via enhancement of autophagy.


Asunto(s)
Glaucoma , Nervio Óptico , Animales , Humanos , Modelos Animales de Enfermedad , Nervio Óptico/metabolismo , Glaucoma/genética , Glaucoma/metabolismo , Axones/metabolismo , Autofagia/genética
11.
Cell Death Dis ; 14(10): 661, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816735

RESUMEN

We previously found that global deletion of the mitochondrial enzyme arginase 2 (A2) limits optic nerve crush (ONC)-induced neuronal death. Herein, we examined the cell-specific role of A2 in this pathology by studies using wild type (WT), neuronal-specific calbindin 2 A2 KO (Calb2cre/+ A2 f/f), myeloid-specific A2 KO (LysMcre/+ A2f/f), endothelial-specific A2 KO (Cdh5cre/+ A2f/f), and floxed controls. We also examined the impact of A2 overexpression on mitochondrial function in retinal neuronal R28 cells. Immunolabeling showed increased A2 expression in ganglion cell layer (GCL) neurons of WT mice within 6 h-post injury and inner retinal neurons after 7 days. Calb2 A2 KO mice showed improved neuronal survival, decreased TUNEL-positive neurons, and improved retinal function compared to floxed littermates. Neuronal loss was unchanged by A2 deletion in myeloid or endothelial cells. We also found increased expression of neurotrophins (BDNF, FGF2) and improved survival signaling (pAKT, pERK1/2) in Calb2 A2 KO retinas within 24-hour post-ONC along with suppression of inflammatory mediators (IL1ß, TNFα, IL6, and iNOS) and apoptotic markers (cleavage of caspase3 and PARP). ONC increased GFAP and Iba1 immunostaining in floxed controls, and Calb2 A2 KO dampened this effect. Overexpression of A2 in R28 cells increased Drp1 expression, and decreased mitochondrial respiration, whereas ABH-induced inhibition of A2 decreased Drp1 expression and improved mitochondrial respiration. Finally, A2 overexpression or excitotoxic treatment with glutamate significantly impaired mitochondrial function in R28 cells as shown by significant reductions in basal respiration, maximal respiration, and ATP production. Further, glutamate treatment of A2 overexpressing cells did not induce further deterioration in their mitochondrial function, indicating that A2 overexpression or glutamate insult induce comparable alterations in mitochondrial function. Our data indicate that neuronal A2 expression is neurotoxic after injury, and A2 deletion in Calb2 expressing neurons limits ONC-induced retinal neurodegeneration and improves visual function.


Asunto(s)
Arginasa , Traumatismos del Nervio Óptico , Animales , Ratones , Apoptosis , Arginasa/genética , Arginasa/metabolismo , Calbindina 2 , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Glutamatos , Compresión Nerviosa , Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/metabolismo
12.
Cells ; 12(20)2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37887340

RESUMEN

Mitochondrial dysfunction in astrocytes has been implicated in the development of various neurological disorders. Mitophagy, mitochondrial autophagy, is required for proper mitochondrial function by preventing the accumulation of damaged mitochondria. The importance of mitophagy, specifically in the astrocytes of the optic nerve (ON), has been little studied. We introduce an animal model in which two separate mutations act synergistically to produce severe ON degeneration. The first mutation is in Cryba1, which encodes ßA3/A1-crystallin, a lens protein also expressed in astrocytes, where it regulates lysosomal pH. The second mutation is in Bckdk, which encodes branched-chain ketoacid dehydrogenase kinase, which is ubiquitously expressed in the mitochondrial matrix and involved in the catabolism of the branched-chain amino acids. BCKDK is essential for mitochondrial function and the amelioration of oxidative stress. Neither of the mutations in isolation has a significant effect on the ON, but animals homozygous for both mutations (DM) exhibit very serious ON degeneration. ON astrocytes from these double-mutant (DM) animals have lysosomal defects, including impaired mitophagy, and dysfunctional mitochondria. Urolithin A can rescue the mitophagy impairment in DM astrocytes and reduce ON degeneration. These data demonstrate that efficient mitophagy in astrocytes is required for ON health and functional integrity.


Asunto(s)
Astrocitos , Mitofagia , Animales , Astrocitos/metabolismo , Lisosomas/metabolismo , Mitocondrias/metabolismo , Nervio Óptico/metabolismo
13.
J Control Release ; 363: 641-656, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37820984

RESUMEN

Optic neuropathy is the leading cause of irreversible blindness and is characterized by progressive degeneration of retinal ganglion cells (RGCs). Several studies have demonstrated that transplantation of Schwann cells (SCs) is a promising candidate therapy for optic neuropathy and that intravitreally transplanted cells exert their effect via paracrine actions. Extracellular vesicle (EV)-based therapies are increasingly recognized as a potential strategy for cell replacement therapy. In this study, we aimed to investigate the neuroprotective and regenerative effects of SC-EVs following optic nerve injury. We found that SC-EVs were internalized by RGCs in vitro and in vivo without any transfection reagents. Intriguingly, SC-EVs significantly enhanced the survival and axonal growth of primary RGCs in a coculture system. In a rat optic nerve crush model, SC-EVs mitigated RGC degeneration, prevented RGC loss, and preserved the thickness of the ganglion cell complex, as demonstrated by the statistically significant improvement in RGC counts and thickness measurements. Mechanistically, SC-EVs activated the cAMP-response element binding protein (CREB) signaling pathway and regulated reactive gliosis in ONC rats, which is crucial for RGC protection and axonal regeneration. These findings provide novel insights into the neuroprotective and regenerative properties of SC-EVs, suggesting their potential as a cell-free therapeutic strategy and natural biomaterials for neurodegenerative diseases of the central nervous system.


Asunto(s)
Axones , Traumatismos del Nervio Óptico , Ratas , Animales , Axones/metabolismo , Células Ganglionares de la Retina/metabolismo , Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/metabolismo , Células de Schwann/metabolismo , Modelos Animales de Enfermedad
14.
Macromol Rapid Commun ; 44(23): e2300389, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37661804

RESUMEN

Traumatic optic neuropathy (TON) is a severe condition characterized by retinal ganglion cell (RGC) death, often leading to irreversible vision loss, and the death of RGCs is closely associated with oxidative stress. Unfortunately, effective treatment options for TON are lacking. To address this, catalase (CAT) is encapsulated in a tannic acid (TA)/poly(ethylenimine)-crosslinked hollow nanoreactor (CAT@PTP), which exhibited enhanced anchoring in the retina due to TA-collagen adhesion. The antioxidative activity of both CAT and TA synergistically eliminated reactive oxygen species (ROS) to save RGCs in the retina, thereby treating TON. In vitro experiments demonstrated that the nanoreactors preserve the enzymatic activity of CAT and exhibit high adhesion to type I collagen. The combination of CAT and TA-based nanoreactors enhanced ROS elimination while maintaining high biocompatibility. In an optic nerve crush rat model, CAT@PTP is effectively anchored to the retina via TA-collagen adhesion after a single vitreous injection, and RGCs are significantly preserved without adverse events. CAT@PTP exhibited a protective effect on retinal function. Given the abundance of collagen that exists in ocular tissues, these findings may contribute to the further application of this multifunctional nanoreactor in ocular diseases to improve therapeutic efficacy and reduce adverse effects.


Asunto(s)
Traumatismos del Nervio Óptico , Células Ganglionares de la Retina , Ratas , Animales , Células Ganglionares de la Retina/metabolismo , Colágeno Tipo I/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Nanotecnología , Supervivencia Celular , Modelos Animales de Enfermedad
15.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762022

RESUMEN

A major risk factor for glaucomatous optic neuropathy is the level of intraocular pressure (IOP), which can lead to retinal ganglion cell axon injury and cell death. The optic nerve has a rostral unmyelinated portion at the optic nerve head followed by a caudal myelinated region. The unmyelinated region is differentially susceptible to IOP-induced damage in rodent models and human glaucoma. While several studies have analyzed gene expression changes in the mouse optic nerve following optic nerve injury, few were designed to consider the regional gene expression differences that exist between these distinct areas. We performed bulk RNA-sequencing on the retina and separately micro-dissected unmyelinated and myelinated optic nerve regions from naïve C57BL/6 mice, mice after optic nerve crush, and mice with microbead-induced experimental glaucoma (total = 36). Gene expression patterns in the naïve unmyelinated optic nerve showed significant enrichment of the Wnt, Hippo, PI3K-Akt, and transforming growth factor ß pathways, as well as extracellular matrix-receptor and cell membrane signaling pathways, compared to the myelinated optic nerve and retina. Gene expression changes induced by both injuries were more extensive in the myelinated optic nerve than the unmyelinated region, and greater after nerve crush than glaucoma. Changes present three and fourteen days after injury largely subsided by six weeks. Gene markers of reactive astrocytes did not consistently differ between injury states. Overall, the transcriptomic phenotype of the mouse unmyelinated optic nerve was significantly different from immediately adjacent tissues, likely dominated by expression in astrocytes, whose junctional complexes are inherently important in responding to IOP elevation.


Asunto(s)
Glaucoma , Disco Óptico , Humanos , Ratones , Animales , Disco Óptico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Endogámicos C57BL , Glaucoma/genética , Glaucoma/metabolismo , Retina/metabolismo , Nervio Óptico/metabolismo , Presión Intraocular , Compresión Nerviosa , Expresión Génica , Modelos Animales de Enfermedad
16.
Cell Rep ; 42(10): 113165, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37751356

RESUMEN

Retinal ganglion cell (RGC) degeneration drives vision loss in blinding conditions. RGC death is often triggered by axon degeneration in the optic nerve. Here, we study the contributions of dynamic and homeostatic Ca2+ levels to RGC death from axon injury. We find that axonal Ca2+ elevations from optic nerve injury do not propagate over distance or reach RGC somas, and acute and chronic Ca2+ dynamics do not affect RGC survival. Instead, we discover that baseline Ca2+ levels vary widely between RGCs and predict their survival after axon injury, and that lowering these levels reduces RGC survival. Further, we find that well-surviving RGC types have higher baseline Ca2+ levels than poorly surviving types. Finally, we observe considerable variation in the baseline Ca2+ levels of different RGCs of the same type, which are predictive of within-type differences in survival.


Asunto(s)
Traumatismos del Nervio Óptico , Humanos , Animales , Traumatismos del Nervio Óptico/metabolismo , Células Ganglionares de la Retina/metabolismo , Calcio/metabolismo , Axones/metabolismo , Nervio Óptico/metabolismo , Supervivencia Celular , Modelos Animales de Enfermedad
17.
Cell Rep ; 42(9): 113038, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37624696

RESUMEN

Chronic neurodegeneration and acute injuries lead to neuron losses via diverse processes. We compared retinal ganglion cell (RGC) responses between chronic glaucomatous conditions and the acute injury model. Among major RGC subclasses, αRGCs and intrinsically photosensitive RGCs (ipRGCs) preferentially survive glaucomatous conditions, similar to findings in the retina subject to axotomy. Focusing on an αRGC intrinsic factor, Osteopontin (secreted phosphoprotein 1 [Spp1]), we found an ectopic neuronal expression of Osteopontin (Spp1) in other RGCs subject to glaucomatous conditions. This contrasted with the Spp1 downregulation subject to axotomy. αRGC-specific Spp1 elimination led to significant αRGC loss, diminishing their resiliency. Spp1 overexpression led to robust neuroprotection of susceptible RGC subclasses under glaucomatous conditions. In contrast, Spp1 overexpression did not significantly protect RGCs subject to axotomy. Additionally, SPP1 marked adult human RGC subsets with large somata and SPP1 expression in the aqueous humor correlated with glaucoma severity. Our study reveals Spp1's role in mediating neuronal resiliency in glaucoma.


Asunto(s)
Glaucoma , Enfermedades del Nervio Óptico , Humanos , Células Ganglionares de la Retina/metabolismo , Osteopontina , Nervio Óptico/metabolismo , Enfermedades del Nervio Óptico/metabolismo
18.
Exp Eye Res ; 235: 109627, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37619829

RESUMEN

The main purpose of this study is to analyze the effects of unilateral optic nerve crush in the gene expression of pro- and anti-inflammatory mediators, and gliosis markers in injured and contralateral retinas. Retinas from intact, unilaterally optic nerve injured or sham-operated C57BL/6J mice were analyzed 1, 3, 9 and 30 days after the surgery (n = 5/group and time point) and the relative expression of TGF-ß1, IL-1ß, TNF-α, Iba1, AQP4, GFAP, MHCII, and TSPO was analyzed in injured and contralateral using qPCR. The results indicated that compared with intact retinas, sham-operated animals showed an early (day 1) upregulation of IL-1ß, TNF-α and TSPO and a late (day 30) upregulation of TNF-α. In sham-contralateral retinas, TNF-α and TSPO mRNA expression were upregulated and day 30 while GFAP, Iba1, AQP4 and MHCII downregulated at day 9. Compared with sham-operated animals, in retinas affected by optic nerve crush GFAP and TSPO upregulated at day 1 and TNF-α, Iba1, AQP4 and MHCII at day 3. In the crushed-contralateral retinas, TGF-ß1, TNF-α, Iba1 and MHCII were upregulated at day 1. TSPO was upregulated up to day 30 whereas TGF-ß1 and Iba1 downregulated after day 9. In conclusion, both sham surgery and optic nerve crush changed the profile of inflammatory and gliosis markers in the injured and contralateral retinas, changes that were more pronounced for optic nerve crush when compared to sham.


Asunto(s)
Traumatismos del Nervio Óptico , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/farmacología , Células Ganglionares de la Retina/metabolismo , Gliosis/metabolismo , Traumatismos del Nervio Óptico/genética , Traumatismos del Nervio Óptico/metabolismo , Enfermedades Neuroinflamatorias , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Endogámicos C57BL , Retina/metabolismo , Nervio Óptico/metabolismo , Compresión Nerviosa/métodos
19.
Mol Med Rep ; 28(3)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37539744

RESUMEN

The degeneration of retinal ganglion cells (RGCs) often causes irreversible vision impairment. Prevention of RGC degeneration can prevent or delay the deterioration of visual function. The present study aimed to investigate retinal metabolic profiles following optic nerve transection (ONT) injury and identify the potential metabolic targets for the prevention of RGC degeneration. Retinal samples were dissected from ONT group and non­ONT group. The untargeted metabolomics were carried out using liquid chromatography­tandem mass spectrometry. The involved pathways and biomarkers were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and MetaboAnalyst 5.0. In the ONT group, 689 disparate metabolites were detected, including lipids and lipid­like molecules. A total of 122 metabolites were successfully annotated and enriched in 50 KEGG pathways. Among them, 'sphingolipid metabolism' and 'primary bile acid biosynthesis' were identified involved in RGC degeneration. A total of five metabolites were selected as the candidate biomarkers for detecting RGC degeneration with an AUC value of 1. The present study revealed that lipid­related metabolism was involved in the pathogenesis of retinal neurodegeneration. Taurine, taurochenodesoxycholic acid, taurocholic acid (TCA), sphingosine, and galabiosylceramide are shown as the promising biomarkers for the diagnosis of RGC degeneration.


Asunto(s)
Traumatismos del Nervio Óptico , Humanos , Traumatismos del Nervio Óptico/metabolismo , Nervio Óptico/metabolismo , Retina/metabolismo , Metabolómica , Biomarcadores/metabolismo , Lípidos
20.
J Ocul Pharmacol Ther ; 39(8): 519-529, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37192491

RESUMEN

Purpose: Optic nerve (ON) injury causes irreversible degeneration, leading to vision loss that cannot be restored with available therapeutics. Current therapies slow further degeneration but do not promote regeneration. New regenerative factors have been discovered that are successful in vivo. However, the mechanisms of efficient long-distance regeneration are still unknown. Membrane expansion by lipid insertion is an essential regenerative process, so lipid profiles for regenerating axons can provide insight into growth mechanisms. This article's analysis aims to add to the increasingly available ON regeneration lipid profiles and relate it to membrane order/properties. Methods: In this study, we present an analysis of glycerophospholipids, one of the largest axonal lipid groups, from three mammalian ON regeneration lipid profiles: Wnt3a, Zymosan + CPT-cAMP, and Phosphatase/Tensin homolog knockout (PTENKO) at 7 and 14 days post crush (dpc). Significant lipid classes, species, and ontological properties were crossreferenced between treatments and analyzed using Metaboanalyst 5.0 and Lipid Ontology (LION). Membrane order changes associated with significant lipid classes were evaluated by C-Laurdan dye and exogenous lipids provided to a neuroblastoma cell line. Results and Conclusions: At 7 dpc, ONs show increased lysoglycerophospholipids and decreased phosphatidylethanolamines (PEs)/negative intrinsic curvature lipids. At 14 dpc, regenerative treatments show divergence: Wnt3a displays higher lysoglycerophospholipid content, while Zymosan and PTENKO decrease lysoglycerophospholipids and increase phosphatidylcholine (PC)-related species. Membrane order imaging indicates lysoglycerophospholipids decreases membrane order while PE and PC had no significant membrane order effects. Understanding these changes will allow therapeutic development targeting lipid metabolic pathways that can be used for vision loss treatments.


Asunto(s)
Traumatismos del Nervio Óptico , Nervio Óptico , Animales , Nervio Óptico/metabolismo , Regeneración Nerviosa/fisiología , Glicerofosfolípidos/metabolismo , Zimosan/metabolismo , Lipidómica , Traumatismos del Nervio Óptico/metabolismo , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...