Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 540
Filtrar
1.
Sci Rep ; 14(1): 10226, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702379

RESUMEN

Tracheal pooling for Mycoplasma hyopneumoniae (M. hyopneumoniae) DNA detection allows for decreased diagnostic cost, one of the main constraints in surveillance programs. The objectives of this study were to estimate the sensitivity of pooled-sample testing for the detection of M. hyopneumoniae in tracheal samples and to develop probability of M. hyopneumoniae detection estimates for tracheal samples pooled by 3, 5, and 10. A total of 48 M. hyopneumoniae PCR-positive field samples were pooled 3-, 5-, and 10-times using field M. hyopneumoniae DNA-negative samples and tested in triplicate. The sensitivity was estimated at 0.96 (95% credible interval [Cred. Int.]: 0.93, 0.98) for pools of 3, 0.95 (95% Cred. Int: 0.92, 0.98) for pools of 5, and 0.93 (95% Cred. Int.: 0.89, 0.96) for pools of 10. All pool sizes resulted in PCR-positive if the individual tracheal sample Ct value was < 33. Additionally, there was no significant decrease in the probability of detecting at least one M. hyopneumoniae-infected pig given any pool size (3, 5, or 10) of tracheal swabs. Furthermore, this manuscript applies the probability of detection estimates to various real-life diagnostic testing scenarios. Combining increased total animals sampled with pooling can be a cost-effective tool to maximize the performance of M. hyopneumoniae surveillance programs.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Tráquea , Mycoplasma hyopneumoniae/aislamiento & purificación , Mycoplasma hyopneumoniae/genética , Animales , Tráquea/microbiología , Porcinos , Neumonía Porcina por Mycoplasma/diagnóstico , Neumonía Porcina por Mycoplasma/microbiología , Reacción en Cadena de la Polimerasa/métodos , ADN Bacteriano/análisis , Sensibilidad y Especificidad , Manejo de Especímenes/métodos , Probabilidad
2.
Vet Microbiol ; 292: 110060, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38520754

RESUMEN

This study compared the different sequential order of infection of porcine circovirus type 2d (PCV2d) and Mycoplasma hyopneumoniae. Thirty-six pigs were allocated randomly across six different groups. Pigs underwent various inoculation sequences: M. hyopneumoniae administered 14 days before PCV2d, simultaneous PCV2d-M. hyopneumoniae, PCV2d given 14 days before M. hyopneumoniae, PCV2d only, M. hyopneumoniae only, or a mock inoculum. Overall, the pigs inoculated with M. hyopneumoniae 14 days prior to PCV2d (Mhyo-PCV2 group) and those inoculated simultaneously with PCV2d and M. hyopneumoniae (PCV2+Mhyo group) displayed notably higher clinical disease severity and experienced a significant decrease of their average daily weight gain than pigs inoculated with PCV2d 14 days prior to M. hyopneumoniae (PCV2-Mhyo group). M. hyopneumoniae infection potentiated PCV2 blood and lymph node viral loads, as well as PCV2-associated lesions, while the infection of PCV2d did not impact the intensity of M. hyopneumoniae infection. Tumor necrosis factor-α (TNF-α) sera levels were significantly increased in the Mhyo-PCV2 and PCV2+Mhyo groups as compared to the PCV2-Mhyo, PCV2, and Mhyo groups. The most important information was that the potentiation effect of M. hyopneumoniae on PCV2d was found only in pigs inoculated with either M. hyopneumoniae followed by PCV2d (Mhyo-PCV2 group) or a simultaneous inoculation of PCV2d and M. hyopneumoniae (PCV2+Mhyo group). The sequential infection order of PCV2d and M. hyopneumoniae resulted in divergent clinical outcomes.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Porcinos , Animales , Neumonía Porcina por Mycoplasma/patología , Pulmón/patología , Infecciones por Circoviridae/veterinaria , Infecciones por Circoviridae/patología
3.
Vet Microbiol ; 292: 110058, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537399

RESUMEN

Mycoplasma hyopneumoniae detection in clinical specimens is accomplished by PCR targeting bacterial DNA. However, the high stability of DNA and the lack of relationship between bacterial viability and DNA detection by PCR can lead to diagnostic interpretation issues. Bacterial messenger RNA is rapidly degraded after cell death, and consequently, assays targeting mRNA detection can be used for the exclusive detection of viable bacterial cells. Therefore, this study aimed at developing a PCR-based assay for the detection of M. hyopneumoniae mRNA and at validating its applicability to differentiate viable from inert bacteria. Development of the RNA-based PCR encompassed studies to determine its analytical sensitivity, specificity, and repeatability, as well as its diagnostic accuracy. Comparisons between DNA and mRNA detection for the same target gene were performed to evaluate the ability of the RNA-based PCR to detect exclusively viable M. hyopneumoniae after bacterial inactivation using various methods. The RNA-based PCR was also compared to the DNA-based PCR as a tool to monitor the growth of M. hyopneumoniae in vitro. Under the conditions of this study, the developed RNA-based PCR assay detected only viable or very recently inactivated M. hyopneumoniae, while the DNA-based PCR consistently detected cells irrespective of their viability status. Changes in growth activity over time were only observable via RNA-based PCR. This viability PCR assay could be directly applied to evaluate the clearance of M. hyopneumoniae or to determine the viability of the bacterium at late stages of eradication programs.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Porcinos , Animales , Mycoplasma hyopneumoniae/genética , Neumonía Porcina por Mycoplasma/diagnóstico , Neumonía Porcina por Mycoplasma/microbiología , Sensibilidad y Especificidad , ADN Bacteriano/genética , ADN Bacteriano/análisis , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/veterinaria , ARN , ARN Mensajero , Enfermedades de los Porcinos/microbiología
4.
Vet Res ; 55(1): 19, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360700

RESUMEN

A positive Mycoplasma hyopneumoniae PCR result in a clinical specimen may eventually represent the mere detection of non-viable bacteria, complicating the diagnostic interpretation. Thus, the objective of this study was to evaluate the PCR detection of non-viable M. hyopneumoniae and its residual cell-free DNA in live pigs. Pigs were inoculated with either active or inactivated M. hyopneumoniae and were sampled for up to 14 days. Mycoplasma hyopneumoniae was not detected by PCR at any timepoint in pigs inoculated with the inactivated bacterium, suggesting that in healthy pigs, the non-viable M. hyopneumoniae DNA was rapidly sensed and cleared.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Animales , Porcinos , Neumonía Porcina por Mycoplasma/diagnóstico , Neumonía Porcina por Mycoplasma/microbiología , Sistema Respiratorio , Enfermedades de los Porcinos/microbiología
5.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4773-4783, 2023 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-38147980

RESUMEN

Mycoplasma hyopneumoniae is the pathogen causing swine mycoplasmal pneumonia. The lack of well-established animal models of M. hyopneumoniae infection has delayed the progress of M. hyopneumoniae-related anti-infection immunity studies. This paper reviews the inflammatory response, the recognition of M. hyopneumoniae by the innate immune system, and the role of innate immune cells, complement system, antimicrobial peptides, autophagy, and apoptosis in M. hyopneumoniae infection. The aim was to elucidate the important roles played by the components of the innate immune system in the control of M. hyopneumoniae infection, and prospect key research directions of innate immune response of M. hyopneumoniae infection in the future.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Animales , Porcinos , Inmunidad Innata
6.
Prev Vet Med ; 221: 106057, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37931354

RESUMEN

Breeding herds in the US are trending toward eradication of Mycoplasma hyopneumoniae (M. hyopneumoniae) due to the positive impact on welfare and downstream production. In an eradication program, "Day 0″ is the time point when the last replacement gilts to enter the herd were exposed to M. hyopneumoniae and marks the beginning of a herd closure. However, no specific diagnostic protocols are available for confirmation of successful exposure to define Day 0. Therefore, the objective of this study was to develop diagnostic guidelines, including sample collection approaches, for two common gilt exposure methods to confirm an entire population has been infected with M. hyopneumoniae following purposeful exposure. Forty gilts, age 21-56 days, were ear-tagged for longitudinal sample collection at five commercial gilt developer units (GDUs) and were exposed to M. hyopneumoniae by natural contact or aerosolization. Study gilts originated from sources known to be negative to major swine pathogens, including M. hyopneumoniae, and were sampled prior to exposure to confirm negative status, then every two weeks. Blood samples were collected for antibody detection, while laryngeal and deep tracheal secretions and pen based oral fluids were collected for PCR, and sampling continued until at least 85% of samples were positive by PCR. Detection of M. hyopneumoniae varied greatly based on sample type. Oral fluids showed the lowest detection in groups of gilts detected positive by other sample types. Detection by PCR in deep tracheal secretions was higher than in laryngeal secretions. Seroconversion to and PCR detection of M. hyopneumoniae on oral fluids were delayed compared to PCR detection at the individual level. By two weeks post-exposure, at least 85% of study gilts in three GDUs exposed by aerosolization were PCR positive in deep tracheal secretions. Natural contact exposure resulted in 22.5% of study gilts becoming PCR positive by two weeks post-initial exposure, 61.5% at four weeks, and 100% at six weeks on deep tracheal secretions. Deep tracheal secretions required the lowest number of gilts to sample for the earliest detection compared to all other samples evaluated. As observed in one of the GDUs using aerosolization, demonstration of failure to expose gilts to M. hyopneumoniae allowed for early intervention in the exposure protocol and delay of Day 0, for accurate timing of the eradication protocol. Sampling guidelines proposed in this study can be used for verification of M. hyopneumoniae infection of gilts following exposure to determine Day 0 of herd closure.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Porcinos , Animales , Femenino , Neumonía Porcina por Mycoplasma/diagnóstico , Neumonía Porcina por Mycoplasma/prevención & control , Neumonía Porcina por Mycoplasma/epidemiología , Mycoplasma hyopneumoniae/genética , Sus scrofa , Reacción en Cadena de la Polimerasa/veterinaria , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/prevención & control
7.
Vet Microbiol ; 286: 109886, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37862723

RESUMEN

This study was designed to characterize the dynamics of infection of Mycoplasma hyopneumoniae in naïve replacement gilts after introduction to positive systems. Ninety-eight naïve gilts were monitored in three positive commercial farms (A, B, and C). The näive gilts were housed for 21 days in pens adjacently located to older gilt cohorts (named seeders), which have been naturally exposed to the positive farms. The infection dynamics was evaluated by PCR and ELISA, from laryngeal swabs and serum samples, respectively. Samples were collected at 150 (arrival), 165, 180, 210, 240, 270, 300 days of age (doa), and pre-farrowing. Infection occurred rapidly on farms A and B, taking 25.2 and 23.9 days for 95% of gilts to be PCR positive, respectively. There was no influence on the number of seeders at the time of exposure, but their absence (farm C) could explain the extended period it took for gilts to get infected (69.4 days). On average, it took 162.2 days after the first PCR detection for 85% of gilts to stop shedding the bacterium. The serology results were consistent with the herd infection curve. At pre-farrowing, 100% of gilts seroconverted and 36.7% remained PCR positive. A total of 1.33% of piglets were positive at weaning. Fifteen variants were detected among the three farms by MLVA. The acclimation protocol was efficient and easy to perform, and the presence of seeders was likely critical for early acclimation for M. hyopneumoniae.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Porcinos , Animales , Femenino , Neumonía Porcina por Mycoplasma/epidemiología , Neumonía Porcina por Mycoplasma/microbiología , Mycoplasma hyopneumoniae/genética , Granjas , Sus scrofa , Reacción en Cadena de la Polimerasa/veterinaria
8.
Vet Microbiol ; 282: 109758, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37167891

RESUMEN

Swine disease elimination programs for Mycoplasma hyopneumoniae are commonly applied in the North American swine industry and may include the aerosolization of medium containing lung tissue to achieve population exposure prior to start. Field data has indicated M. hyopneumoniae PCR detection in pigs beyond 240 days post-herd closure (dphc; planned end of an elimination program) and is thought to contribute to disease elimination programs' failure. Here, the duration of M. hyopneumoniae detection in sows and replacement gilts following aerosolized lung homogenate exposure, as part of a dual disease elimination program, was determined. A subset of sows and gilts from a commercial sow herd and off-site gilt development unit were longitudinally sampled to collect deep tracheal catheter secretions at various times post-exposure. Samples were tested for M. hyopneumoniae using a species-specific real-time PCR. A proportion of 58, 51, 52, 19, and 2% females were detected positive at 30, 60, 120, 180 and 240 dphc, respectively. Noteworthy, a greater proportion of gilts exposed at the off-site GDU were detected PCR positive for M. hyopneumoniae at each sampling event, compared to sows. In this study, assaying for genetic material in live female pigs showed extended detection of M. hyopneumoniae until at least 240 dphc. This data suggests persistence of M. hyopneumoniae longer than previously reported and highlights the importance of performing diagnostic testing to confirm negativity to the bacterium, prior to opening sow herds, especially late in the herd closure timeline.


Asunto(s)
Aerosoles , Pulmón , Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Mycoplasma hyopneumoniae/aislamiento & purificación , Sus scrofa , Femenino , Animales , Neumonía Porcina por Mycoplasma/microbiología , Neumonía Porcina por Mycoplasma/prevención & control , Granjas , Aerosoles/uso terapéutico , Pulmón/microbiología
9.
Microbiol Spectr ; 11(3): e0021823, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37199643

RESUMEN

Mesomycoplasma hyopneumoniae is the etiological agent of mycoplasmal pneumonia of swine (MPS), which causes substantial economic losses to the world's swine industry. Moonlighting proteins are increasingly being shown to play a role in the pathogenic process of M. hyopneumoniae. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis, displayed a higher abundance in a highly virulent strain of M. hyopneumoniae than in an attenuated strain, suggesting that it may have a role in virulence. The mechanism by which GAPDH exerts its function was explored. Flow cytometry and colony blot analysis showed that GAPDH was partly displayed on the surface of M. hyopneumoniae. Recombinant GAPDH (rGAPDH) was able to bind PK15 cells, while the adherence of a mycoplasma strain to PK15 was significantly blocked by anti-rGAPDH antibody pretreatment. In addition, rGAPDH could interact with plasminogen. The rGAPDH-bound plasminogen was demonstrated to be activated to plasmin, as proven by using a chromogenic substrate, and to further degrade the extracellular matrix (ECM). The critical site for GAPDH binding to plasminogen was K336, as demonstrated by amino acid mutation. The affinity of plasminogen for the rGAPDH C-terminal mutant (K336A) was significantly decreased according to surface plasmon resonance analysis. Collectively, our data suggested that GAPDH might be an important virulence factor that facilitates the dissemination of M. hyopneumoniae by hijacking host plasminogen to degrade the tissue ECM barrier. IMPORTANCE Mesomycoplasma hyopneumoniae is a specific pathogen of pigs that is the etiological agent of mycoplasmal pneumonia of swine (MPS), which is responsible for substantial economic losses to the swine industry worldwide. The pathogenicity mechanism and possible particular virulence determinants of M. hyopneumoniae are not yet completely elucidated. Our data suggest that GAPDH might be an important virulence factor in M. hyopneumoniae that facilitates the dissemination of M. hyopneumoniae by hijacking host plasminogen to degrade the extracellular matrix (ECM) barrier. These findings will provide theoretical support and new ideas for the research and development of live-attenuated or subunit vaccines against M. hyopneumoniae.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Porcinos , Animales , Virulencia , Plasminógeno/metabolismo , Neumonía Porcina por Mycoplasma/prevención & control , Mycoplasma hyopneumoniae/genética , Mycoplasma hyopneumoniae/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Matriz Extracelular
10.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047564

RESUMEN

Mycoplasma hyopneumoniae is a difficult-to-control bacterium since commercial vaccines do not prevent colonization and excretion. The present study aimed to evaluate the performance of an orally administered vaccine composed of antigens extracted from Mycoplasma hyopneumoniae and incorporated into mesoporous silica (SBA-15), which has an adjuvant-carrier function, aiming to potentiate the action of the commercial intramuscular vaccine. A total of 60 piglets were divided into four groups (n = 15) submitted to different vaccination protocols as follows, Group 1: oral SBA15 + commercial vaccine at 24 days after weaning, G2: oral vaccine on the third day of life + vaccine commercial vaccine at 24 days, G3: commercial vaccine at 24 days, and G4: commercial vaccine + oral vaccine at 24 days. On the first day, the piglets were weighed and, from the third day onwards, submitted to blood collections for the detection and quantification of anti-Mycoplasma hyopneumoniae IgG. Nasal swabs were collected to monitor IgA by ELISA, and oropharyngeal swabs were used to assess the bacterial load by qPCR. Biological samples were collected periodically from the third day of life until the 73rd day. At 41 days of life, 15 individuals of the same age, experimentally challenged with an inoculum containing M. hyopneumoniae, were co-housed with the animals from groups (1 to 4) in a single pen to increase the infection pressure during the nursery period. At 73 days, all piglets were euthanized, and lungs were evaluated by collecting samples for estimation of bacterial load by qPCR. Quantitative data obtained from physical parameters and laboratory investigation were analyzed by performing parametric or non-parametric statistical tests. Results indicate that animals from G2 showed smaller affected lung areas compared to G3. Animals from G2 and G4 had a low prevalence of animals shedding M. hyopneumoniae at 61 days of age. Additionally, no correlation was observed between lung lesions and M. hyopneumoniae load in lung and BALF samples in animals that received the oral vaccine, while a strong correlation was observed in other groups. In the present study, evidence points to the effectiveness of the oral vaccine developed for controlling M. hyopneumoniae in pig production under field conditions.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Porcinos , Animales , Neumonía Porcina por Mycoplasma/prevención & control , Neumonía Porcina por Mycoplasma/microbiología , Adyuvantes de Vacunas , Vacunas Bacterianas , Dióxido de Silicio
11.
Res Vet Sci ; 158: 141-150, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004428

RESUMEN

Mycoplasma hyopneumoniae, the main etiological agent of Porcine Enzootic Pneumonia, is widely spread in swine production worldwide. Its prevention is of great interest for the productive system, since its colonization in the lung tissue leads to intense production losses. This study aimed to compare the M. hyopneumoniae shedding and acute-phase response in 30 pigs submitted to different vaccination protocols: an experimental oral vaccine using a nanostructured mesoporous silica (SBA-15) as adjuvant (n = 10); an intramuscular commercially available vaccine at 24 days of age (n = 10); and a control group (n = 10) following experimental challenge with M. hyopneumoniae. Laryngeal and nasal swabs were collected weekly and oral fluids were collected at 7, 10, 14, 17, 23, 28, 35, 42, and 49 days post-infection to monitor pathogen excretion by qPCR. Nasal swabs were also used to detect anti-M. hyopneumoniae IgA by ELISA. Blood samples were collected for monitoring acute phase proteins. The antibody response was observed in both immunized groups seven days after vaccination, while the control group became positive for this immunoglobulin at 4 weeks after challenge. Lung lesion score was similar in the immunized groups, and lower than that observed in the control. SBA-15-adjuvanted oral vaccine provided immunological response, decreased shedding of M. hyopneumoniae and led to mucosal protection confirmed by the reduced pulmonary lesions. This study provides useful data for future development of vaccines against M. hyopneumoniae.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Porcinos , Animales , Inmunidad Mucosa , Vacunas Bacterianas , Neumonía Porcina por Mycoplasma/prevención & control , Dióxido de Silicio
12.
Vet Res ; 54(1): 16, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859402

RESUMEN

Mycoplasma hyopneumoniae is the primary agent of enzootic pneumonia in pigs. To minimize the economic losses caused by this disease, M. hyopneumoniae vaccination is commonly practiced. However, the persistence of M. hyopneumoniae vaccine-induced immunity, especially the cell-mediated immunity, till the moment of slaughter has not been investigated yet. Therefore, on two commercial farms, 25 pigs (n = 50) received a commercial bacterin intramuscularly at 16 days of age. Each month, the presence of M. hyopneumoniae-specific serum antibodies was analyzed and the proliferation of and TNF-α, IFN-γ and IL-17A production by different T cell subsets in blood was assessed using recall assays. Natural infection with M. hyopneumoniae was assumed in both farms. However, the studied pigs remained M. hyopneumoniae negative for almost the entire trial. Seroconversion was not observed after vaccination and all pigs became seronegative at two months of age. The kinetics of the T cell subset frequencies was similar on both farms. Mycoplasma hyopneumoniae-specific cytokine-producing CD4+CD8+ T cells were found in blood of pigs from both farms at one month of age but decreased significantly with increasing age. On the other hand, T cell proliferation after in vitro M. hyopneumoniae stimulation was observed until the end of the fattening period. Furthermore, differences in humoral and cell-mediated immune responses after M. hyopneumoniae vaccination were not seen between pigs with and without maternally derived antibodies. This study documents the long-term M. hyopneumoniae vaccine-induced immune responses in fattening pigs under field conditions. Further research is warranted to investigate the influence of a natural infection on these responses.


Asunto(s)
Vacunas Bacterianas , Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Animales , Vacunas Bacterianas/inmunología , Linfocitos T CD8-positivos , Activación de Linfocitos , Porcinos , Neumonía Porcina por Mycoplasma/prevención & control , Linfocitos T CD4-Positivos , Citocinas , Anticuerpos Antibacterianos
13.
Anim Sci J ; 94(1): e13827, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992553

RESUMEN

Closed-pig line breeding could change the genetic structure at a genome-wide scale because of the selection in a pig breeding population. We investigated the changes in population structure among generations at a genome-wide scale and the selected loci across the genome by comparing the observed and expected allele frequency changes in mycoplasma pneumonia of swine (MPS)-selected pigs. Eight hundred and seventy-four Landrace pigs, selected for MPS resistance without reducing average daily gain over five generations, had 37,299 single nucleotide polymorphisms (SNPs) and were used for genomic analyses. Regarding population structure, individuals in the first generation were the most widely distributed and then converged into a specific group, as they were selected over five generations. For allele frequency changes, 96 and 14 SNPs had higher allele frequency changes than the 99.9% and 99.99% thresholds of the expected changes, respectively. These SNPs were evenly spread across the genome, and a few of these selected regions overlapped with previously detected quantitative trait loci for MPS and immune-related traits. Our results indicated that the considerable changes in allele frequency were identified in many regions across the genome by closed-pig line breeding based on estimated breeding value.


Asunto(s)
Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Porcinos/genética , Animales , Neumonía Porcina por Mycoplasma/genética , Frecuencia de los Genes/genética , Sitios de Carácter Cuantitativo/genética , Genómica , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Estudio de Asociación del Genoma Completo/veterinaria
14.
Vet Microbiol ; 276: 109554, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36435011

RESUMEN

The objective of this study was to characterize the Mycoplasma hyopneumoniae (M. hyopneumoniae) detection and seroconversion patterns in recently acclimated gilts to be introduced to endemically infected farms using different types of replacement management. Three gilt developing units (GDUs) belonging to sow farms were included in this investigation: two farms managed gilts in continuous flow, and one farm managed gilts all-in/all-out. Two replicates of 35 gilts each were selected per GDU and sampled approximately every 60 days for a total of four or five samplings, per replicate and per GDU. Detection of M. hyopneumoniae was evaluated by PCR, while antibodies were measured using a commercial ELISA assay. Also, M. hyopneumoniae genetic variability was evaluated using Multiple-Locus Variable number tandem repeat Analysis. Detection of M. hyopneumoniae was similar across GDUs. Although a significant proportion of gilts was detected positive for M. hyopneumoniae after acclimation, an average of 30.3 % of gilts was negative at any point during the study. Detection of M. hyopneumoniae antibodies was similar among GDUs regardless of flow type or vaccination protocol. The genetic variability analysis revealed a limited number of M. hyopneumoniae types within each GDU. Results of this study showed a similar pattern of M. hyopneumoniae detection by PCR and seroconversion by ELISA among GDUs, regardless of the type of flow management strategies applied to gilts.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Porcinos , Animales , Femenino , Neumonía Porcina por Mycoplasma/diagnóstico , Mycoplasma hyopneumoniae/genética , Sus scrofa , Aclimatación , Anticuerpos Antibacterianos
15.
Vet Med Sci ; 9(1): 203-216, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36520664

RESUMEN

BACKGROUND: Mycoplasma hyopneumoniae, the primary pathogen responsible for porcine enzootic pneumonia, reduces average daily weight gain and causes substantial economic losses to the pig industry worldwide. Vaccination is the most common strategy to control this disease but offers partial protection. Therefore, developing next-generation vaccines by screening protective antigens is crucial. OBJECTIVES: The aim of this study was to evaluate the antibody response to 33 recombinant proteins in pigs naturally infected with M. hyopneumoniae. METHODS: The genes encoding 33 (hypothetical) membrane proteins or secretory proteins were ligated into pGEX-6P-1, pGEX-6P-2, pGEX-5X-3 or pGEX-4T-3 vectors and transformed into Escherichia coli BL21(DE3) or E. coli XL-1 Blue to construct recombinant bacteria and to express the recombinant proteins. The recombinant bacteria expressing the target proteins reacted with porcine convalescent sera and negative sera to screen immunodominant proteins by ELISA. Then, recombinant bacteria expressing immunodominant proteins were used to identify the discriminating immunodominant proteins that were recognised by convalescent sera nut not hyperimmune sera. RESULTS: All recombinant bacteria could express the target recombinant proteins in soluble form. Twenty-one proteins were shown to present immunodominant antigens, and four proteins were not recognised by convalescent sera. Moreover, six proteins were considered discriminating and reacted with convalescent sera but not with hyperimmune sera. CONCLUSIONS: The identified immunodominant proteins were antigenic and expressed during bacterial infection, suggesting that these proteins, especially those capable of discriminating between sera, can be used to identify protective antigens with the view to develop more effective vaccines against M. hyopneumoniae infection.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Animales , Porcinos , Antígenos Bacterianos , Escherichia coli/genética , Proteínas Recombinantes , Neumonía Porcina por Mycoplasma/prevención & control
16.
Front Immunol ; 13: 1015525, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569943

RESUMEN

Introduction: Enzootic pneumonia still causes major economic losses to the intensive pig production. Vaccination against its primary pathogen, Mycoplasma hyopneumoniae, is carried out worldwide to control the disease and minimize clinical signs and performance losses. Nonetheless, the effects of both infection with, and vaccination against Mycoplasma hyopneumoniae on the innate and adaptive immune responses remain largely unknown. Therefore, we conducted a study in which piglets were injected once with a commercial bacterin V1 or V2, or the adjuvant of V1 (A) to investigate their effect on local, innate and adaptive immune responses. Methods: Three weeks after vaccination, piglets were challenge infected with M. hyopneumoniae and euthanized four weeks later to assess vaccine efficacy via macroscopic and microscopic evaluation of lung lesions. Blood and broncho-alveolar lavage fluid (BAL) samples were collected to measure antibody responses, cellular immunity, BAL cytokine levels and BAL M. hyopneumoniae DNA load as well as cytokine secretion by monocytes. Results: After vaccination, proliferation of antigen-specific CD3+ T cells and a higher percentage of TNF-α+ CD8+, and TNF-α+ and TNF-α+IFN-γ+ CD4+CD8+ T cells was seen in V1, while proliferation of or a significant increase in cytokine production by different T cell subsets could not be observed for animals from V2. Interestingly, LPS-stimulated blood monocytes from V1 and A secreted less IL-10 on D7. After challenge, higher levels of IgA, more IL-10 and less IL-1ß was detected in BAL from V1, which was not observed in V2. Animals from A had significantly more IL-17A in BAL. The macroscopic lung lesion score and the M. hyopneumoniae DNA load at euthanasia was lower in V1, but the microscopic lung lesion score was lower in both vaccinated groups. Discussion: In conclusion, these results indicate that the two commercial bacterins induced different local and adaptive immune responses, that the adjuvant alone can reduce anti-inflammatory innate immune responses, and that both vaccines had a different efficacy to reduce Mycoplasma-like lung lesions and M. hyopneumoniae DNA load in the lung.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Porcinos , Animales , Interleucina-10 , Factor de Necrosis Tumoral alfa , Linfocitos T CD8-positivos , Vacunas Bacterianas , Adyuvantes Inmunológicos/farmacología , Citocinas , Inmunidad Celular
17.
Microbiol Spectr ; 10(6): e0236122, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36377878

RESUMEN

Mycoplasma hyopneumoniae (M. hyopneumoniae, Mhp) is the etiological agent of swine enzootic pneumonia (EP), which has been associated with considerable economic losses due to reduced daily weight gain and feed efficiency. Adhesion to the cilia is important for Mhp to colonize the respiratory epithelium. Therefore, a successful vaccine must induce broad Mhp-specific immune responses at the mucosal surface. Recombinant attenuated Salmonella strains are believed to act as powerful live vaccine vectors that are able to elicit mucosal immune responses against various pathogens. To develop efficacious and inexpensive vaccines against Mhp, the immune responses and protection induced by recombinant attenuated Salmonella vaccines based on the P42 and P97 antigens of Mhp were evaluated. In general, the oral inoculation of recombinant rSC0016(pS-P42) or rSC0016(pS-P97) resulted in strong mucosal immunity, cell-mediated immunity, and humoral immunity, which was a mixed Th1/Th2-type response. In addition, the levels of specific IL-4 and IFN-γ in the immunized mice were increased, and the proliferation of lymphocytes was also enhanced, confirming the production of a good cellular immune response. Finally, both vaccine candidate strains were able to improve the weight loss of mice after a challenge and reduce clinical symptoms, lung pathological damage, and the inflammatory cell infiltration. These results suggest that the delivery of protective antigens with recombinant attenuated Salmonella vectors may be an effective means by which to combat Mhp infection. IMPORTANCE Mhp is the main pathogen of porcine enzootic pneumonia, a highly infectious and economically significant respiratory disease that affects pigs of all ages. As the target tissue of Mhp infections are the mucosal sites of the respiratory tract, the induction of protective immunity at the mucosal tissues is the most efficient strategy by which to block disease transmission. Because the stimulation of mucosal immune responses is efficient, Salmonella-vector oral vaccines are expected to be especially useful against mucosal-invading pathogens. In this study, we expressed the immunogenic proteins of P42 and P97 with the attenuated Salmonella Choleraesuis vector rSC0016, thereby generating a low-cost and more effective vaccine candidate against Mhp by inducing significant mucosal, humoral and cellular immunity. Furthermore, rSC0016(pS-P42) effectively prevents Mhp-induced weight loss and the pulmonary inflammation of mice. Because of the effectiveness of rSC0016(pS-P42) against Mhp infection in mice, this novel vaccine candidate strain shows great potential for its use in the pig breeding industry.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Salmonella enterica , Animales , Ratones , Porcinos , Mycoplasma hyopneumoniae/genética , Vacunas Bacterianas/genética , Inmunización/métodos , Vacunas Sintéticas/genética , Salmonella/genética , Neumonía Porcina por Mycoplasma/prevención & control , Inmunidad Mucosa
19.
Vaccine ; 40(42): 6074-6083, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36109278

RESUMEN

With the improvement of large-scale breeding in pig farms, conventional head-by-head immunization has disadvantages with low efficiency and high cost. Considering that most pathogens leading to pulmonary diseases circulate from the respiratory mucosa, immunization through the respiratory tract route has been a highly attractive vaccine delivery strategy. In this study, to develop an effective Mycoplasma hyopneumoniae (Mhp) aerosol vaccine, a customized ultrasonic atomizer was developed. The aerodynamic diameter, activity, and content of the Mhp aerosol vaccine were measured. In addition, piglets were immunized with the Mhp aerosol vaccine, and the immunity of the animal challenge protection test was evaluated. At the end of nebulization, the mass median aerodynamic diameters (MMAD) and geometric standard deviation (GSD) of the aerosol were 2.98 ± 0.02 µm and 1.51 ± 0.02, respectively. Moreover, 10 min after nebulization, the MMAD and GSD of the aerosol were 2.76 ± 0.02 µm and 1.51 ± 0.01, respectively, which were hardly changed. Compared with theoretical value, the actual titer of aerosol vaccines presented in 50% color changing unit (CCU50) after nebulization decreased 0.6. The shape, size, and uniformity of collected aerosols are relatively stable. The proportion of Mhp in aerosol produced by vaccine stock solution and 10 times diluted vaccine solution was 76.52% and 58.82%, respectively, and the average number of Mhp in a single aerosol was 3.06 and 1.51, respectively. In addition, the aerosol vaccine antigen particles could be transported to the lower respiratory tract, a local mucosal immune response was induced in piglets. The vaccine colonized the respiratory tract and significantly decline the lung lesion index after aerosol vaccination. In conclusion, an effective aerosol vaccine against Mhp infection was developed. And this is the first effective assessment for Mhp live vaccine with aerosolization against infection in piglets.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Animales , Vacunas Bacterianas , Neumonía Porcina por Mycoplasma/prevención & control , Aerosoles y Gotitas Respiratorias , Porcinos , Vacunas Atenuadas
20.
Trop Anim Health Prod ; 54(5): 249, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35941399

RESUMEN

Pneumonia caused by Mycoplasma (M.) hyopneumoniae is one of the major respiratory diseases in swine production. Commercial vaccines for M. hyopneumoniae are widely used in weaned piglets to reduce lung lesions and clinical signs in the downstream flow; however, no information regarding the effect of mass immunization of the breeding herd is available. The aim of this work was to evaluate a mass vaccination protocol for M. hyopneumoniae on the humoral response of sows and their offspring 24 h post-partum (trial registration number 40156). A total of 52 sows from two different farms (13 primiparous and 13 multiparous sows on each farm), one with mass vaccination (MVF) and one without mass vaccination against M. hyopneumoniae (control farm (CF)) were enrolled in this study. Five piglets from each litter were selected, resulting in 260 piglets. Blood was collected from sows and piglets 24 h post-partum for M. hyopneumoniae antibody detection by ELISA. The results showed that primiparous sows from MVF had higher antibody titers compared to multiparous sows of the same farm, and multiparous and primiparous sows from the CF. Similar results were evidenced in their offspring. The findings of this study suggest that mass vaccination results in a more robust serologic response on primiparous sows, which could be the main target of vaccination strategies for the breeding herd.


Asunto(s)
Mycoplasma hyopneumoniae , Neumonía Porcina por Mycoplasma , Enfermedades de los Porcinos , Animales , Animales Recién Nacidos , Femenino , Inmunidad Humoral , Vacunación Masiva/veterinaria , Neumonía Porcina por Mycoplasma/prevención & control , Porcinos , Enfermedades de los Porcinos/prevención & control , Vacunación/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...