Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
1.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38771239

RESUMEN

Brain energy budgets specify metabolic costs emerging from underlying mechanisms of cellular and synaptic activities. While current bottom-up energy budgets use prototypical values of cellular density and synaptic density, predicting metabolism from a person's individualized neuropil density would be ideal. We hypothesize that in vivo neuropil density can be derived from magnetic resonance imaging (MRI) data, consisting of longitudinal relaxation (T1) MRI for gray/white matter distinction and diffusion MRI for tissue cellularity (apparent diffusion coefficient, ADC) and axon directionality (fractional anisotropy, FA). We present a machine learning algorithm that predicts neuropil density from in vivo MRI scans, where ex vivo Merker staining and in vivo synaptic vesicle glycoprotein 2A Positron Emission Tomography (SV2A-PET) images were reference standards for cellular and synaptic density, respectively. We used Gaussian-smoothed T1/ADC/FA data from 10 healthy subjects to train an artificial neural network, subsequently used to predict cellular and synaptic density for 54 test subjects. While excellent histogram overlaps were observed both for synaptic density (0.93) and cellular density (0.85) maps across all subjects, the lower spatial correlations both for synaptic density (0.89) and cellular density (0.58) maps are suggestive of individualized predictions. This proof-of-concept artificial neural network may pave the way for individualized energy atlas prediction, enabling microscopic interpretations of functional neuroimaging data.


Asunto(s)
Encéfalo , Aprendizaje Automático , Imagen por Resonancia Magnética , Neurópilo , Humanos , Masculino , Adulto , Femenino , Imagen por Resonancia Magnética/métodos , Neurópilo/metabolismo , Encéfalo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adulto Joven , Tomografía de Emisión de Positrones/métodos , Persona de Mediana Edad , Sustancia Gris/diagnóstico por imagen , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos
2.
Development ; 151(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38738602

RESUMEN

Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.


Asunto(s)
Proteínas de Drosophila , Morfogénesis , Proteínas del Tejido Nervioso , Neurópilo , Lóbulo Óptico de Animales no Mamíferos , Receptores de Superficie Celular , Semaforinas , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Semaforinas/metabolismo , Semaforinas/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Morfogénesis/genética , Neurópilo/metabolismo , Lóbulo Óptico de Animales no Mamíferos/metabolismo , Lóbulo Óptico de Animales no Mamíferos/embriología , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/embriología , Neuronas/metabolismo , Drosophila/metabolismo , Drosophila/embriología , Mutación/genética
3.
Neural Dev ; 18(1): 9, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031099

RESUMEN

The generation of neuronal diversity remains incompletely understood. In Drosophila, the central brain is populated by neural stem cells derived from progenitors called neuroblasts (NBs). There are two types of NBs, type 1 and 2. T1NBs have a relatively simple lineage, whereas T2NBs expand and diversify the neural population with the generation of intermediate neural progenitors (INPs), contributing many neurons to the adult central complex, a brain region essential for navigation. However, it is not fully understood how neural diversity is created in T2NB and INP lineages. Imp, an RNA-binding protein, is expressed in T2NBs in a high-to-low temporal gradient, while the RNA-binding protein Syncrip forms an opposing gradient. It remains unknown if Imp expression is carried into INPs; whether it forms a gradient similar to NBs; and whether INP expression of Imp is required for generating neuronal identity or morphology. Here, we show that Imp/Syp are both present in INPs, but not always in opposing gradients. We find that newborn INPs adopt their Imp/Syp levels from their parental T2NBs; that Imp and Syp are expressed in stage-specific high-to-low gradients in INPs. In addition, there is a late INP pulse of Imp. We find that neurons born from old INPs (E-PG and PF-R neurons) have altered morphology following both Imp knock-down and Imp overexpression. We conclude that Imp functions in INPs and newborn neurons to determine proper neuronal morphology and central complex neuropil organization.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Proteínas de Drosophila/fisiología , Linaje de la Célula/fisiología , Neuronas , Drosophila , Neurópilo/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
PLoS Biol ; 21(10): e3002328, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37862379

RESUMEN

Morphology is a defining feature of neuronal identity. Like neurons, glia display diverse morphologies, both across and within glial classes, but are also known to be morphologically plastic. Here, we explored the relationship between glial morphology and transcriptional signature using the Drosophila central nervous system (CNS), where glia are categorised into 5 main classes (outer and inner surface glia, cortex glia, ensheathing glia, and astrocytes), which show within-class morphological diversity. We analysed and validated single-cell RNA sequencing data of Drosophila glia in 2 well-characterised tissues from distinct developmental stages, containing distinct circuit types: the embryonic ventral nerve cord (VNC) (motor) and the adult optic lobes (sensory). Our analysis identified a new morphologically and transcriptionally distinct surface glial population in the VNC. However, many glial morphological categories could not be distinguished transcriptionally, and indeed, embryonic and adult astrocytes were transcriptionally analogous despite differences in developmental stage and circuit type. While we did detect extensive within-class transcriptomic diversity for optic lobe glia, this could be explained entirely by glial residence in the most superficial neuropil (lamina) and an associated enrichment for immune-related gene expression. In summary, we generated a single-cell transcriptomic atlas of glia in Drosophila, and our extensive in vivo validation revealed that glia exhibit more diversity at the morphological level than was detectable at the transcriptional level. This atlas will serve as a resource for the community to probe glial diversity and function.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Neurópilo/metabolismo , Astrocitos/metabolismo , Proteínas de Drosophila/metabolismo
5.
J Comp Neurol ; 531(8): 888-920, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37002560

RESUMEN

The dorsal striatum forms a central node of the basal ganglia interconnecting the neocortex and thalamus with circuits modulating mood and movement. Striatal projection neurons (SPNs) include relatively intermixed populations expressing D1-type or D2-type dopamine receptors (dSPNs and iSPNs) that give rise to the direct (D1) and indirect (D2) output systems of the basal ganglia. Overlaid on this organization is a compartmental organization, in which a labyrinthine system of striosomes made up of sequestered SPNs is embedded within the larger striatal matrix. Striosomal SPNs also include D1-SPNs and D2-SPNs, but they can be distinguished from matrix SPNs by many neurochemical markers. In the rodent striatum the key signaling molecule, DARPP-32, is a exception to these compartmental expression patterns, thought to befit its functions through opposite actions in both D1- and D2-expressing SPNs. We demonstrate here, however, that in the dorsal human striatum, DARPP-32 is concentrated in the neuropil and SPNs of striosomes, especially in the caudate nucleus and dorsomedial putamen, relative to the matrix neuropil in these regions. The generally DARPP-32-poor matrix contains scattered DARPP-32-positive cells. DARPP-32 cell bodies in both compartments proved negative for conventional intraneuronal markers. These findings raise the potential for specialized DARPP-32 expression in the human striosomal system and in a set of DARPP-32-positive neurons in the matrix. If DARPP-32 immunohistochemical positivity predicts differential functional DARPP-32 activity, then the distributions demonstrated here could render striosomes and dispersed matrix cells susceptible to differential signaling through cAMP and other signaling systems in health and disease. DARPP-32 is highly concentrated in cells and neuropil of striosomes in post-mortem human brain tissue, particularly in the dorsal caudate nucleus. Scattered DARPP-32-positive cells are found in the human striatal matrix. Calbindin and DARPP-32 do not colocalize within every spiny projection neuron in the dorsal human caudate nucleus.


Asunto(s)
Núcleo Caudado , Cuerpo Estriado , Humanos , Cuerpo Estriado/metabolismo , Núcleo Caudado/metabolismo , Ganglios Basales , Neuronas/metabolismo , Receptores de Dopamina D2/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Neurópilo/metabolismo
6.
Neuro Endocrinol Lett ; 44(1): 5-10, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36931222

RESUMEN

INTRODUCTION: The intermittent use of recombinant human parathyroid hormone (iPTH) alters calcium metabolism and induces osteogenesis in experimental models. However, the real effects of iPTH in excitable cells and neurons that require membrane receptors to undergo membrane depolarization/repolarization (Na+K+ATPase) to generate ATP, voltage-gated calcium channel (calcium-IP3R-calponin) as well as GABAergic (GABAA) signaling remains unclear. OBJECTIVES: In this study, the expression of IP3R, Na+K+-ATPase, GABAA and calmodulin proteins were evaluated in histological sections of the cerebellum of rats following prolonged injection of iPTH. METHODS: Twenty Wistar rats were used in this study and randomly assigned as either or control group. The test group were subcutaneously injected with 20 µg/kg of iPTH, 3×/week for 8 weeks, while the control group received 1 ml/kg of 0.9% saline solution. The rats were euthanized on the 60th day after the first administration, and their cerebellar vermis was removed and submitted to histological and immunohistochemical evaluation for detection of IP3R, Na+K+-ATPase, GABAA and calmodulin proteins. The expression of proteins was evaluated in the areas corresponding to the Purkinje cells as well as in neuropil of molecular layer of cerebellum. All results were transformed into a percentage for each area analyzed to verify significance between groups. RESULTS: Rats that received iPTH demonstrated significant reduction of IP3R, calmodulin and GABAA in Purkinje cells and neuropil of molecular layer while the expression of Na+K+-ATPase was similar. CONCLUSION: It was concluded that iPTH decreased the expression of IP3R and calmodulin while it did not alter the expression of Na+K+-ATPase. These changes insinuate the ionic activity of calcium and sodium/potassium. Yet, the iPTH alters GABAergic signaling in Purkinje cells, suggesting neurotransmission activity changes in the cerebellum.


Asunto(s)
Calcio , Calmodulina , Ratas , Humanos , Animales , Ratas Wistar , Calmodulina/metabolismo , Corteza Cerebelosa/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Neurópilo/metabolismo , Hormona Paratiroidea/farmacología
7.
Artículo en Inglés | MEDLINE | ID: mdl-36932234

RESUMEN

The representation and integration of internal and external cues is crucial for any organism to execute appropriate behaviors. In insects, a highly conserved region of the brain, the central complex (CX), functions in the representation of spatial information and behavioral states, as well as the transformation of this information into desired navigational commands. How does this relatively invariant structure enable the incorporation of information from the diversity of anatomical, behavioral, and ecological niches occupied by insects? Here, we examine the input channels to the CX in the context of their development and evolution. Insect brains develop from ~ 100 neuroblasts per hemisphere that divide systematically to form "lineages" of sister neurons, that project to their target neuropils along anatomically characteristic tracts. Overlaying this developmental tract information onto the recently generated Drosophila "hemibrain" connectome and integrating this information with the anatomical and physiological recording of neurons in other species, we observe neuropil and lineage-specific innervation, connectivity, and activity profiles in CX input channels. We posit that the proliferative potential of neuroblasts and the lineage-based architecture of information channels enable the modification of neural networks across existing, novel, and deprecated modalities in a species-specific manner, thus forming the substrate for the evolution and diversification of insect navigational circuits.


Asunto(s)
Proteínas de Drosophila , Células-Madre Neurales , Animales , Neuronas/fisiología , Drosophila/metabolismo , Neurópilo/metabolismo , Células-Madre Neurales/metabolismo , Proteínas de Drosophila/metabolismo , Encéfalo/fisiología
8.
Nat Commun ; 14(1): 608, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739289

RESUMEN

Genetically encoded Ca2+ indicators (GECIs) are widely used to measure neural activity. Here, we explore the use of systemically administered PHP.eB AAVs for brain-wide expression of GECIs and compare the expression properties to intracerebrally injected AAVs in male mice. We show that systemic administration is a promising strategy for imaging neural activity. Next, we establish the use of EE-RR- (soma) and RPL10a (Ribo) soma-targeting peptides with the latest jGCaMP and show that EE-RR-tagged jGCaMP8 gives rise to strong expression but limited soma-targeting. In contrast, Ribo-tagged jGCaMP8 lacks neuropil signal, but the expression rate is reduced. To combat this, we modified the linker region of the Ribo-tag (RiboL1-). RiboL1-jGCaMP8 expresses faster than Ribo-jGCaMP8 but remains too dim for reliable use with systemic virus administration. However, intracerebral injections of the RiboL1-tagged jGCaMP8 constructs provide strong Ca2+ signals devoid of neuropil contamination, with remarkable labeling density.


Asunto(s)
Calcio , Neuronas , Ratones , Animales , Masculino , Calcio/metabolismo , Neuronas/metabolismo , Neurópilo/metabolismo , Diagnóstico por Imagen , Vectores Genéticos/genética
9.
Nat Commun ; 14(1): 1052, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36828820

RESUMEN

Left-Right (LR) asymmetry of the nervous system is widespread across animals and is thought to be important for cognition and behaviour. But in contrast to visceral organ asymmetry, the genetic basis and function of brain laterality remain only poorly characterized. In this study, we performed RNAi screening to identify genes controlling brain asymmetry in Drosophila. We found that the conserved NetrinB (NetB) pathway is required for a small group of bilateral neurons to project asymmetrically into a pair of neuropils (Asymmetrical Bodies, AB) in the central brain in both sexes. While neurons project unilaterally into the right AB in wild-type flies, netB mutants show a bilateral projection phenotype and hence lose asymmetry. Developmental time course analysis reveals an initially bilateral connectivity, eventually resolving into a right asymmetrical circuit during metamorphosis, with the NetB pathway being required just prior symmetry breaking. We show using unilateral clonal analysis that netB activity is required specifically on the right side for neurons to innervate the right AB. We finally show that loss of NetB pathway activity leads to specific alteration of long-term memory, providing a functional link between asymmetrical circuitry determined by NetB and animal cognitive functions.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Masculino , Femenino , Drosophila/metabolismo , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Neurópilo/metabolismo , Tipificación del Cuerpo/genética , Lateralidad Funcional/fisiología , Factores de Crecimiento Nervioso/metabolismo
10.
Mol Neurobiol ; 60(4): 2320-2329, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36637747

RESUMEN

Alterations in mRNA transcription have been associated with changes in brain functions. We wanted to examine if fear conditioning causes long-term changes in transcriptome profiles in the basolateral amygdala (BLA) and hippocampus using RNA-Seq and laser microdissection microscopy. We further aimed to uncover whether these changes are involved in memory formation by monitoring their levels in EphB2lacZ/lacZ mice, which lack EphB2 forward signaling and can form short-term fear conditioning memory but not long-term fear conditioning memory. We found transcriptome signatures unique to each brain region that are comprise of specific cellular pathways. We also revealed that fear conditioning leads to alterations in mRNAs levels 24 h after training in hippocampal neuropil, but not in hippocampal cell layers or BLA. The two main groups of altered mRNAs encode proteins involved in neuronal transmission, neuronal morphogenesis and neuronal development and the vast majority are known to be enriched in neurons. None of these mRNAs levels were altered by fear conditioning in EphB2lacZ/lacZ mice, which were also impaired in long-term fear memory. We show here that fear conditioning leads to an enduring alteration in mRNAs levels in hippocampal neuropil that is dependent on processes mediated by EphB2 that are needed for long-term memory formation.


Asunto(s)
Hipocampo , Transducción de Señal , Ratones , Animales , Transducción de Señal/fisiología , Hipocampo/metabolismo , Neurópilo/metabolismo , Miedo/fisiología , ARN , Receptor EphB2/genética , Receptor EphB2/metabolismo
11.
Acta Med Okayama ; 76(4): 473-477, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36123163

RESUMEN

Glioneuronal tumor with neuropil-like islands (GNTNI) is a very rare subtype of glioneuronal tumor. We present a case of a 62-year-old man with GNTNI. Two adjacent lesions in the left parietal lobe were removed by left parietal craniotomy. The histological findings were glial cell proliferation and scattered rosettes consisting of synaptophysin-positive and NeuN-positive cells, leading to the diagnosis of GNTNI. Target sequencing revealed a genetic alteration similar to glioblastoma, IDH-wild type, which suggested adjuvant therapies. There are few previous reports on the treatment of this disease, and the patient should be followed carefully.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Genómica , Humanos , Islas , Masculino , Persona de Mediana Edad , Neurópilo/metabolismo , Neurópilo/patología , Sinaptofisina
12.
Cereb Cortex ; 32(17): 3669-3689, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35059716

RESUMEN

Fast synaptic communication uses diffusible transmitters whose spread is limited by uptake mechanisms. However, on the submicron-scale, the distance between two synapses, the extent of glutamate spread has so far remained difficult to measure. Here, we show that quantal glutamate release from individual hippocampal synapses activates extracellular iGluSnFr molecules at a distance of >1.5 µm. 2P-glutamate uncaging near spines further showed that alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-Rs and N-methyl-D-aspartate (NMDA)-Rs respond to distant uncaging spots at approximately 800 and 2000 nm, respectively, when releasing the amount of glutamate contained in approximately five synaptic vesicles. The uncaging-induced remote activation of AMPA-Rs was facilitated by blocking glutamate transporters but only modestly decreased by elevating the recording temperature. When mimicking release from neighboring synapses by three simultaneous uncaging spots in the microenvironment of a spine, AMPA-R-mediated responses increased supra-additively. Interfering with extracellular glutamate diffusion through a glutamate scavenger system weakly reduced field synaptic responses but not the quantal amplitude. Together, our data suggest that the neuropil is more permissive to short-range spread of transmitter than suggested by theory, that multivesicular release could regularly coactivate nearest neighbor synapses and that on this scale glutamate buffering by transporters primarily limits the spread of transmitter and allows for cooperative glutamate signaling in extracellular microdomains.


Asunto(s)
Ácido Glutámico , Receptores AMPA , Ácido Glutámico/farmacología , Hipocampo/fisiología , Neurópilo/metabolismo , Receptores AMPA/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/fisiología , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
13.
J Comp Neurol ; 530(9): 1399-1422, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34843626

RESUMEN

The primary olfactory centers of metazoans as diverse as arthropods and mammals consist of an array of fields of dense synaptic neuropil, the olfactory glomeruli. However, the neurochemical structure of crustacean olfactory glomeruli is largely understudied when compared to the insects. We analyzed the glomerular architecture in selected species of hermit crabs using immunohistochemistry against presynaptic proteins, the neuropeptides orcokinin, RFamide and allatostatin, and the biogenic amine serotonin. Our study reveals an unexpected level of structural complexity, unmatched by what is found in the insect olfactory glomeruli. Peptidergic and aminergic interneurons provide the structural basis for a regionalization of the crustacean glomeruli into longitudinal and concentric compartments. Our data suggest that local olfactory interneurons take a central computational role in modulating the information transfer from olfactory sensory neurons to projection neurons within the glomeruli. Furthermore, we found yet unknown neuronal elements mediating lateral inhibitory interactions across the glomerular array that may play a central role in modulating the transfer of sensory input to the output neurons through presynaptic inhibition. Our study is another step in understanding the function of crustacean olfactory glomeruli as highly complex units of local olfactory processing.


Asunto(s)
Anomuros , Neuronas Receptoras Olfatorias , Animales , Interneuronas , Mamíferos , Neurópilo/metabolismo , Bulbo Olfatorio , Vías Olfatorias/metabolismo
14.
Nat Commun ; 12(1): 6357, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737284

RESUMEN

In the central nervous system (CNS), functional tasks are often allocated to distinct compartments. This is also evident in the Drosophila CNS where synapses and dendrites are clustered in distinct neuropil regions. The neuropil is separated from neuronal cell bodies by ensheathing glia, which as we show using dye injection experiments, contribute to the formation of an internal diffusion barrier. We find that ensheathing glia are polarized with a basolateral plasma membrane rich in phosphatidylinositol-(3,4,5)-triphosphate (PIP3) and the Na+/K+-ATPase Nervana2 (Nrv2) that abuts an extracellular matrix formed at neuropil-cortex interface. The apical plasma membrane is facing the neuropil and is rich in phosphatidylinositol-(4,5)-bisphosphate (PIP2) that is supported by a sub-membranous ßHeavy-Spectrin cytoskeleton. ßHeavy-spectrin mutant larvae affect ensheathing glial cell polarity with delocalized PIP2 and Nrv2 and exhibit an abnormal locomotion which is similarly shown by ensheathing glia ablated larvae. Thus, polarized glia compartmentalizes the brain and is essential for proper nervous system function.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Neurópilo/metabolismo , Espectrina/metabolismo , Animales , Linaje de la Célula , Drosophila , Glicoproteínas/metabolismo , Larva , Proteínas del Tejido Nervioso/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
15.
Nat Commun ; 12(1): 6127, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675203

RESUMEN

Owing to their morphological complexity and dense network connections, neurons modify their proteomes locally, using mRNAs and ribosomes present in the neuropil (tissue enriched for dendrites and axons). Although ribosome biogenesis largely takes place in the nucleus and perinuclear region, neuronal ribosomal protein (RP) mRNAs have been frequently detected remotely, in dendrites and axons. Here, using imaging and ribosome profiling, we directly detected the RP mRNAs and their translation in the neuropil. Combining brief metabolic labeling with mass spectrometry, we found that a group of RPs rapidly associated with translating ribosomes in the cytoplasm and that this incorporation was independent of canonical ribosome biogenesis. Moreover, the incorporation probability of some RPs was regulated by location (neurites vs. cell bodies) and changes in the cellular environment (following oxidative stress). Our results suggest new mechanisms for the local activation, repair and/or specialization of the translational machinery within neuronal processes, potentially allowing neuronal synapses a rapid means to regulate local protein synthesis.


Asunto(s)
Neuronas/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Animales , Axones/metabolismo , Células Cultivadas , Femenino , Masculino , Neuritas/metabolismo , Neurópilo/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Proteínas Ribosómicas/genética , Ribosomas/genética
16.
J Comp Neurol ; 529(11): 2865-2882, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-33660861

RESUMEN

Box jellyfish have an elaborate visual system and perform advanced visually guided behaviors. However, the rhopalial nervous system (RNS), believed to be the main visual processing center, only has 1000 neurons in each of the four eye carrying rhopalia. We have examined the detailed structure of the RNS of the box jellyfish Tripedalia cystophora, using immunolabeling with antibodies raised against four putative neuropeptides (T. cystophora RFamide, VWamide, RAamide, and FRamide). In the RNS, T. cystophora RF-, VW-, and RAamide antibodies stain sensory neurons, the pit eyes, the neuropil, and peptide-specific subpopulations of stalk-associated neurons and giant neurons. Furthermore, RFamide ir+ neurites are seen in the epidermal stalk nerve, whereas VWamide antibodies stain the gastrodermal stalk nerve. RFamide has the most widespread expression including in the ring and radial nerves, the pedalium nerve plexus, and the tentacular nerve net. RAamide is the putative neurotransmitter in the motor neurons of the subumbrellar nerve net, and VWamide is a potential marker for neuronal differentiation as it is found in subpopulations of undifferentiated cells both in the rhopalia and in the bell. The results from the FRamide antibodies were not included as only few cells were stained, and in an unreproducible way. Our studies show hitherto-unseen details of the nervous system of T. cystophora and allowed us to identify specific functional groups of neurons. This identification is important for understanding visual processing in the RNS and enables experimental work, directly addressing the role of the different neuropeptides in vision.


Asunto(s)
Cubomedusas/metabolismo , Red Nerviosa/metabolismo , Neuropéptidos/biosíntesis , Neurópilo/metabolismo , Vías Visuales/metabolismo , Factores de Edad , Animales , Cubomedusas/química , Cubomedusas/genética , Expresión Génica , Red Nerviosa/química , Sistema Nervioso/química , Sistema Nervioso/metabolismo , Neuritas/química , Neuritas/metabolismo , Neuropéptidos/análisis , Neuropéptidos/genética , Neurópilo/química , Células Receptoras Sensoriales/química , Células Receptoras Sensoriales/metabolismo , Vías Visuales/química
17.
Nature ; 591(7848): 99-104, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33627875

RESUMEN

Neuropil is a fundamental form of tissue organization within the brain1, in which densely packed neurons synaptically interconnect into precise circuit architecture2,3. However, the structural and developmental principles that govern this nanoscale precision remain largely unknown4,5. Here we use an iterative data coarse-graining algorithm termed 'diffusion condensation'6 to identify nested circuit structures within the Caenorhabditis elegans neuropil, which is known as the nerve ring. We show that the nerve ring neuropil is largely organized into four strata that are composed of related behavioural circuits. The stratified architecture of the neuropil is a geometrical representation of the functional segregation of sensory information and motor outputs, with specific sensory organs and muscle quadrants mapping onto particular neuropil strata. We identify groups of neurons with unique morphologies that integrate information across strata and that create neural structures that cage the strata within the nerve ring. We use high resolution light-sheet microscopy7,8 coupled with lineage-tracing and cell-tracking algorithms9,10 to resolve the developmental sequence and reveal principles of cell position, migration and outgrowth that guide stratified neuropil organization. Our results uncover conserved structural design principles that underlie the architecture and function of the nerve ring neuropil, and reveal a temporal progression of outgrowth-based on pioneer neurons-that guides the hierarchical development of the layered neuropil. Our findings provide a systematic blueprint for using structural and developmental approaches to understand neuropil organization within the brain.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Neurópilo/química , Neurópilo/metabolismo , Algoritmos , Animales , Encéfalo/citología , Encéfalo/embriología , Caenorhabditis elegans/química , Caenorhabditis elegans/citología , Movimiento Celular , Difusión , Interneuronas/metabolismo , Neuronas Motoras/metabolismo , Neuritas/metabolismo , Neurópilo/citología , Células Receptoras Sensoriales/metabolismo
18.
J Comp Neurol ; 529(8): 1876-1894, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33128250

RESUMEN

The central complex is a group of highly interconnected neuropils in the insect brain. It is involved in the control of spatial orientation, based on external compass cues and various internal needs. The functional and neurochemical organization of the central complex has been studied in detail in the desert locust Schistocerca gregaria. In addition to classical neurotransmitters, immunocytochemistry has provided evidence for a major contribution of neuropeptides to neural signaling within the central complex. To complement these data, we have identified all orcokinin-immunoreactive neurons in the locust central complex and associated brain areas. About 50 bilateral pairs of neurons innervating all substructures of the central complex exhibit orcokinin immunoreactivity. Among these were about 20 columnar neurons, 33 bilateral pairs of tangential neurons of the central body, and seven pairs of tangential neurons of the protocerebral bridge. In silico transcript analysis suggests the presence of eight different orcokinin-A type peptides in the desert locust. Double label experiments showed that all orcokinin-immunostained tangential neurons of the lateral accessory lobe cluster were also immunoreactive for GABA and the GABA-synthesizing enzyme glutamic acid decarboxylase. Two types of tangential neurons of the upper division of the central body were, furthermore, also labeled with an antiserum against Dip-allatostatin I. No colocalization was found with serotonin immunostaining. The data provide additional insights into the neurochemical organization of the locust central complex and suggest that orcokinin-peptides of the orcokinin-A gene act as neuroactive substances at all stages of signal processing in this brain area.


Asunto(s)
Encéfalo/metabolismo , Saltamontes/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Animales , Inmunohistoquímica , Neurópilo/metabolismo
19.
J Cell Physiol ; 236(1): 440-457, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32557610

RESUMEN

Parkinsonism is one of the most common aging neurodegenerative disorders. This study aims to compare the therapeutic effect of stem cell versus its conditioned medium in the Parkinsonism model. Parkinsonism was induced by daily subcutaneous injection of 0.5 mg/kg of rotenone dissolved in dimethyl sulfoxide for 28 days. Fifty rats were divided randomly into five groups: control, dimethyl sulfoxide, Parkinsonism, stem cell-treated, and conditioned medium-treated groups. Midbrain specimens were obtained for histological, immunohistochemical, and biochemical studies. Lewy bodies were observed in the Parkinsonism group in the dopaminergic neuron and neuropil as well. Almost all of the pathological changes were clearly ameliorated in both stem cell- and conditioned medium-treated groups as confirmed by biochemical, histological, and immunohistochemical (anti-nestin, anti-glial fibrillary acidic protein, and anti-α synuclein) studies. However, the conditioned medium showed more superior therapeutic effect establishing nearly the normal histological architecture of substantia nigra. These results may pave the future for using stem cell-conditioned medium as a more convenient and effective adjuvant therapy in Parkinsonism and other neurodegenerative disorders.


Asunto(s)
Células de la Médula Ósea/metabolismo , Medios de Cultivo Condicionados/metabolismo , Células Madre Mesenquimatosas/metabolismo , Trastornos Parkinsonianos/metabolismo , Animales , Células de la Médula Ósea/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Mesencéfalo/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Nestina/metabolismo , Neurópilo/efectos de los fármacos , Neurópilo/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Ratas , Rotenona/farmacología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sinucleínas/metabolismo
20.
Sci Rep ; 10(1): 21426, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293636

RESUMEN

Revealing scaling rules is necessary for understanding the morphology, physiology and evolution of living systems. Studies of animal brains have revealed both general patterns, such as Haller's rule, and patterns specific for certain animal taxa. However, large-scale studies aimed at studying the ratio of the entire neuropil and the cell body rind in the insect brain have never been performed. Here we performed morphometric study of the adult brain in 37 insect species of 26 families and ten orders, ranging in volume from the smallest to the largest by a factor of more than 4,000,000, and show that all studied insects display a similar ratio of the volume of the neuropil to the cell body rind, 3:2. Allometric analysis for all insects shows that the ratio of the volume of the neuropil to the volume of the brain changes strictly isometrically. Analyses within particular taxa, size groups, and metamorphosis types also reveal no significant differences in the relative volume of the neuropil; isometry is observed in all cases. Thus, we establish a new scaling rule, according to which the relative volume of the entire neuropil in insect brain averages 60% and remains constant.


Asunto(s)
Insectos/fisiología , Neurópilo/metabolismo , Animales , Tamaño Corporal , Encéfalo/metabolismo , Insectos/clasificación , Insectos/metabolismo , Metamorfosis Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...