Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Mol Biol ; 434(17): 167730, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35872068

RESUMEN

Allosteric regulation is the most direct and efficient way of regulating protein function, wherein proteins transmit the perturbations at one site to another distinct functional site. Deciphering the mechanism of allosteric regulation is of vital importance for the comprehension of both physiological and pathological events in vivo as well as the rational allosteric drug design. However, it remains challenging to elucidate dominant allosteric signal transduction pathways, especially for large and multi-component protein machineries where long-range allosteric regulation exits. One of the quintessential examples having long-range allosteric regulation is the ternary complex, SPRED1-RAS-neurofibromin type 1 (NF1, a RAS GTPase-activating protein), in which SPRED1 facilitates RAS-GTP hydrolysis by interacting with NF1 at a distal, allosteric site from the RAS binding site. To address the underlying mechanism, we performed extensive Gaussian accelerated molecular dynamics simulations and Markov state model analysis of KRAS-NF1 complex in the presence and absence of SPRED1. Our findings suggested that SPRED1 loading allosterically enhanced KRAS-NF1 binding, but hindered conformational transformation of the NF1 catalytic center for RAS hydrolysis. Moreover, we unveiled the possible allosteric pathways upon SPRED1 binding through difference contact network analysis. This study not only provided an in-depth mechanistic insight into the allosteric regulation of KRAS by SPRED1, but also shed light on the investigation of long-range allosteric regulation among complex macromolecular systems.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neurofibromina 1 , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Adaptadoras Transductoras de Señales/química , Regulación Alostérica , Humanos , Proteínas de la Membrana/metabolismo , Neurofibromina 1/química , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/genética
2.
Mol Cell ; 82(7): 1288-1296.e5, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35353986

RESUMEN

Mutations in the NF1 gene cause the familial genetic disease neurofibromatosis type I, as well as predisposition to cancer. The NF1 gene product, neurofibromin, is a GTPase-activating protein and acts as a tumor suppressor by negatively regulating the small GTPase, Ras. However, structural insights into neurofibromin activation remain incompletely defined. Here, we provide cryoelectron microscopy (cryo-EM) structures that reveal an extended neurofibromin homodimer in two functional states: an auto-inhibited state with occluded Ras-binding site and an asymmetric open state with an exposed Ras-binding site. Mechanistically, the transition to the active conformation is stimulated by nucleotide binding, which releases a lock that tethers the catalytic domain to an extended helical repeat scaffold in the occluded state. Structure-guided mutational analysis supports functional relevance of allosteric control. Disease-causing mutations are mapped and primarily impact neurofibromin stability. Our findings suggest a role for nucleotides in neurofibromin regulation and may lead to therapeutic modulation of Ras signaling.


Asunto(s)
Neurofibromatosis 1 , Neurofibromina 1 , Microscopía por Crioelectrón , Proteínas Activadoras de GTPasa/metabolismo , Genes de Neurofibromatosis 1 , Humanos , Neurofibromatosis 1/genética , Neurofibromatosis 1/metabolismo , Neurofibromatosis 1/patología , Neurofibromina 1/química , Neurofibromina 1/genética , Neurofibromina 1/metabolismo
3.
Arch Biochem Biophys ; 700: 108767, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33476564

RESUMEN

Neurofibromin-1 (NF1) is a large, multidomain tumour suppressor encoded by the NF1 gene. The gene is mutated in neurofibromatosis type I, a disease characterized by malignant tumours of the nervous system and benign neurofibromas. The best-known activity of NF1 is the down-regulation of the mitogen-activated protein kinase pathway via its three-hundred-residue-long GTPase-activating protein (GAP) domain (the so-called GAP-related domain (NF1-GRD)). The NF1-GRD stimulates Ras GTPase activity in turning off signalling. Despite this activity, NF1-GRD has been demonstrated to bind to other different proteins, such as SPRED1 or MC1R. We have embarked on the biophysical and conformational characterization of NF1-GRD in solution by using several spectroscopic (namely fluorescence and circular dichroism (CD)) and biophysical techniques (namely size exclusion chromatography (SEC) and differential scanning calorimetry (DSC)). This biophysical characterization is crucial in deciphering NF1-GRD interactome and in finding biochemical features, modulating possible protein interactions. The native-like structure of NF1-GRD (as monitored by intrinsic fluorescence and far-UV CD) was strongly pH-dependent showing a pH-titration causing a substantial increase in its helicity. NF1-GRD had a low conformational stability, as concluded from DSC experiments and thermal denaturations followed by intrinsic and ANS fluorescence, and CD. Chemical denaturations showed that NF1-GRD unfolded through an intermediate which has a substantial amount of solvent-exposed hydrophobic patches.


Asunto(s)
Neurofibromina 1/química , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Humanos , Dominios Proteicos , Estabilidad Proteica
4.
Cells ; 9(11)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121128

RESUMEN

Neurofibromin is a large and multifunctional protein encoded by the tumor suppressor gene NF1, mutations of which cause the tumor predisposition syndrome neurofibromatosis type 1 (NF1). Over the last three decades, studies of neurofibromin structure, interacting partners, and functions have shown that it is involved in several cell signaling pathways, including the Ras/MAPK, Akt/mTOR, ROCK/LIMK/cofilin, and cAMP/PKA pathways, and regulates many fundamental cellular processes, such as proliferation and migration, cytoskeletal dynamics, neurite outgrowth, dendritic-spine density, and dopamine levels. The crystallographic structure has been resolved for two of its functional domains, GRD (GAP-related (GTPase-activating protein) domain) and SecPH, and its post-translational modifications studied, showing it to be localized to several cell compartments. These findings have been of particular interest in the identification of many therapeutic targets and in the proposal of various therapeutic strategies to treat the symptoms of NF1. In this review, we provide an overview of the literature on neurofibromin structure, function, interactions, and regulation and highlight the relationships between them.


Asunto(s)
Regulación de la Expresión Génica , Neurofibromina 1/química , Neurofibromina 1/genética , Animales , Humanos , Neurofibromina 1/metabolismo , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
5.
Cell Rep ; 32(3): 107909, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32697994

RESUMEN

Sprouty-related, EVH1 domain-containing (SPRED) proteins negatively regulate RAS/mitogen-activated protein kinase (MAPK) signaling following growth factor stimulation. This inhibition of RAS is thought to occur primarily through SPRED1 binding and recruitment of neurofibromin, a RasGAP, to the plasma membrane. Here, we report the structure of neurofibromin (GTPase-activating protein [GAP]-related domain) complexed with SPRED1 (EVH1 domain) and KRAS. The structure provides insight into how the membrane targeting of neurofibromin by SPRED1 allows simultaneous interaction with activated KRAS. SPRED1 and NF1 loss-of-function mutations occur across multiple cancer types and developmental diseases. Analysis of the neurofibromin-SPRED1 interface provides a rationale for mutations observed in Legius syndrome and suggests why SPRED1 can bind to neurofibromin but no other RasGAPs. We show that oncogenic EGFR(L858R) signaling leads to the phosphorylation of SPRED1 on serine 105, disrupting the SPRED1-neurofibromin complex. The structural, biochemical, and biological results provide new mechanistic insights about how SPRED1 interacts with neurofibromin and regulates active KRAS levels in normal and pathologic conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Receptores ErbB/metabolismo , Neurofibromina 1/química , Neurofibromina 1/metabolismo , Oncogenes , Proteínas Proto-Oncogénicas p21(ras)/química , Secuencia de Aminoácidos , Manchas Café con Leche/genética , Dominio Catalítico , Análisis Mutacional de ADN , Factor de Crecimiento Epidérmico/farmacología , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , Células K562 , Neurofibromatosis 1/genética , Neurofibromina 1/genética , Fosforilación , Mutación Puntual/genética , Unión Proteica , Dominios Proteicos , Mapas de Interacción de Proteínas , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal
6.
Cancer Cell ; 37(3): 387-402.e7, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32142667

RESUMEN

We report that neurofibromin, a tumor suppressor and Ras-GAP (GTPase-activating protein), is also an estrogen receptor-α (ER) transcriptional co-repressor through leucine/isoleucine-rich motifs that are functionally independent of GAP activity. GAP activity, in turn, does not affect ER binding. Consequently, neurofibromin depletion causes estradiol hypersensitivity and tamoxifen agonism, explaining the poor prognosis associated with neurofibromin loss in endocrine therapy-treated ER+ breast cancer. Neurofibromin-deficient ER+ breast cancer cells initially retain sensitivity to selective ER degraders (SERDs). However, Ras activation does play a role in acquired SERD resistance, which can be reversed upon MEK inhibitor addition, and SERD/MEK inhibitor combinations induce tumor regression. Thus, neurofibromin is a dual repressor for both Ras and ER signaling, and co-targeting may treat neurofibromin-deficient ER+ breast tumors.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Neurofibromina 1/genética , Secuencias de Aminoácidos , Animales , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proteínas Co-Represoras , Antagonistas de Estrógenos/farmacología , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Células MCF-7 , Ratones Desnudos , Ratones SCID , Mutación , Neurofibromina 1/química , Neurofibromina 1/metabolismo , Transducción de Señal , Tamoxifeno/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas ras/metabolismo
7.
J Biol Chem ; 295(4): 1105-1119, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31836666

RESUMEN

Neurofibromin is a tumor suppressor encoded by the NF1 gene, which is mutated in Rasopathy disease neurofibromatosis type I. Defects in NF1 lead to aberrant signaling through the RAS-mitogen-activated protein kinase pathway due to disruption of the neurofibromin GTPase-activating function on RAS family small GTPases. Very little is known about the function of most of the neurofibromin protein; to date, biochemical and structural data exist only for its GAP domain and a region containing a Sec-PH motif. To better understand the role of this large protein, here we carried out a series of biochemical and biophysical experiments, including size-exclusion chromatography-multiangle light scattering (SEC-MALS), small-angle X-ray and neutron scattering, and analytical ultracentrifugation, indicating that full-length neurofibromin forms a high-affinity dimer. We observed that neurofibromin dimerization also occurs in human cells and likely has biological and clinical implications. Analysis of purified full-length and truncated neurofibromin variants by negative-stain EM revealed the overall architecture of the dimer and predicted the potential interactions that contribute to the dimer interface. We could reconstitute structures resembling high-affinity full-length dimers by mixing N- and C-terminal protein domains in vitro The reconstituted neurofibromin was capable of GTPase activation in vitro, and co-expression of the two domains in human cells effectively recapitulated the activity of full-length neurofibromin. Taken together, these results suggest how neurofibromin dimers might form and be stabilized within the cell.


Asunto(s)
Neurofibromina 1/química , Neurofibromina 1/metabolismo , Multimerización de Proteína , Células HEK293 , Humanos , Neurofibromina 1/ultraestructura , Dominios Proteicos , Relación Estructura-Actividad , Proteínas Activadoras de ras GTPasa/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(44): 22122-22131, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611389

RESUMEN

KRAS mutations occur in ∼35% of colorectal cancers and promote tumor growth by constitutively activating the mitogen-activated protein kinase (MAPK) pathway. KRAS mutations at codons 12, 13, or 61 are thought to prevent GAP protein-stimulated GTP hydrolysis and render KRAS-mutated colorectal cancers unresponsive to epidermal growth factor receptor (EGFR) inhibitors. We report here that KRAS G13-mutated cancer cells are frequently comutated with NF1 GAP but NF1 is rarely mutated in cancers with KRAS codon 12 or 61 mutations. Neurofibromin protein (encoded by the NF1 gene) hydrolyzes GTP directly in complex with KRAS G13D, and KRAS G13D-mutated cells can respond to EGFR inhibitors in a neurofibromin-dependent manner. Structures of the wild type and G13D mutant of KRAS in complex with neurofibromin (RasGAP domain) provide the structural basis for neurofibromin-mediated GTP hydrolysis. These results reveal that KRAS G13D is responsive to neurofibromin-stimulated hydrolysis and suggest that a subset of KRAS G13-mutated colorectal cancers that are neurofibromin-competent may respond to EGFR therapies.


Asunto(s)
Neoplasias Colorrectales/genética , Receptores ErbB/antagonistas & inhibidores , Guanosina Trifosfato/metabolismo , Neurofibromina 1/química , Proteínas Proto-Oncogénicas p21(ras)/química , Sustitución de Aminoácidos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Dominio Catalítico , Línea Celular , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas Activadoras de GTPasa/metabolismo , Guanosina Trifosfato/química , Humanos , Hidrólisis , Modelos Moleculares , Neurofibromina 1/metabolismo , Neurofibromina 1/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética
9.
J Mol Biol ; 431(19): 3889-3899, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31401120

RESUMEN

Neurofibromatosis type I (NF1) and Legius syndrome are rare inherited disorders that share diagnostic symptoms including dermal abnormalities like axillary and inguinal freckling and café au lait spots. In addition, patients suffering from NF1 have a demanding risk for the development of severe tumors of the peripheral and central nervous system among other NF1-specific symptoms. NF1 and Legius syndrome are caused by alterations in the NF1 and SPRED1 genes encoding the Ras inhibitors neurofibromin and Spred1 (sprouty related EVH1 domain-containing protein), respectively. Neurofibromin functions as a Ras-specific GTPase-activating protein (Ras-GAP), and Spred1 enhances Ras inactivation by recruiting neurofibromin from the cytosol to membrane-anchored Ras. In a previous study, we mapped the Spred binding site to the GAP-related domain of neurofibromin (NF1-GAP) and identified the GAPex subdomain as critical for Spred1 binding. Here, we characterize the binding site of these proteins in more detail focusing on a mutant Spred1 variant carrying a pathogenic missense mutation (threonine 102 to arginine). Introduction of this mutation, which locates at the N-terminal EVH1 domain of Spred1, weakens the interaction with neurofibromin by about 3 orders of magnitude without perturbing the protein fold, and the binding site of NF1-GAP on the mutant Spred1(EVH1) variant can be identified by NMR spectroscopy. Taken together, our data provide structural insight into the interaction of Spred1 and neurofibromin and characterize the structural or functional consequence of selected patient-derived mutations associated with Legius syndrome.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Manchas Café con Leche/genética , Neurofibromina 1/metabolismo , Proteínas ras/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Mutación , Neurofibromina 1/química , Unión Proteica , Dominios Proteicos
10.
Gene Ther ; 26(6): 277-286, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31127187

RESUMEN

Neurofibromatosis type 1, including the highly aggressive malignant peripheral nerve sheath tumors (MPNSTs), is featured by the loss of functional neurofibromin 1 (NF1) protein resulting from genetic alterations. A major function of NF1 is suppressing Ras activities, which is conveyed by an intrinsic GTPase-activating protein-related domain (GRD). In this study, we explored the feasibility of restoring Ras GTPase via exogenous expression of various GRD constructs, via gene delivery using a panel of adeno-associated virus (AAV) vectors in MPNST and human Schwann cells (HSCs). We demonstrated that several AAV serotypes achieved favorable transduction efficacies in those cells and a membrane-targeting GRD fused with an H-Ras C-terminal motif (C10) dramatically inhibited the Ras pathway and MPNST cells in a NF1-specific manner. Our results opened up a venue of gene replacement therapy in NF1-related tumors.


Asunto(s)
Dependovirus/genética , Terapia Genética/métodos , Neurofibromatosis 1/terapia , Neurofibromina 1/genética , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Estudios de Factibilidad , Vectores Genéticos/genética , Humanos , Neurofibromina 1/química , Neurofibromina 1/metabolismo , Dominios Proteicos , Células de Schwann/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
11.
Mol Cancer Res ; 17(5): 1220-1232, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30705246

RESUMEN

Low oxygen or hypoxia is a feature of all solid tumors and has been associated with aggressive disease. Here, we describe a novel mechanism for the hypoxia-dependent degradation of the Ras-GTPase-activating protein neurofibromin, by hypoxia-associated factor (HAF). We have previously characterized HAF as an oxygen-independent ubiquitin ligase for HIF-1α. Here, we show that HAF promotes neurofibromin ubiquitination and degradation independently of oxygen and pVHL, resulting in Ras-ERK pathway activation. Hypoxia enhanced HAF:neurofibromin binding independently of HAF-SUMOylation, whereas HAF knockdown increased neurofibromin levels primarily in hypoxia, supporting the role of HAF as a hypoxia-specific neurofibromin regulator. HAF overexpression increased p-ERK levels and promoted resistance of clear cell kidney cancer (ccRCC) cells to sorafenib and sunitinib in both normoxia and hypoxia. However, a greater-fold increase in sorafenib/sunitinib resistance was observed during hypoxia, particularly in pVHL-deficient cells. Intriguingly, HAF-mediated resistance was HIF-2α-dependent in normoxia, but HIF-2α-independent in hypoxia indicating two potential mechanisms of HAF-mediated resistance: a HIF-2α-dependent pathway dominant in normoxia, and the direct activation of the Ras-ERK pathway through neurofibromin degradation dominant in hypoxia. Patients with ccRCC with high HAF transcript or protein levels showed significantly decreased overall survival compared with those with low HAF. Thus, we establish a novel, nonmutational pathway of neurofibromin inactivation through hypoxia-induced HAF-mediated degradation, leading to Ras-ERK activation and poor prognosis in ccRCC. IMPLICATIONS: We describe a novel mechanism of neurofibromin degradation induced by hypoxia that leads to activation of the prooncogenic Ras-ERK pathway and resistance to therapy.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Resistencia a Antineoplásicos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Renales/metabolismo , Neurofibromina 1/química , Neurofibromina 1/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Sistema de Señalización de MAP Quinasas , Proteolisis , Ribonucleoproteínas Nucleares Pequeñas , Sorafenib , Sunitinib , Hipoxia Tumoral , Ubiquitinación , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteínas ras/metabolismo
12.
EBioMedicine ; 36: 508-516, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30274822

RESUMEN

BACKGROUND: Neurofibromatosis type I (NF1) is caused by heterozygous loss-of-function variants in the NF1 gene encoding neurofibromin which serves as a tumor suppressor that inhibits RAS signaling and regulates cell proliferation and differentiation. While, the only well-established functional domain in the NF1 protein is the GAP-related domain (GRD), most of the identified non-truncating disease-causing variants are located outside of this domain, supporting the existence of other important disease-associated domains. Identifying these domains may reveal novel functions of NF1. METHODS: By implementing inferential statistics combined with machine-learning methods, we developed a novel NF1-specific functional prediction model that focuses on nonsynonymous single nucleotide variants (SNVs). The model enables annotating all possible NF1 nonsynonymous variants, thus mapping the range of pathogenic non-truncating variants at the codon level across the NF1 gene. FINDINGS: The generated model demonstrates high absolute prediction value for missense and splice-site variations (area under the ROC curve of 0.96) outperforming 14 other established models. By reviewing the entire dataset of nonsynonymous variants, two novel domains (Armadillo type fold 1 and 2) were identified as being associated with pathogenicity (OR 1.86; CI 1.04 to 3.34 and OR 2.08; CI 1.08 to 4.04, respectively; P < .05). Specific exons and codons associated with increased pathogenicity were also detected along the gene inside and outside the GRD domain. INTERPRETATION: The developed model, enabled better prediction of pathogenicity for variants in NF1 gene, as well as elucidation of novel NF1-associated domains in addition to the GRD. FUND: This work was partially supported by the Kahn foundation. DGE is supported by the all Manchester NIHR Biomedical Research Centre (IS-brC-1215-20007).


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Neurofibromatosis 1/genética , Neurofibromina 1/genética , Codón , Biología Computacional/métodos , Bases de Datos Genéticas , Exones , Humanos , Modelos Biológicos , Anotación de Secuencia Molecular , Neurofibromatosis 1/diagnóstico , Neurofibromatosis 1/metabolismo , Neurofibromina 1/química , Neurofibromina 1/metabolismo , Polimorfismo de Nucleótido Simple , Pronóstico , Curva ROC
13.
Sci Rep ; 8(1): 6171, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670214

RESUMEN

In Neurofibromatosis 1 (NF1) germ line loss of function mutations result in reduction of cellular neurofibromin content (NF1+/-, NF1 haploinsufficiency). The Ras-GAP neurofibromin is a very large cytoplasmic protein (2818 AA, 319 kDa) involved in the RAS-MAPK pathway. Aside from regulation of proliferation, it is involved in mechanosensoric of cells. We investigated neurofibromin replacement in cultured human fibroblasts showing reduced amount of neurofibromin. Full length neurofibromin was produced recombinantly in insect cells and purified. Protein transduction into cultured fibroblasts was performed employing cell penetrating peptides along with photochemical internalization. This combination of transduction strategies ensures the intracellular uptake and the translocation to the cytoplasm of neurofibromin. The transduced neurofibromin is functional, indicated by functional rescue of reduced mechanosensoric blindness and reduced RasGAP activity in cultured fibroblasts of NF1 patients or normal fibroblasts treated by NF1 siRNA. Our study shows that recombinant neurofibromin is able to revert cellular effects of NF1 haploinsuffiency in vitro, indicating a use of protein transduction into cells as a potential treatment strategy for the monogenic disease NF1.


Asunto(s)
Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Expresión Génica , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Genes Reporteros , Humanos , Microscopía Fluorescente , Neurofibromatosis 1/genética , Neurofibromatosis 1/metabolismo , Neurofibromina 1/química , Fosforilación , Interferencia de ARN , Proteínas Recombinantes de Fusión , Transducción Genética
14.
Am J Hum Genet ; 102(1): 69-87, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290338

RESUMEN

Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000-3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons-Leu844, Cys845, Ala846, Leu847, and Gly848-located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844-848 exists and will be valuable in the management and genetic counseling of a significant number of individuals.


Asunto(s)
Codón/genética , Estudios de Asociación Genética , Mutación Missense/genética , Neurofibromatosis 1/genética , Neurofibromina 1/genética , Adolescente , Secuencia de Aminoácidos , Niño , Estudios de Cohortes , Simulación por Computador , Demografía , Femenino , Heterocigoto , Humanos , Masculino , Neurofibromina 1/química , Fenotipo , Adulto Joven
15.
Proc Natl Acad Sci U S A ; 113(50): E8041-E8050, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911799

RESUMEN

Heterotrimeric G proteins are crucial molecular switches that maintain a large number of physiological processes in cells. The signal is encoded into surface alterations of the Gα subunit that carries GTP in its active state and GDP in its inactive state. The ability of the Gα subunit to hydrolyze GTP is essential for signal termination. Regulator of G protein signaling (RGS) proteins accelerates this process. A key player in this catalyzed reaction is an arginine residue, Arg178 in Gαi1, which is already an intrinsic part of the catalytic center in Gα in contrast to small GTPases, at which the corresponding GTPase-activating protein (GAP) provides the arginine "finger." We applied time-resolved FTIR spectroscopy in combination with isotopic labeling and site-directed mutagenesis to reveal the molecular mechanism, especially of the role of Arg178 in the intrinsic Gαi1 mechanism and the RGS4-catalyzed mechanism. Complementary biomolecular simulations (molecular mechanics with molecular dynamics and coupled quantum mechanics/molecular mechanics) were performed. Our findings show that Arg178 is bound to γ-GTP for the intrinsic Gαi1 mechanism and pushed toward a bidentate α-γ-GTP coordination for the Gαi1·RGS4 mechanism. This movement induces a charge shift toward ß-GTP, increases the planarity of γ-GTP, and thereby catalyzes the hydrolysis.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/química , Arginina/química , Dominio Catalítico , Estabilidad de Enzimas , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Hidrólisis , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Neurofibromina 1/química , Neurofibromina 1/metabolismo , Proteínas RGS/química , Proteínas RGS/genética , Proteínas RGS/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
16.
J Biol Chem ; 291(7): 3124-34, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26635368

RESUMEN

Constitutional heterozygous loss-of-function mutations in the SPRED1 gene cause a phenotype known as Legius syndrome, which consists of symptoms of multiple café-au-lait macules, axillary freckling, learning disabilities, and macrocephaly. Legius syndrome resembles a mild neurofibromatosis type 1 (NF1) phenotype. It has been demonstrated that SPRED1 functions as a negative regulator of the Ras-ERK pathway and interacts with neurofibromin, the NF1 gene product. However, the molecular details of this interaction and the effects of the mutations identified in Legius syndrome and NF1 on this interaction have not yet been investigated. In this study, using a yeast two-hybrid system and an immunoprecipitation assay in HEK293 cells, we found that the SPRED1 EVH1 domain interacts with the N-terminal 16 amino acids and the C-terminal 20 amino acids of the GTPase-activating protein (GAP)-related domain (GRD) of neurofibromin, which form two crossing α-helix coils outside the GAP domain. These regions have been shown to be dispensable for GAP activity and are not present in p120(GAP). Several mutations in these N- and C-terminal regions of the GRD in NF1 patients and pathogenic missense mutations in the EVH1 domain of SPRED1 in Legius syndrome reduced the binding affinity between the EVH1 domain and the GRD. EVH1 domain mutations with reduced binding to the GRD also disrupted the ERK suppression activity of SPRED1. These data clearly demonstrate that SPRED1 inhibits the Ras-ERK pathway by recruiting neurofibromin to Ras through the EVH1-GRD interaction, and this study also provides molecular basis for the pathogenic mutations of NF1 and Legius syndrome.


Asunto(s)
Manchas Café con Leche/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Mutación Missense , Neurofibromatosis 1/genética , Neurofibromina 1/metabolismo , Mutación Puntual , Proteínas Adaptadoras Transductoras de Señales , Sistema de Transporte de Aminoácidos A , Manchas Café con Leche/metabolismo , Manchas Café con Leche/fisiopatología , Factor de Crecimiento Epidérmico/metabolismo , Femenino , Genes Reporteros , Estudios de Asociación Genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Cinética , Sistema de Señalización de MAP Quinasas , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Neurofibromatosis 1/metabolismo , Neurofibromatosis 1/fisiopatología , Neurofibromina 1/química , Neurofibromina 1/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas p21(ras)/agonistas , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
17.
Hum Mutat ; 36(11): 1052-63, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26178382

RESUMEN

Neurofibromatosis type 1 (NF1) is one of the most frequent genetic disorders, affecting 1:3,000 worldwide. Identification of genotype-phenotype correlations is challenging because of the wide range clinical variability, the progressive nature of the disorder, and extreme diversity of the mutational spectrum. We report 136 individuals with a distinct phenotype carrying one of five different NF1 missense mutations affecting p.Arg1809. Patients presented with multiple café-au-lait macules (CALM) with or without freckling and Lisch nodules, but no externally visible plexiform neurofibromas or clear cutaneous neurofibromas were found. About 25% of the individuals had Noonan-like features. Pulmonic stenosis and short stature were significantly more prevalent compared with classic cohorts (P < 0.0001). Developmental delays and/or learning disabilities were reported in over 50% of patients. Melanocytes cultured from a CALM in a segmental NF1-patient showed two different somatic NF1 mutations, p.Arg1809Cys and a multi-exon deletion, providing genetic evidence that p.Arg1809Cys is a loss-of-function mutation in the melanocytes and causes a pigmentary phenotype. Constitutional missense mutations at p.Arg1809 affect 1.23% of unrelated NF1 probands in the UAB cohort, therefore this specific NF1 genotype-phenotype correlation will affect counseling and management of a significant number of patients.


Asunto(s)
Sustitución de Aminoácidos , Codón , Mutación Missense , Neurofibromina 1/genética , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Fenotipo , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Enanismo/genética , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , Neurofibromina 1/química , Adulto Joven
18.
Cell Cycle ; 13(17): 2780-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25486365

RESUMEN

The human tumor suppressor neurofibromin contains a cysteine and serine-rich domain/Ras-GTPase activating protein domain (CSRD/RasGAP) and a C-terminal domain (CTD). Domain studies of neurofibromin suggest it has other functions in addition to being a RasGAP, but the mechanisms underlying its tumor suppressor activity are not well understood. The budding yeast Saccharomyces cerevisiae is a good model system for studying neurofibromin function because it possesses Ira1 and Ira2, which are homologous to human neurofibromin in both sequence and function. We found that overexpression of CTD or a neurofibromin CTD-homologous domain (CHD) of Ira1/2 in budding yeast delayed degradation of the securin protein Pds1, whereas overexpression of CSRD/RasGAP did not affect Pds1 degradation. We also found that when CTD or CHD was overexpressed, the number of cells in metaphase was higher than in the control. These results demonstrate that CTD and CHD function in the metaphase to anaphase transition. In addition, Δira1Δira2 cells bypassed mitotic arrest in response to spindle damage, indicating that Ira1 and Ira2 may be involved in the spindle assembly checkpoint (SAC). However, Δira1Δira2Δmad2 cells are more sensitive to spindle damage than Δmad2 or Δira1Δira2 cells are, suggesting that Ira1/2 and Mad2 function in different pathways. Overexpression of CTD but not CSRD/RasGAP partially rescued the hypersensitivity of Δira1Δira2Δmad2 cells to microtubule-destabilizing drugs, indicating a role for CTD in the SAC pathway. Taken together, independently of RasGAP activity, the C-terminal domains of neurofibromin, Ira1, and Ira2 regulate the metaphase to anaphase transition in a Mad2-independent fashion.


Asunto(s)
Anafase , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Metafase , Neurofibromina 1/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Secuencia de Aminoácidos , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Mad2/metabolismo , Datos de Secuencia Molecular , Neurofibromina 1/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Proteínas Activadoras de ras GTPasa/metabolismo
19.
Hum Mutat ; 35(7): 891-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24760680

RESUMEN

Palindromic sequences can form hairpin structures or cruciform extrusions, which render them susceptible to genomic rearrangements. A 197-bp long palindromic AT-rich repeat (PATRR17) is located within intron 40 of the neurofibromatosis type 1 (NF1) gene (17q11.2). Through comprehensive NF1 analysis, we identified six unrelated patients with a rearrangement involving intron 40 (five deletions and one reciprocal translocation t(14;17)(q32;q11.2)). We hypothesized that PATRR17 may be involved in these rearrangements thereby causing NF1. Breakpoint cloning revealed that PATRR17 was indeed involved in all of the rearrangements. As microhomology was present at all breakpoint junctions of the deletions identified, and PATRR17 partner breakpoints were located within 7.1 kb upstream of PATRR17, fork stalling and template switching/microhomology-mediated break-induced replication was the most likely rearrangement mechanism. For the reciprocal translocation case, a 51 bp insertion at the translocation breakpoints mapped to a short sequence within PATRR17, proximal to the breakpoint, suggesting a multiple stalling and rereplication process, in contrast to previous studies indicating a purely replication-independent mechanism for PATRR-mediated translocations. In conclusion, we show evidence that PATRR17 is a hotspot for pathogenic intragenic deletions within the NF1 gene and suggest a novel replication-dependent mechanism for PATRR-mediated translocation.


Asunto(s)
Replicación del ADN , Secuencias Invertidas Repetidas , Neurofibromatosis 1/genética , Neurofibromina 1/química , Neurofibromina 1/genética , Recombinación Genética , Secuencia Rica en At , Secuencia de Bases , Puntos de Rotura del Cromosoma , Cromosomas Humanos Par 14 , Cromosomas Humanos Par 17 , Humanos , Datos de Secuencia Molecular , Eliminación de Secuencia , Translocación Genética
20.
PLoS One ; 7(10): e47283, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23082153

RESUMEN

BACKGROUND: Ras GTPases mediate numerous biological processes through their ability to cycle between an inactive GDP-bound form and an active GTP-bound form. Guanine nucleotide exchange factors (GEFs) favor the formation of the active Ras-GTP, whereas GTPase activating proteins (GAPs) promote the formation of inactive Ras-GDP. Numerous studies have established complex signaling cross-talks between Ras GTPases and other members of the superfamily of small GTPases. GEFs were thought to play a major role in these cross-talks. However, recently GAPs were also shown to play crucial roles in these processes. Among RasGAPs, Nf1 is of special interest. Nf1 is responsible for the genetic disease Neurofibromatosis type I, and recent data strongly suggest that this RasGAP connects different signaling pathways. METHODOLOGY/PRINCIPAL FINDINGS: In order to know if the RasGAP Nf1 might play a role in connecting Ras GTPases to other small GTPase pathways, we systematically looked for new partners of Nf1, by performing a yeast two-hybrid screening on its SecPH domain. LIMK2, a major kinase of the Rho/ROCK/LIMK2/cofilin pathway, was identified in this screening. We confirmed this interaction by co-immunoprecipitation experiments, and further characterized it. We also demonstrated its specificity: the close related homolog of LIMK2, LIMK1, does not interact with the SecPH domain of Nf1. We then showed that SecPH partially inhibits the kinase activity of LIMK2 on cofilin. Our results furthermore suggest a precise mechanism for this inhibition: in fact, SecPH would specifically prevent LIMK2 activation by ROCK, its upstream regulator. CONCLUSIONS/SIGNIFICANCE: Although previous data had already connected Nf1 to actin cytoskeleton dynamics, our study provides for the first time possible detailed molecular requirements of this involvement. Nf1/LIMK2 interaction and inhibition allows to directly connect neurofibromatosis type I to actin cytoskeleton remodeling, and provides evidence that the RasGAP Nf1 mediates a new cross-talk between Ras and Rho signaling pathways within the superfamily of small GTPases.


Asunto(s)
Quinasas Lim/antagonistas & inhibidores , Neurofibromina 1/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Activación Enzimática , Células HEK293 , Células HeLa , Humanos , Quinasas Lim/metabolismo , Modelos Biológicos , Neurofibromina 1/química , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Fibras de Estrés/metabolismo , Técnicas del Sistema de Dos Híbridos , Quinasas Asociadas a rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...