Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.480
Filtrar
1.
Cell Rep ; 37(13): 110166, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965433

RESUMEN

Animals encounter microorganisms in their habitats, adapting physiology and behavior accordingly. The nematode Caenorhabditis elegans is found in microbe-rich environments; however, its responses to fungi are not extensively studied. Here, we describe interactions of C. elegans and Penicillium brevicompactum, an ecologically relevant mold. Transcriptome studies reveal that co-culture upregulates stress response genes, including xenobiotic-metabolizing enzymes (XMEs), in C. elegans intestine and AMsh glial cells. The nuclear hormone receptors (NHRs) NHR-45 and NHR-156 are induction regulators, and mutants that cannot induce XMEs in the intestine when exposed to P. brevicompactum experience mitochondrial stress and exhibit developmental defects. Different C. elegans wild isolates harbor sequence polymorphisms in nhr-156, resulting in phenotypic diversity in AMsh glia responses to microbe exposure. We propose that P. brevicompactum mitochondria-targeting mycotoxins are deactivated by intestinal detoxification, allowing tolerance to moldy environments. Our studies support the idea that C. elegans NHRs may be regulated by environmental cues.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Tracto Gastrointestinal/enzimología , Mitocondrias/enzimología , Neuroglía/enzimología , Penicillium/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Inducción Enzimática , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Regulación del Desarrollo de la Expresión Génica , Mitocondrias/efectos de los fármacos , Mitocondrias/microbiología , Neuroglía/efectos de los fármacos , Neuroglía/microbiología
2.
Sci Rep ; 11(1): 21335, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34716387

RESUMEN

Substance abuse affects the central nervous system (CNS) and remains a global health problem. Psychostimulants, such as cocaine and methamphetamine (METH), and opioids affect neuronal function and lead to behavioral impairments via epigenetic modification. Epigenetic changes occur via classical pathways, especially the class III histone deacetylase (HDAC)-sirtuin (SIRT) family, that act as cellular sensors to regulate energy homeostasis and coordinate cellular responses to maintain genome integrity. However, SIRT family (1-7)-associated neurodegeneration has not been elucidated in the context of energy metabolism. The present study examined the effects of psychostimulants, such as cocaine and METH, and opioids, such as morphine, on SIRT family (1-7) [class I, II, III and IV] expression and cellular translocation-mediated dysfunction in astrocytes and microglial cells. The "nootropic" drug piracetam played a preventative role against psychostimulant- and opioid-induced SIRT (1-7) expression in astrocytes. These results indicate that cocaine, METH, and morphine affected deacetylation and cellular function, and these changes were prevented by piracetam in astrocytes.


Asunto(s)
Astrocitos/efectos de los fármacos , Cocaína/farmacología , Histona Desacetilasas/metabolismo , Metanfetamina/farmacología , Morfina/farmacología , Neuroglía/efectos de los fármacos , Sirtuinas/metabolismo , Analgésicos Opioides/farmacología , Astrocitos/enzimología , Células Cultivadas , Estimulantes del Sistema Nervioso Central/farmacología , Epigénesis Genética/efectos de los fármacos , Histona Desacetilasas/genética , Humanos , Neuroglía/enzimología , Nootrópicos/farmacología , Piracetam/farmacología , Sirtuinas/genética
3.
Mol Neurodegener ; 16(1): 64, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526055

RESUMEN

BACKGROUND: Human genetic association studies point to immune response and lipid metabolism, in addition to amyloid-beta (Aß) and tau, as major pathways in Alzheimer's disease (AD) etiology. Accumulating evidence suggests that chronic neuroinflammation, mainly mediated by microglia and astrocytes, plays a causative role in neurodegeneration in AD. Our group and others have reported early and dramatic losses of brain sulfatide in AD cases and animal models that are mediated by ApoE in an isoform-dependent manner and accelerated by Aß accumulation. To date, it remains unclear if changes in specific brain lipids are sufficient to drive AD-related pathology. METHODS: To study the consequences of CNS sulfatide deficiency and gain insights into the underlying mechanisms, we developed a novel mouse model of adult-onset myelin sulfatide deficiency, i.e., tamoxifen-inducible myelinating glia-specific cerebroside sulfotransferase (CST) conditional knockout mice (CSTfl/fl/Plp1-CreERT), took advantage of constitutive CST knockout mice (CST-/-), and generated CST/ApoE double knockout mice (CST-/-/ApoE-/-), and assessed these mice using a broad range of methodologies including lipidomics, RNA profiling, behavioral testing, PLX3397-mediated microglia depletion, mass spectrometry (MS) imaging, immunofluorescence, electron microscopy, and Western blot. RESULTS: We found that mild central nervous system (CNS) sulfatide losses within myelinating cells are sufficient to activate disease-associated microglia and astrocytes, and to increase the expression of AD risk genes (e.g., Apoe, Trem2, Cd33, and Mmp12), as well as previously established causal regulators of the immune/microglia network in late-onset AD (e.g., Tyrobp, Dock, and Fcerg1), leading to chronic AD-like neuroinflammation and mild cognitive impairment. Notably, neuroinflammation and mild cognitive impairment showed gender differences, being more pronounced in females than males. Subsequent mechanistic studies demonstrated that although CNS sulfatide losses led to ApoE upregulation, genetically-induced myelin sulfatide deficiency led to neuroinflammation independently of ApoE. These results, together with our previous studies (sulfatide deficiency in the context of AD is mediated by ApoE and accelerated by Aß accumulation) placed both Aß and ApoE upstream of sulfatide deficiency-induced neuroinflammation, and suggested a positive feedback loop where sulfatide losses may be amplified by increased ApoE expression. We also demonstrated that CNS sulfatide deficiency-induced astrogliosis and ApoE upregulation are not secondary to microgliosis, and that astrogliosis and microgliosis seem to be driven by activation of STAT3 and PU.1/Spi1 transcription factors, respectively. CONCLUSION: Our results strongly suggest that sulfatide deficiency is an important contributor and driver of neuroinflammation and mild cognitive impairment in AD pathology.


Asunto(s)
Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Trastornos de la Memoria/metabolismo , Vaina de Mielina/química , Enfermedades Neuroinflamatorias/metabolismo , Sulfoglicoesfingolípidos/metabolismo , Edad de Inicio , Enfermedad de Alzheimer/etiología , Aminopiridinas/toxicidad , Animales , Apolipoproteínas E/metabolismo , Química Encefálica , Sistema Nervioso Central/metabolismo , Disfunción Cognitiva/etiología , Perfilación de la Expresión Génica , Gliosis/metabolismo , Humanos , Trastornos de la Memoria/etiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Noqueados para ApoE , Prueba del Laberinto Acuático de Morris , Neuroglía/enzimología , Neuroglía/fisiología , Enfermedades Neuroinflamatorias/etiología , Prueba de Campo Abierto , Proteínas Proto-Oncogénicas/fisiología , Pirroles/toxicidad , Factor de Transcripción STAT3/fisiología , Sulfoglicoesfingolípidos/análisis , Sulfotransferasas/deficiencia , Transactivadores/fisiología
4.
Stroke ; 52(10): 3374-3384, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34404234

RESUMEN

Background and Purpose: Aneurysmal subarachnoid hemorrhage (SAH) is associated with the development of delayed cognitive deficits. Neutrophil infiltration into the central nervous system is linked to the development of these deficits after SAH. It is however unclear how neutrophil activity influences central nervous system function in SAH. The present project aims to elucidate which neutrophil factors mediate central nervous system injury and cognitive deficits after SAH. Methods: Using a murine model of SAH and mice deficient in neutrophil effector functions, we determined which neutrophil effector function is critical to the development of deficits after SAH. In vivo and in vitro techniques were used to investigate possible pathways of neutrophils effect after SAH. Results: Our results show that mice lacking functional MPO (myeloperoxidase), a neutrophil enzyme, lack both the meningeal neutrophil infiltration (wild type, sham 872 cells/meninges versus SAH 3047, P=0.023; myeloperoxidase knockout [MPOKO], sham 1677 versus SAH 1636, P=NS) and erase the cognitive deficits on Barnes maze associated with SAH (MPOKO sham versus SAH, P=NS). The reintroduction of biologically active MPO, and its substrate hydrogen peroxide (H2O2), to the cerebrospinal fluid of MPOKO mice at the time of hemorrhage restores the spatial memory deficit observed after SAH (time to goal box MPOKO sham versus MPOKO+MPO/H2O2, P=0.001). We find evidence of changes in neurons, astrocytes, and microglia with MPO/H2O2 suggesting the effect of MPO may have complex interactions with many cell types. Neurons exposed to MPO/H2O2 show decreased calcium activity at baseline and after stimulation with potassium chloride. Although astrocytes and microglia are affected, changes seen in astrocytes are most consistent with inflammatory changes that likely affect neurons. Conclusions: These results implicate MPO as a mediator of neuronal dysfunction in SAH through its effect on both neurons and glia. These results show that, in SAH, the activity of innate immune cells in the meninges modulates the activity and function of the underlying brain tissue.


Asunto(s)
Venas Cerebrales/lesiones , Neuronas/patología , Neutrófilos/enzimología , Peroxidasa/metabolismo , Hemorragia Subaracnoidea/patología , Animales , Astrocitos/patología , Señalización del Calcio , Trastornos del Conocimiento/etiología , Peróxido de Hidrógeno/líquido cefalorraquídeo , Peróxido de Hidrógeno/farmacología , Inflamación/patología , Aprendizaje por Laberinto , Trastornos de la Memoria/etiología , Trastornos de la Memoria/psicología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroglía/enzimología , Peroxidasa/genética , Memoria Espacial , Hemorragia Subaracnoidea/psicología
5.
Cell Death Dis ; 12(7): 700, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262022

RESUMEN

Proper development of the mammalian cerebral cortex relies on precise gene expression regulation, which is controlled by genetic, epigenetic, and epitranscriptomic factors. Here we generate RNA demethylase Fto and methyltransferase Mettl3 cortical-specific conditional knockout mice, and detect severe brain defects caused by Mettl3 deletion but not Fto knockout. Transcriptomic profiles using RNA sequencing indicate that knockout of Mettl3 causes a more dramatic alteration on gene transcription than that of Fto. Interestingly, we conduct ribosome profiling sequencing, and find that knockout of Mettl3 leads to a more severe disruption of translational regulation of mRNAs than deletion of Fto and results in altered translation of crucial genes in cortical radial glial cells and intermediate progenitors. Moreover, Mettl3 deletion causes elevated translation of a significant number of mRNAs, in particular major components in m6A methylation. Our findings indicate distinct functions of Mettl3 and Fto in brain development, and uncover a profound role of Mettl3 in regulating translation of major mRNAs that control proper cortical development.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Corteza Cerebral/enzimología , Regulación del Desarrollo de la Expresión Génica , Metiltransferasas/metabolismo , Biosíntesis de Proteínas , Transcripción Genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Animales , Corteza Cerebral/embriología , Edad Gestacional , Metilación , Metiltransferasas/genética , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/enzimología , Células-Madre Neurales/patología , Neurogénesis , Neuroglía/enzimología , Neuroglía/patología , Procesamiento Postranscripcional del ARN , Transcriptoma
6.
Cell Death Dis ; 12(3): 227, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649324

RESUMEN

Active Caspase-6 (Casp6) and Tau cleaved by Casp6 at amino acids 402 (Tau∆D402) and 421 (Tau∆D421) are present in early Alzheimer disease intraneuronal neurofibrillary tangles, which are made primarily of filamentous Tau aggregates. To assess whether Casp6 cleavage of Tau contributes to Tau pathology and Casp6-mediated age-dependent cognitive impairment, we generated transgenic knock-in mouse models that conditionally express full-length human Tau (hTau) 0N4R only (CTO) or together with human Casp6 (hCasp6) (CTC). Region-specific hippocampal and cortical hCasp6 and hTau expression were confirmed with western blot and immunohistochemistry in 2-25-month-old brains. Casp6 activity was confirmed with Tau∆D421 and Tubulin cleaved by Casp6 immunopositivity in 3-25-month-old CTC, but not in CTO, brains. Immunoprecipitated Tau∆D402 was detected in both CTC and CTO brains, but was more abundant in CTC brains. Intraneuronal hippocampal Tau hyperphosphorylation at S202/T205, S422, and T231, and Tau conformational change were absent in both CTC and CTO brains. A slight accumulation of Tau phosphorylated at S396/404 and S202 was observed in Cornu Ammonis 1 (CA1) hippocampal neuron soma of CTC compared to CTO brains. Eighteen-month-old CTC brains showed rare argentophilic deposits that increased by 25 months, whereas CTO brains only displayed them sparsely at 25 months. Tau microtubule binding was equivalent in CTC and CTO hippocampi. Episodic and spatial memory measured with novel object recognition and Barnes maze, respectively, remained normal in 3-25-month-old CTC and CTO mice, in contrast to previously observed impairments in ACL mice expressing equivalent levels of hCasp6 only. Consistently, the CTC and CTO hippocampal CA1 region displayed equivalent dendritic spine density and no glial inflammation. Together, these results reveal that active hCasp6 co-expression with hTau generates Tau cleavage and rare age-dependent argentophilic deposits but fails to induce cognitive deficits, neuroinflammation, and Tau pathology.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Conducta Animal , Encéfalo/enzimología , Caspasa 6/metabolismo , Cognición , Disfunción Cognitiva/enzimología , Degeneración Nerviosa , Neuroglía/enzimología , Neuronas/enzimología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Animales , Encéfalo/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Caspasa 6/genética , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Disfunción Cognitiva/psicología , Modelos Animales de Enfermedad , Locomoción , Memoria , Ratones Endogámicos C57BL , Ratones Transgénicos , Ovillos Neurofibrilares/enzimología , Ovillos Neurofibrilares/genética , Ovillos Neurofibrilares/patología , Neuroglía/patología , Neuronas/patología , Prueba de Campo Abierto , Fosforilación , Agregado de Proteínas , Agregación Patológica de Proteínas , Proteínas tau/genética
7.
Theranostics ; 11(5): 2080-2097, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33500712

RESUMEN

Synapses are the functional units of the brain. They form specific contact points that drive neuronal communication and are highly plastic in their strength, density, and shape. A carefully orchestrated balance between synaptogenesis and synaptic pruning, i.e., the elimination of weak or redundant synapses, ensures adequate synaptic density. An imbalance between these two processes lies at the basis of multiple neuropathologies. Recent evidence has highlighted the importance of glia-neuron interactions in the synaptic unit, emphasized by glial phagocytosis of synapses and local excretion of inflammatory mediators. These findings warrant a closer look into the molecular basis of cell-signaling pathways in the different brain cells that are related to synaptic plasticity. In neurons, intracellular second messengers, such as cyclic guanosine or adenosine monophosphate (cGMP and cAMP, respectively), are known mediators of synaptic homeostasis and plasticity. Increased levels of these second messengers in glial cells slow down inflammation and neurodegenerative processes. These multi-faceted effects provide the opportunity to counteract excessive synapse loss by targeting cGMP and cAMP pathways in multiple cell types. Phosphodiesterases (PDEs) are specialized degraders of these second messengers, rendering them attractive targets to combat the detrimental effects of neurological disorders. Cellular and subcellular compartmentalization of the specific isoforms of PDEs leads to divergent downstream effects for these enzymes in the various central nervous system resident cell types. This review provides a detailed overview on the role of PDEs and their inhibition in the context of glia-neuron interactions in different neuropathologies characterized by synapse loss. In doing so, it provides a framework to support future research towards finding combinational therapy for specific neuropathologies.


Asunto(s)
Neuroglía/efectos de los fármacos , Plasticidad Neuronal , Neuronas/efectos de los fármacos , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/química , Animales , Humanos , Neuroglía/enzimología , Neuronas/enzimología , Transducción de Señal
8.
FASEB J ; 35(1): e21225, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33337568

RESUMEN

Studies of neuroglial interaction largely depend on cell-specific gene knockout (KO) experiments using Cre recombinase. However, genes known as glial-specific genes have recently been reported to be expressed in neuroglial stem cells, leading to the possibility that a glia-specific Cre driver results in unwanted gene deletion in neurons, which may affect sound interpretation. 2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP) is generally considered to be an oligodendrocyte (OL) marker. Accordingly, Cnp promoter-controlled Cre recombinase has been used to create OL-specific gene targeting mice. However, in this study, using Rosa26-tdTomato-reporter/Cnp-Cre mice, we found that many forebrain neurons and cerebellar Purkinje neurons belong to the lineages of Cnp-expressing neuroglial stem cells. To answer whether gene targeting by Cnp-Cre can induce neuron-autonomous defects, we conditionally deleted an essential autophagy gene, Atg7, in Cnp-Cre mice. The Cnp-Cre-mediated Atg7 KO mice showed extensive p62 inclusion in neurons, including cerebellar Purkinje neurons with extensive neurodegeneration. Furthermore, neuronal areas showing p62 inclusion in Cnp-Cre-mediated Atg7 KO mice overlapped with the neuronal lineage of Cnp-expressing neuroglial stem cells. Moreover, Cnp-Cre-mediated Atg7-KO mice did not develop critical defects in myelination. Our results demonstrate that a large population of central neurons are derived from Cnp-expressing neuroglial stem cells; thus, conditional gene targeting using the Cnp promoter, which is known to be OL-specific, can induce neuron-autonomous phenotypes.


Asunto(s)
2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/deficiencia , Enfermedades Neurodegenerativas/enzimología , Neuroglía/enzimología , Células de Purkinje/enzimología , Células Madre/enzimología , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/metabolismo , Animales , Proteína 7 Relacionada con la Autofagia/genética , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Noqueados , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Neuroglía/patología , Células de Purkinje/patología , Células Madre/patología
9.
Life Sci ; 265: 118760, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33212149

RESUMEN

AIMS: Epigenetic regulation plays an important role in the progression of Alzheimer's disease (AD). Here, we identified differential methylation probes (DMP) and investigated their potential mechanistic roles in AD. MAIN METHODS: DMPs were identified via bioinformatic analysis of GSE66351, which was made up with 106 AD samples and 84 control samples derived from three separate brain regions. Differentially expressed genes (DEGs) were analyzed based on GSE5281 comprising 45 control samples and 58 AD samples. Gene ontology (GO), gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) were used to identify pathways and hub genes. KEY FINDINGS: We found 9007 DMPs in Occipital Cortex glia, 1527 in OC neurons, 100 in Temporal Cortex, and 194 in Frontal Cortex. 74 DEGs were identified in Primary Visual Cortex, 67 of which were downregulated while seven upregulated. 482 were upregulated and 697 downregulated in medial temporal gyrus. In superior frontal gyrus, 687 were upregulated and 85 downregulated. GO and PPI revealed that pathways involving epithelial-cell differentiation, cellular responses to lipids, transcription corepressor activities, apoptotic and organ growth were modulated by histone deacetylase 1 (HDAC1) and associated with AD. Additionally, GSEA illustrated that the transforming growth factor beta signaling pathway was significantly enriched in some brain regions and HDAC1 played an important role in this pathway. SIGNIFICANCE: We found the glial-specific 3'UTR of HDAC1 was hypermethylated and HDAC1 was overexpressed in AD patients. Moreover, we also speculate that HDAC1 triggered signaling pathways linked to many different biological processes and functions via the regulation of histone deacetylation.


Asunto(s)
Regiones no Traducidas 3' , Enfermedad de Alzheimer/metabolismo , Histona Desacetilasa 1/metabolismo , Neuroglía/metabolismo , Transducción de Señal , Enfermedad de Alzheimer/enzimología , Metilación de ADN , Regulación de la Expresión Génica , Histona Desacetilasa 1/fisiología , Humanos , Neuroglía/enzimología , Mapas de Interacción de Proteínas
10.
Viruses ; 12(10)2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092168

RESUMEN

Polyomaviruses are small, non-enveloped DNA tumor viruses that cause serious disease in immunosuppressed people, including progressive multifocal leukoencephalopathy (PML) in patients infected with JC polyomavirus, but the molecular events mediating polyomavirus entry are poorly understood. Through genetic knockdown approaches, we identified phosphoinositide 3'-kinase γ (PI3Kγ) and its regulatory subunit PIK3R5 as cellular proteins that facilitate infection of human SVG-A glial cells by JCPyV. PI3Kα appears less important for polyomavirus infection than PI3Kγ. CRISPR/Cas9-mediated knockout of PIK3R5 or PI3Kγ inhibited infection by authentic JCPyV and by JC pseudovirus. PI3Kγ knockout also inhibited infection by BK and Merkel Cell pseudoviruses, other pathogenic human polyomaviruses, and SV40, an important model polyomavirus. Reintroduction of the wild-type PI3Kγ gene into the PI3Kγ knock-out SVG-A cells rescued the JCPyV infection defect. Disruption of the PI3Kγ pathway did not block binding of JCPyV to cells or virus internalization, implying that PI3Kγ facilitates some intracellular step(s) of infection. These results imply that agents that inhibit PI3Kγ signaling may have a role in managing polyomavirus infections.


Asunto(s)
Virus JC/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Infecciones por Polyomavirus , Poliomavirus/fisiología , Internalización del Virus , Línea Celular , Humanos , Leucoencefalopatía Multifocal Progresiva/virología , Neuroglía/enzimología , Neuroglía/virología , Fosfatidilinositoles/metabolismo , Infecciones por Polyomavirus/enzimología , Infecciones por Polyomavirus/virología
11.
Sci Rep ; 10(1): 14181, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843670

RESUMEN

Glial fibrillary acidic protein expressing (GFAP+) glia modulate nociceptive neuronal activity in both the peripheral nervous system (PNS) and the central nervous system (CNS). Resident GFAP+ glia in dorsal root ganglia (DRG) known as satellite glial cells (SGCs) potentiate neuronal activity by releasing pro-inflammatory cytokines and neuroactive compounds. In this study, we tested the hypothesis that SGC Gq-coupled receptor (Gq-GPCR) signaling modulates pain sensitivity in vivo using Gfap-hM3Dq mice. Complete Freund's adjuvant (CFA) was used to induce inflammatory pain, and mechanical sensitivity and thermal sensitivity were used to assess the neuromodulatory effect of glial Gq-GPCR activation in awake mice. Pharmacogenetic activation of Gq-GPCR signaling in sensory SGCs decreased heat-induced nociceptive responses and reversed inflammation-induced mechanical allodynia via peripheral adenosine A1 receptor activation. These data reveal a previously unexplored role of sensory SGCs in decreasing afferent excitability. The identified molecular mechanism underlying the analgesic role of SGCs offers new approaches for reversing peripheral nociceptive sensitization.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/fisiología , Hiperalgesia/prevención & control , Inflamación/fisiopatología , Neuroglía/enzimología , Nocicepción/fisiología , Receptor de Adenosina A1/fisiología , Receptor Muscarínico M3/fisiología , Animales , Bencilatos/farmacología , Clozapina/análogos & derivados , Clozapina/farmacología , Adyuvante de Freund/toxicidad , Genes Sintéticos , Calor , Hiperalgesia/fisiopatología , Inflamación/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Agonistas Muscarínicos/farmacología , Neuroglía/fisiología , Nortropanos/farmacología , Regiones Promotoras Genéticas , Agonistas del Receptor Purinérgico P1/farmacología , Antagonistas de Receptores Purinérgicos P1/farmacología , Receptor de Adenosina A1/efectos de los fármacos , Receptor Muscarínico M3/efectos de los fármacos , Receptor Muscarínico M3/genética , Receptores Acoplados a Proteínas G , Proteínas Recombinantes de Fusión/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Teofilina/análogos & derivados , Teofilina/farmacología , Tacto , Xantinas/farmacología
12.
J Anat ; 237(5): 988-997, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32579747

RESUMEN

Dorsal root ganglia (DRGs) host the somata of sensory neurons which convey information from the periphery to the central nervous system. These neurons have heterogeneous size and neurochemistry, and those of small-to-medium size, which play an important role in nociception, form two distinct subpopulations based on the presence (peptidergic) or absence (non-peptidergic) of transmitter neuropeptides. Few investigations have so far addressed the spatial relationship between neurochemically different subpopulations of DRG neurons and glia. We used a whole-mount mouse lumbar DRG preparation, confocal microscopy and computer-aided 3D analysis to unveil that IB4+ non-peptidergic neurons form small clusters of 4.7 ± 0.26 cells, differently from CGRP+ peptidergic neurons that are, for the most, isolated (1.89 ± 0.11 cells). Both subpopulations of neurons are ensheathed by a thin layer of satellite glial cells (SGCs) that can be observed after immunolabeling with the specific marker glutamine synthetase (GS). Notably, at the ultrastructural level we observed that this glial layer was discontinuous, as there were patches of direct contact between the membranes of two adjacent IB4+ neurons. To test whether this cytoarchitectonic organization was modified in the diabetic neuropathy, one of the most devastating sensory pathologies, mice were made diabetic by streptozotocin (STZ). In diabetic animals, cluster organization of the IB4+ non-peptidergic neurons was maintained, but the neuro-glial relationship was altered, as STZ treatment caused a statistically significant increase of GS staining around CGRP+ neurons but a reduction around IB4+ neurons. Ultrastructural analysis unveiled that SGC coverage was increased at the interface between IB4+ cluster-forming neurons in diabetic mice, with a 50% reduction in the points of direct contacts between cells. These observations demonstrate the existence of a structural plasticity of the DRG cytoarchitecture in response to STZ.


Asunto(s)
Diabetes Mellitus Experimental/patología , Ganglios Espinales/ultraestructura , Neuroglía/ultraestructura , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Ganglios Espinales/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Glicoproteínas/metabolismo , Masculino , Ratones , Neuroglía/enzimología
13.
J Neurophysiol ; 123(5): 2064-2074, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32292107

RESUMEN

Four of the five types of mammalian mechanosensors are composed of nerve endings and accessory cells. In Caenorhabditis elegans we showed that glia support the function of nose touch neurons via the activity of glial Na+ and K+ channels. We show here that a third regulator of Na+ and K+, the Na+-K+-ATPase, is needed in glia of nose touch neurons for touch. Importantly, we show that two Na+-K+-ATPase genes are needed for the function rather than structural integrity and that their ion transport activity is crucial for touch. Finally, when glial Na+-K+-ATPase genes are knocked out, touch can be restored by activation of a third Na+-K+-ATPase. Taken together, these data show the requirement in glia of touch neurons of the function of the Na+-K+-ATPase. These data underscore the importance of the homeostasis of Na+ and K+, most likely in the space surrounding touch neurons, in touch sensation, a function that might be conserved across species.NEW & NOTEWORTHY Increasing evidence supports that accessory cells in mechanosensors regulate neuronal output; however, the glial molecular mechanisms that control this regulation are not fully understood. We show here in Caenorhabditis elegans that specific glial Na+-K+-ATPase genes are needed for nose touch-avoidance behavior. Our data support the requirement of these Na+-K+-ATPases for homeostasis of Na+ and K+ in nose touch receptors. Our data add to our understanding of glial regulation of mechanosensors.


Asunto(s)
Conducta Animal/fisiología , Caenorhabditis elegans/fisiología , Neuroglía/metabolismo , Potasio/metabolismo , Células Receptoras Sensoriales/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Sodio/metabolismo , Tacto/fisiología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neuroglía/enzimología
14.
Neuron ; 106(4): 589-606.e6, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32169171

RESUMEN

ACOX1 (acyl-CoA oxidase 1) encodes the first and rate-limiting enzyme of the very-long-chain fatty acid (VLCFA) ß-oxidation pathway in peroxisomes and leads to H2O2 production. Unexpectedly, Drosophila (d) ACOX1 is mostly expressed and required in glia, and loss of ACOX1 leads to developmental delay, pupal death, reduced lifespan, impaired synaptic transmission, and glial and axonal loss. Patients who carry a previously unidentified, de novo, dominant variant in ACOX1 (p.N237S) also exhibit glial loss. However, this mutation causes increased levels of ACOX1 protein and function resulting in elevated levels of reactive oxygen species in glia in flies and murine Schwann cells. ACOX1 (p.N237S) patients exhibit a severe loss of Schwann cells and neurons. However, treatment of flies and primary Schwann cells with an antioxidant suppressed the p.N237S-induced neurodegeneration. In summary, both loss and gain of ACOX1 lead to glial and neuronal loss, but different mechanisms are at play and require different treatments.


Asunto(s)
Acil-CoA Oxidasa/genética , Axones/enzimología , Degeneración Nerviosa/genética , Neuroglía/enzimología , Animales , Axones/patología , Drosophila , Humanos , Ratones , Mutación , Degeneración Nerviosa/enzimología , Neuroglía/patología , Ratas
15.
Mol Neurobiol ; 57(2): 806-822, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31473904

RESUMEN

Parkinson's disease is characterized by a loss of dopaminergic neurons in the ventral midbrain. This disease is diagnosed when around 50% of these neurons have already died; consequently, therapeutic treatments start too late. Therefore, an urgent need exists to find new targets involved in the onset and progression of the disease. Phosphodiesterase 7 (PDE7) is a key enzyme involved in the degradation of intracellular levels of cyclic adenosine 3', 5'-monophosphate in different cell types; however, little is known regarding its role in neurodegenerative diseases, and specifically in Parkinson's disease. We have previously shown that chemical as well as genetic inhibition of this enzyme results in neuroprotection and anti-inflammatory activity in different models of neurodegenerative disorders, including Parkinson's disease. Here, we have used in vitro and in vivo models of Parkinson's disease to study the regulation of PDE7 protein levels. Our results show that PDE7 is upregulated after an injury both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures and after lipopolysaccharide or 6-hidroxydopamine injection in the Substantia nigra pars compacta of adult mice. PDE7 increase takes place mainly in degenerating dopaminergic neurons and in microglia cells. This enhanced expression appears to be direct since 6-hydroxydopamine and lipopolysaccharide increase the expression of a 962-bp fragment of its promoter. Taking together, these results reveal an essential function for PDE7 in the pathways leading to neurodegeneration and inflammatory-mediated brain damage and suggest novel roles for PDE7 in neurodegenerative diseases, specifically in PD, opening the door for new therapeutic interventions.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 7/metabolismo , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/patología , Animales , Apoptosis , Línea Celular , Células Cultivadas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 7/genética , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/enzimología , Neuronas Dopaminérgicas/patología , Embrión de Mamíferos/enzimología , Humanos , Masculino , Mesencéfalo/enzimología , Mesencéfalo/patología , Neuroglía/enzimología , Neuroglía/patología , Oxidopamina , Regiones Promotoras Genéticas/genética , Ratas Wistar , Sustancia Negra/enzimología , Sustancia Negra/patología
16.
Antioxid Redox Signal ; 32(17): 1259-1272, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31847534

RESUMEN

Aims: In this original research communication, we assess the impact of shifting the window of glial HMOX1 overexpression in mice from early-to-midlife to mid-to-late life, resulting in two disparate conditions modeling schizophrenia (SCZ) and Parkinson's disease (PD). Mesolimbic hyperdopaminergia is a widely accepted feature of SCZ, while nigrostriatal hypodopaminergia is the sine qua non of idiopathic PD. Although the advent of parkinsonian features in SCZ patients after treatment with antidopaminergic agents is intuitive, subtle features of parkinsonism commonly observed in young, drug-naïve schizophrenics are not. Similarly, emergent psychosis in PD subjects receiving levodopa replacement is not unusual, whereas spontaneous hallucinosis in nonmedicated persons with idiopathic PD is enigmatic. Investigations using GFAP.HMOX1 mice may shed light on these clinical paradoxes. Results: Astroglial heme oxygenase-1 (HO-1) overexpression in mice throughout embryogenesis until 6 or 12 months of age resulted in hyperdopaminergia, hyperkinesia/stereotypy ameliorated with clozapine, deficient prepulse inhibition of the acoustic startle response, reduced preference for social novelty, impaired nest building, and cognitive dysfunction reminiscent of SCZ. On the contrary, astroglial HO-1 overexpression between 8.5 and 19 months of age yielded a PD-like behavioral phenotype with hypodopaminergia, altered gait, locomotor incoordination, and reduced olfaction. Innovation: We conjecture that region-specific disparities in the susceptibility of dopaminergic and other circuitry to the trophic and degenerative influences of glial HMOX1 induction may permit the concomitant expression of mixed SCZ and PD traits within affected individuals. Conclusion: Elucidation of these converging mechanisms may (i) help better understand disease pathogenesis and (ii) identify HO-1 as a potential therapeutic target in neurodevelopmental and neurodegenerative disorders.


Asunto(s)
Ataxia/genética , Trastornos Neurológicos de la Marcha/genética , Hemo-Oxigenasa 1/genética , Neuroglía/enzimología , Enfermedad de Parkinson/genética , Esquizofrenia/genética , Animales , Ataxia/metabolismo , Ataxia/patología , Modelos Animales de Enfermedad , Trastornos Neurológicos de la Marcha/metabolismo , Trastornos Neurológicos de la Marcha/patología , Hemo-Oxigenasa 1/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuroglía/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Esquizofrenia/metabolismo , Esquizofrenia/patología , Olfato/genética
17.
Sci Rep ; 9(1): 18393, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31804556

RESUMEN

The immunoproteasome (iP) is a variant of the constitutive proteasome (cP) that is abundantly expressed in immune cells which can also be induced in somatic cells by cytokines such as TNF-α or IFN-γ. Accumulating evidence support that the iP is closely linked to multiple facets of inflammatory response, eventually leading to the development of several iP inhibitors as potential therapeutic agents for autoimmune diseases. Recent studies also found that the iP is upregulated in reactive glial cells surrounding amyloid ß (Aß) deposits in brains of Alzheimer's disease (AD) patients, but the role it plays in the pathogenesis of AD remains unclear. In this study, we investigated the effects of several proteasome inhibitors on cognitive function in AD mouse models and found that YU102, a dual inhibitor of the iP catalytic subunit LMP2 and the cP catalytic subunit Y, ameliorates cognitive impairments in AD mouse models without affecting Aß deposition. The data obtained from our investigation revealed that YU102 suppresses the secretion of inflammatory cytokines from microglial cells. Overall, this study indicates that there may exist a potential link between LMP2/Y and microglia-mediated neuroinflammation and that inhibition of these subunits may offer a new therapeutic strategy for AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Cisteína Endopeptidasas/genética , Neuroglía/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/enzimología , Encéfalo/patología , Línea Celular , Disfunción Cognitiva/enzimología , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Cisteína Endopeptidasas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/patología , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Proteínas Quimioatrayentes de Monocitos/genética , Proteínas Quimioatrayentes de Monocitos/metabolismo , Neuroglía/enzimología , Neuroglía/patología , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Bazo/efectos de los fármacos , Bazo/enzimología , Bazo/patología
18.
Commun Biol ; 2: 252, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31286069

RESUMEN

Although numerous studies have demonstrated that neuronal mechanisms regulate alcohol-related behaviors, very few have investigated the direct role of glia in behavioral responses to alcohol. The results described here begin to fill this gap in the alcohol behavior and gliobiology fields. Since Drosophila exhibit conserved behavioral responses to alcohol and their CNS glia are similar to mammalian CNS glia, we used Drosophila to begin exploring the role of glia in alcohol behavior. We found that knockdown of Cysteine proteinase-1 (Cp1) in glia increased Drosophila alcohol sedation and that this effect was specific to cortex glia and adulthood. These data implicate Cp1 and cortex glia in alcohol-related behaviors. Cortex glia are functionally homologous to mammalian astrocytes and Cp1 is orthologous to mammalian Cathepsin L. Our studies raise the possibility that cathepsins may influence behavioral responses to alcohol in mammals via roles in astrocytes.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cisteína Endopeptidasas/fisiología , Proteínas de Drosophila/fisiología , Drosophila/efectos de los fármacos , Etanol/farmacología , Neuroglía/efectos de los fármacos , Neuroglía/enzimología , Animales , Animales Modificados Genéticamente , Astrocitos/fisiología , Sistema Nervioso Central/fisiología , Cisteína Endopeptidasas/genética , Proteínas de Drosophila/genética , Regulación de la Expresión Génica , Genotipo , Hipnóticos y Sedantes/farmacología , Movimiento , Neuronas/fisiología , Interferencia de ARN , Transgenes
19.
Glia ; 67(9): 1705-1718, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31140649

RESUMEN

Sphingolipidoses are severe, mostly infantile lysosomal storage disorders (LSDs) caused by defective glycosphingolipid degradation. Two of these sphingolipidoses, Tay Sachs and Sandhoff diseases, are caused by ß-Hexosaminidase (HEXB) enzyme deficiency, resulting in ganglioside (GM2) accumulation and neuronal loss. The precise sequence of cellular events preceding, and leading to, neuropathology remains unclear, but likely involves inflammation and lysosomal accumulation of GM2 in multiple cell types. We aimed to determine the consequences of Hexb activity loss for different brain cell types using zebrafish. Hexb deficient zebrafish (hexb-/- ) showed lysosomal abnormalities already early in development both in radial glia, which are the neuronal and glial progenitors, and in microglia. Additionally, at 5 days postfertilization, hexb-/- zebrafish showed reduced locomotor activity. Although specific oligosaccharides accumulate in the adult brain, hexb-/- ) zebrafish are viable and apparently resistant to Hexb deficiency. In all, we identified cellular consequences of loss of Hexb enzyme activity during embryonic brain development, showing early effects on glia, which possibly underlie the behavioral aberrations. Hereby, we identified clues into the contribution of non-neuronal lysosomal abnormalities in LSDs affecting the brain and provide a tool to further study what underlies the relative resistance to Hexb deficiency in vivo.


Asunto(s)
Encéfalo/enzimología , Encéfalo/crecimiento & desarrollo , Lisosomas/enzimología , Neuroglía/enzimología , Cadena beta de beta-Hexosaminidasa/genética , Animales , Animales Modificados Genéticamente , Apoptosis/fisiología , Encéfalo/patología , Modelos Animales de Enfermedad , Lisosomas/patología , Actividad Motora/fisiología , Neuroglía/patología , Esfingolipidosis/enzimología , Pez Cebra
20.
Cell Rep ; 27(6): 1637-1649.e6, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067451

RESUMEN

In response to retinal damage, the Müller glial cells (MGs) of the zebrafish retina have the ability to undergo a cellular reprogramming event in which they enter the cell cycle and divide asymmetrically, thereby producing multipotent retinal progenitors capable of regenerating lost retinal neurons. However, mammalian MGs do not exhibit such a proliferative and regenerative ability. Here, we identify Hippo pathway-mediated repression of the transcription cofactor YAP as a core regulatory mechanism that normally blocks mammalian MG proliferation and cellular reprogramming. MG-specific deletion of Hippo pathway components Lats1 and Lats2, as well as transgenic expression of a Hippo non-responsive form of YAP (YAP5SA), resulted in dramatic Cyclin D1 upregulation, loss of adult MG identity, and attainment of a highly proliferative, progenitor-like cellular state. Our results reveal that mammalian MGs may have latent regenerative capacity that can be stimulated by repressing Hippo signaling.


Asunto(s)
Reprogramación Celular , Células Ependimogliales/citología , Células Ependimogliales/enzimología , Mamíferos/metabolismo , Neuroglía/citología , Neuroglía/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Retina/citología , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Ciclina D1/metabolismo , Ciclina D3/metabolismo , Vía de Señalización Hippo , Ratones , Células Madre/metabolismo , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...