Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295.345
Filtrar
1.
J Ethnopharmacol ; 336: 118714, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181289

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gelsemium dynamized dilutions (GDD) are known as a remedy for a wide range of behavioral and psychological symptoms of depression and anxiety at ultra-low doses, yet the underlying mechanisms of the mode of action of G. sempervirens itself are not well understood. AIM OF THE STUDY: The present study was designed to examine the neuroprotective effects of Gelsemium preparations in counteracting stress-related mitochondrial dysfunctions in neuronal cells. MATERIALS AND METHODS: We started by studying how serum deprivation affects the mitochondrial functions of human neuroblastoma (SH-SY5Y) cells. Next, we looked into the potential of various Gelsemium dilutions to improve cell survival and ATP levels. After identifying the most effective dilutions, 3C and 5C, we tested their ability to protect SH-SY5Y cells from stress-induced mitochondrial deficits. We measured total and mitochondrial superoxide anion radicals using fluorescent dyes dihydroethidium (DHE) and the red mitochondrial superoxide indicator (MitoSOX). Additionally, we assessed total nitric oxide levels with 4,5-diaminofluorescein diacetate (DAF-2DA), examined the redox state using pRA305 cells stably transfected with a plasmid encoding a redox-sensitive green fluorescent protein, and analyzed mitochondrial network morphology using an automated high-content analysis device, Cytation3. Furthermore, we investigated bioenergetics by measuring ATP production with a bioluminescence assay (ViaLighTM HT) and evaluated mitochondrial respiration (OCR) and glycolysis (ECAR) using the Seahorse Bioscience XF24 Analyzer. Finally, we determined cell survival using an MTT reduction assay. RESULTS: Our research indicates that Gelsemium dilutions (3C and 5C) exhibited neuroprotective effects by: - Normalizing total and mitochondrial superoxide anion radicals and total nitric oxide levels. - Regulating the mitochondrial redox environment and mitochondrial networks morphology. - Increasing ATP generation as well as OCR and ECAR levels, thereby reducing the viability loss induced by serum withdrawal stress. CONCLUSIONS: These findings highlight that dynamized Gelsemium preparations may have neuroprotective effects against stress-induced cellular changes in the brain by regulating mitochondrial functions, essential for the survival, plasticity, and function of neurons in depression.


Asunto(s)
Supervivencia Celular , Mitocondrias , Neuronas , Fármacos Neuroprotectores , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Adenosina Trifosfato/metabolismo , Estrés Oxidativo/efectos de los fármacos , Óxido Nítrico/metabolismo , Extractos Vegetales/farmacología , Relación Dosis-Respuesta a Droga , Superóxidos/metabolismo
2.
PLoS One ; 19(10): e0298703, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39356649

RESUMEN

Brain Complexity (BC) have successfully been applied to study the brain electroencephalographic signal (EEG) in health and disease. In this study, we employed recurrence entropy to quantify BC associated with the neurophysiology of movement by comparing BC in both resting state and cycling movement. We measured EEG in 24 healthy adults and placed the electrodes on occipital, parietal, temporal and frontal sites on both the right and left sides of the brain. We computed the recurrence entropy from EEG measurements during cycling and resting states. Entropy is higher in the resting state than in the cycling state for all brain regions analysed. This reduction in complexity is a result of the repetitive movements that occur during cycling. These movements lead to continuous sensorial feedback, resulting in reduced entropy and sensorimotor processing.


Asunto(s)
Electroencefalografía , Entropía , Humanos , Adulto , Masculino , Femenino , Corteza Cerebral/fisiología , Neuronas/fisiología , Adulto Joven , Ciclismo/fisiología , Movimiento/fisiología , Descanso/fisiología
3.
Proc Natl Acad Sci U S A ; 121(41): e2319709121, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39356668

RESUMEN

Central nervous system neurons manifest a rich diversity of selectivity profiles-whose precise role is still poorly understood. Following the striking success of artificial networks, a major debate has emerged concerning their usefulness in explaining neuronal properties. Here we propose that finding parallels between artificial and neuronal networks is informative precisely because these systems are so different from each other. Our argument is based on an extension of the concept of convergent evolution-well established in biology-to the domain of artificial systems. Applying this concept to different areas and levels of the cortical hierarchy can be a powerful tool for elucidating the functional role of well-known cortical selectivities. Importantly, we further demonstrate that such parallels can uncover novel functionalities by showing that grid cells in the entorhinal cortex can be modeled to function as a set of basis functions in a lossy representation such as the well-known JPEG compression. Thus, contrary to common intuition, here we illustrate that finding parallels with artificial systems provides novel and informative insights, particularly in those cases that are far removed from realistic brain biology.


Asunto(s)
Evolución Biológica , Encéfalo , Modelos Neurológicos , Encéfalo/fisiología , Humanos , Corteza Entorrinal/fisiología , Animales , Neuronas/fisiología , Redes Neurales de la Computación , Red Nerviosa/fisiología
4.
PLoS One ; 19(10): e0310699, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39356686

RESUMEN

Hippocampal neurons exhibit activation of both the conventional transmembrane adenylyl cyclases (tmACs) and the non-canonical soluble adenylyl cyclase (sAC) as sources of cyclic AMP (cAMP). These two cAMP sources play crucial roles in mediating signaling pathways downstream of CRHR1 in neuronal and neuroendocrine contexts. In this study, we investigate the involvement of both cAMP sources in the molecular mechanisms triggered by CRHR2α. Here we provide evidence demonstrating that UCN1 and UCN3 exert a neuritogenic effect on HT22-CRHR2α cells, which is solely dependent on the cAMP pool generated by sAC and PKA activity but independent of ERK1/2 activation. Through the characterization of the effectors implicated in neurite elongation, we found that CREB phosphorylation and c-Fos induction rely on PKA activity and ERK1/2 phosphorylation, underscoring the critical role of signaling pathway regulation. These findings strengthen the concept that localized cAMP microdomains actively participate in the regulation of these signaling processes.


Asunto(s)
Adenilil Ciclasas , Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Receptores de Hormona Liberadora de Corticotropina , Transducción de Señal , AMP Cíclico/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Animales , Adenilil Ciclasas/metabolismo , Ratones , Fosforilación , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Urocortinas/metabolismo , Línea Celular , Neuritas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Neuronas/metabolismo
5.
Sci Adv ; 10(40): eadp0696, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39356770

RESUMEN

The major female ovarian hormone, 17ß-estradiol (E2), can alter neuronal excitability within milliseconds to regulate a variety of physiological processes. Estrogen receptor-α (ERα), classically known as a nuclear receptor, exists as a membrane-bound receptor to mediate this rapid action of E2, but the ionic mechanisms remain unclear. Here, we show that a membrane channel protein, chloride intracellular channel protein-1 (Clic1), can physically interact with ERα with a preference to the membrane-bound ERα. Clic1-mediated currents can be enhanced by E2 and reduced by its depletion. In addition, Clic1 currents are required to mediate the E2-induced rapid excitations in multiple brain ERα populations. Further, genetic disruption of Clic1 in hypothalamic ERα neurons blunts the regulations of E2 on female body weight balance. In conclusion, we identified the Clic1 chloride channel as a key mediator for E2-induced rapid neuronal excitation, which may have a broad impact on multiple neurobiological processes regulated by E2.


Asunto(s)
Canales de Cloruro , Receptor alfa de Estrógeno , Neuronas , Neuronas/metabolismo , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Animales , Femenino , Humanos , Estradiol/metabolismo , Estradiol/farmacología , Ratones , Hipotálamo/metabolismo , Hipotálamo/citología , Unión Proteica
6.
Annu Rev Cell Dev Biol ; 40(1): 427-452, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39356810

RESUMEN

"What makes us human?" is a central question of many research fields, notably anthropology. In this review, we focus on the development of the human neocortex, the part of the brain with a key role in cognition, to gain neurobiological insight toward answering this question. We first discuss cortical stem and progenitor cells and human-specific genes that affect their behavior. We thus aim to understand the molecular foundation of the expansion of the neocortex that occurred in the course of human evolution, as this expansion is generally thought to provide a basis for our unique cognitive abilities. We then review the emerging evidence pointing to differences in the development of the neocortex between present-day humans and Neanderthals, our closest relatives. Finally, we discuss human-specific genes that have been implicated in neuronal circuitry and offer a perspective for future studies addressing the question of what makes us human.


Asunto(s)
Evolución Biológica , Neocórtex , Humanos , Neocórtex/embriología , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo , Animales , Hombre de Neandertal/genética , Cognición , Neuronas/metabolismo
8.
J Neurosci ; 44(40)2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358017

RESUMEN

Understanding the brain requires studying its multiscale interactions from molecules to networks. The increasing availability of large-scale datasets detailing brain circuit composition, connectivity, and activity is transforming neuroscience. However, integrating and interpreting this data remains challenging. Concurrently, advances in supercomputing and sophisticated modeling tools now enable the development of highly detailed, large-scale biophysical circuit models. These mechanistic multiscale models offer a method to systematically integrate experimental data, facilitating investigations into brain structure, function, and disease. This review, based on a Society for Neuroscience 2024 MiniSymposium, aims to disseminate recent advances in large-scale mechanistic modeling to the broader community. It highlights (1) examples of current models for various brain regions developed through experimental data integration; (2) their predictive capabilities regarding cellular and circuit mechanisms underlying experimental recordings (e.g., membrane voltage, spikes, local-field potential, electroencephalography/magnetoencephalography) and brain function; and (3) their use in simulating biomarkers for brain diseases like epilepsy, depression, schizophrenia, and Parkinson's, aiding in understanding their biophysical underpinnings and developing novel treatments. The review showcases state-of-the-art models covering hippocampus, somatosensory, visual, motor, auditory cortical, and thalamic circuits across species. These models predict neural activity at multiple scales and provide insights into the biophysical mechanisms underlying sensation, motor behavior, brain signals, neural coding, disease, pharmacological interventions, and neural stimulation. Collaboration with experimental neuroscientists and clinicians is essential for the development and validation of these models, particularly as datasets grow. Hence, this review aims to foster interest in detailed brain circuit models, leading to cross-disciplinary collaborations that accelerate brain research.


Asunto(s)
Encéfalo , Modelos Neurológicos , Red Nerviosa , Neuronas , Humanos , Encéfalo/fisiología , Animales , Neuronas/fisiología , Red Nerviosa/fisiología
9.
J Neurosci ; 44(40)2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358029

RESUMEN

Communication between neurons and glia significantly influences the development maturation, plasticity, and disease progressions of the nervous system. As a new signaling modality, extracellular vesicles display a diverse role for robust functional regulation of neurons through their protein and nucleic acid cargoes. This review highlights recent breakthroughs in the research of signaling mechanisms between glia and neurons mediated by extracellular vesicles that are important for neural development, axonal maintenance, synaptic functions, and disease progression in the mammalian nervous system. We will discuss the biological roles of extracellular vesicles released from neurons, astroglia, microglia, and oligodendroglia in the nervous system and their implications in neurodegenerative disorders.


Asunto(s)
Comunicación Celular , Sistema Nervioso Central , Vesículas Extracelulares , Neuroglía , Neuronas , Vesículas Extracelulares/fisiología , Vesículas Extracelulares/metabolismo , Humanos , Animales , Neuronas/fisiología , Neuroglía/fisiología , Comunicación Celular/fisiología , Sistema Nervioso Central/fisiología , Sistema Nervioso Central/citología
10.
J Neurosci ; 44(40)2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358028

RESUMEN

The brain is a highly adaptable organ that is molded by experience throughout life. Although the field of neuroscience has historically focused on intrinsic neuronal mechanisms of plasticity, there is growing evidence that multiple glial populations regulate the timing and extent of neuronal plasticity, particularly over the course of development. This review highlights recent discoveries on the role of glial cells in the establishment of cortical circuits and the regulation of experience-dependent neuronal plasticity during critical periods of neurodevelopment. These studies provide strong evidence that neuronal circuit maturation and plasticity are non-cell autonomous processes that require both glial-neuronal and glial-glial cross talk to proceed. We conclude by discussing open questions that will continue to guide research in this nascent field.


Asunto(s)
Corteza Cerebral , Neuroglía , Plasticidad Neuronal , Neuronas , Plasticidad Neuronal/fisiología , Animales , Neuroglía/fisiología , Humanos , Corteza Cerebral/fisiología , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Neuronas/fisiología , Red Nerviosa/fisiología , Red Nerviosa/crecimiento & desarrollo , Neurogénesis/fisiología
11.
J Neurosci ; 44(40)2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358027

RESUMEN

Degeneracy is defined as multiple sets of solutions that can produce very similar system performance. Degeneracy is seen across phylogenetic scales, in all kinds of organisms. In neuroscience, degeneracy can be seen in the constellation of biophysical properties that produce a neuron's characteristic intrinsic properties and/or the constellation of mechanisms that determine circuit outputs or behavior. Here, we present examples of degeneracy at multiple levels of organization, from single-cell behavior, small circuits, large circuits, and, in cognition, drawing conclusions from work ranging from bacteria to human cognition. Degeneracy allows the individual-to-individual variability within a population that creates potential for evolution.


Asunto(s)
Encéfalo , Neuronas , Humanos , Animales , Neuronas/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Cognición/fisiología , Evolución Biológica
12.
J Neurosci ; 44(40)2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358030

RESUMEN

The traditional view of glial cells as mere supportive tissue has shifted, due to advances in technology and theoretical conceptualization, to include a diversity of other functions, such as regulation of complex behaviors. Astrocytes, the most abundant glial cells in the central nervous system (CNS), have been shown to modulate synaptic functions through gliotransmitter-mediated neurotransmitter reuptake, influencing neuronal signaling and behavioral functions. Contemporary studies further highlight astrocytes' involvement in complex cognitive functions. For instance, inhibiting astrocytes in the hippocampus can lead to memory deficits, suggesting their integral role in memory processes. Moreover, astrocytic calcium activity and astrocyte-neuron metabolic coupling have been linked to changes in synaptic strength and learning. Microglia, another type of glial cell, also extend beyond their supportive roles, contributing to learning and memory processes, with microglial reductions impacting these functions in a developmentally dependent manner. Oligodendrocytes, traditionally thought to have limited roles postdevelopment, are now recognized for their activity-dependent modulation of myelination and plasticity, thus influencing behavioral responses. Recent advancements in technology and computational modeling have expanded our understanding of glial functions, particularly how astrocytes influence neuronal circuits and behaviors. This review underscores the importance of glial cells in CNS functions and the need for further research to unravel the complexities of neuron-glia interactions, the impact of these interactions on brain functions, and potential implications for neurological diseases.


Asunto(s)
Cognición , Neuroglía , Plasticidad Neuronal , Neuronas , Plasticidad Neuronal/fisiología , Animales , Humanos , Neuroglía/fisiología , Neuronas/fisiología , Cognición/fisiología , Comunicación Celular/fisiología , Astrocitos/fisiología
13.
Transl Psychiatry ; 14(1): 405, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358332

RESUMEN

Disruption of SYNGAP1 directly causes a genetically identifiable neurodevelopmental disorder (NDD) called SYNGAP1-related intellectual disability (SRID). Without functional SynGAP1 protein, individuals are developmentally delayed and have prominent features of intellectual disability (ID), motor impairments, and epilepsy. Over the past two decades, there have been numerous discoveries indicating the critical role of Syngap1. Several rodent models with a loss of Syngap1 have been engineered, identifying precise roles in neuronal structure and function, as well as key biochemical pathways key for synapse integrity. Homozygous loss of SYNGAP1/Syngap1 is lethal. Heterozygous mutations of Syngap1 result in a broad range of behavioral phenotypes. Our in vivo functional data, using the original mouse model from the Huganir laboratory, corroborated behaviors including robust hyperactivity and deficits in learning and memory in young adults. Furthermore, we described impairments in the domain of sleep, characterized using neurophysiological data that was collected with wireless, telemetric electroencephalography (EEG). Syngap1+/- mice exhibited elevated spiking events and spike trains, in addition to elevated power, most notably in the delta power frequency. For the first time, we illustrated that primary neurons from Syngap1+/- mice displayed: 1) increased network firing activity, 2) greater bursts, 3) and shorter inter-burst intervals between peaks, by utilizing high density microelectrode arrays (HD-MEA). Our work bridges in vitro electrophysiological neuronal activity and function with in vivo neurophysiological brain activity and function. These data elucidate quantitative, translational biomarkers in vivo and in vitro that can be utilized for the development and efficacy assessment of targeted treatments for SRID.


Asunto(s)
Modelos Animales de Enfermedad , Discapacidad Intelectual , Fenotipo , Proteínas Activadoras de ras GTPasa , Animales , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Ratones , Proteínas Activadoras de ras GTPasa/genética , Electroencefalografía , Neuronas/fisiología , Masculino , Conducta Animal , Femenino
14.
Eur Rev Med Pharmacol Sci ; 28(18): 4277-4289, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39359199

RESUMEN

OBJECTIVE: Ferroptosis of neurons is a significant cause of brain injury following intracerebral hemorrhage (ICH). As an iron-containing compound in hemoglobin, heme contributes to nerve injury post-ICH. Melatonin has been shown to mitigate the effects of ICH, yet its specific functions remain largely elusive. In this study, we aimed to explore the roles and mechanisms of melatonin in heme-induced ferroptosis subsequent to ICH. MATERIALS AND METHODS: C57BL/6 mice were intracranially injected with heme and then treated with melatonin. Behavior tests [modified neurological severity score (mNSS), forelimb placing, and corner turn tests], H&E staining, Nissl staining, and Prussian blue staining were used to evaluate mouse brain tissue injury. In vitro, HT-22 cells were stimulated with heme and cell viability was determined by crystal violet staining. The iron contents were determined in heme-treated brains and cells, and the levels of 4-hydroxynonenal (4-HNE) and malonaldehyde (MDA) were assessed by ELISA. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to investigate the mRNA levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Immunoblotting was used to analyze the protein expression of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), Nrf2, and HO-1. Finally, small interfering RNA (siRNA) was used to knock down Nrf2 in HT-22 cells. RESULTS: Melatonin treatment alleviated heme-induced injuries to neural function, as indicated by improved behavior in the mice. Moreover, melatonin decreased cell death and iron concentrations, increased MDA and 4-HNE levels, and reversed the decreases in GPX4, SLC7A11, Nrf2, and HO-1 induced by heme in vitro and in vivo. These results indicated that melatonin could improve the ferroptosis induced by heme. In addition, we found that Nrf2 knockdown attenuated the therapeutic effect of melatonin on neuronal ferroptosis induced by heme. CONCLUSIONS: In general, melatonin alleviates heme-induced ferroptosis by activating the Nrf2/HO-1 pathway, which implies that melatonin is a promising treatment for ferroptosis in ICH.


Asunto(s)
Ferroptosis , Hemo-Oxigenasa 1 , Hemo , Melatonina , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Neuronas , Animales , Ferroptosis/efectos de los fármacos , Melatonina/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Hemo-Oxigenasa 1/metabolismo , Hemo/metabolismo , Masculino , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patología , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Proteínas de la Membrana
15.
Elife ; 132024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360803

RESUMEN

γ-Secretase plays a pivotal role in the central nervous system. Our recent development of genetically encoded Förster resonance energy transfer (FRET)-based biosensors has enabled the spatiotemporal recording of γ-secretase activity on a cell-by-cell basis in live neurons in culture. Nevertheless, how γ-secretase activity is regulated in vivo remains unclear. Here, we employ the near-infrared (NIR) C99 720-670 biosensor and NIR confocal microscopy to quantitatively record γ-secretase activity in individual neurons in living mouse brains. Intriguingly, we uncovered that γ-secretase activity may influence the activity of γ-secretase in neighboring neurons, suggesting a potential 'cell non-autonomous' regulation of γ-secretase in mouse brains. Given that γ-secretase plays critical roles in important biological events and various diseases, our new assay in vivo would become a new platform that enables dissecting the essential roles of γ-secretase in normal health and diseases.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Encéfalo , Transferencia Resonante de Energía de Fluorescencia , Animales , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Encéfalo/metabolismo , Ratones , Transferencia Resonante de Energía de Fluorescencia/métodos , Neuronas/metabolismo , Técnicas Biosensibles/métodos , Microscopía Confocal
16.
Mol Autism ; 15(1): 42, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350244

RESUMEN

BACKGROUND: SETBP1 Haploinsufficiency Disorder (SETBP1-HD) is characterised by mild to moderate intellectual disability, speech and language impairment, mild motor developmental delay, behavioural issues, hypotonia, mild facial dysmorphisms, and vision impairment. Despite a clear link between SETBP1 mutations and neurodevelopmental disorders the precise role of SETBP1 in neural development remains elusive. We investigate the functional effects of three SETBP1 genetic variants including two pathogenic mutations p.Glu545Ter and SETBP1 p.Tyr1066Ter, resulting in removal of SKI and/or SET domains, and a point mutation p.Thr1387Met in the SET domain. METHODS: Genetic variants were introduced into induced pluripotent stem cells (iPSCs) and subsequently differentiated into neurons to model the disease. We measured changes in cellular differentiation, SETBP1 protein localisation, and gene expression changes. RESULTS: The data indicated a change in the WNT pathway, RNA polymerase II pathway and identified GATA2 as a central transcription factor in disease perturbation. In addition, the genetic variants altered the expression of gene sets related to neural forebrain development matching characteristics typical of the SETBP1-HD phenotype. LIMITATIONS: The study investigates changes in cellular function in differentiation of iPSC to neural progenitor cells as a human model of SETBP1 HD disorder. Future studies may provide additional information relevant to disease on further neural cell specification, to derive mature neurons, neural forebrain cells, or brain organoids. CONCLUSIONS: We developed a human SETBP1-HD model and identified perturbations to the WNT and POL2RA pathway, genes regulated by GATA2. Strikingly neural cells for both the SETBP1 truncation mutations and the single nucleotide variant displayed a SETBP1-HD-like phenotype.


Asunto(s)
Proteínas Portadoras , Diferenciación Celular , Haploinsuficiencia , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Humanos , Proteínas Portadoras/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutación , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Neuronas/metabolismo , Células-Madre Neurales/metabolismo , Vía de Señalización Wnt/genética , Discapacidad Intelectual/genética , Fenotipo
17.
Front Immunol ; 15: 1458967, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351233

RESUMEN

Varicella-zoster virus (VZV) encephalitis and meningitis are potential central nervous system (CNS) complications following primary VZV infection or reactivation. With Type-I interferon (IFN) signalling being an important first line cellular defence mechanism against VZV infection by the peripheral tissues, we here investigated the triggering of innate immune responses in a human neural-like environment. For this, we established and characterised 5-month matured hiPSC-derived neurospheroids (NSPHs) containing neurons and astrocytes. Subsequently, NSPHs were infected with reporter strains of VZV (VZVeGFP-ORF23) or Sendai virus (SeVeGFP), with the latter serving as an immune-activating positive control. Live cell and immunocytochemical analyses demonstrated VZVeGFP-ORF23 infection throughout the NSPHs, while SeVeGFP infection was limited to the outer NSPH border. Next, NanoString digital transcriptomics revealed that SeVeGFP-infected NSPHs activated a clear Type-I IFN response, while this was not the case in VZVeGFP-ORF23-infected NSPHs. Moreover, the latter displayed a strong suppression of genes related to IFN signalling and antigen presentation, as further demonstrated by suppression of IL-6 and CXCL10 production, failure to upregulate Type-I IFN activated anti-viral proteins (Mx1, IFIT2 and ISG15), as well as reduced expression of CD74, a key-protein in the MHC class II antigen presentation pathway. Finally, even though VZVeGFP-ORF23-infection seems to be immunologically ignored in NSPHs, its presence does result in the formation of stress granules upon long-term infection, as well as disruption of cellular integrity within the infected NSPHs. Concluding, in this study we demonstrate that 5-month matured hiPSC-derived NSPHs display functional innate immune reactivity towards SeV infection, and have the capacity to recapitulate the strong immune evasive behaviour towards VZV.


Asunto(s)
Herpesvirus Humano 3 , Células Madre Pluripotentes Inducidas , Humanos , Herpesvirus Humano 3/inmunología , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/virología , Inmunidad Innata , Neuronas/inmunología , Neuronas/virología , Infección por el Virus de la Varicela-Zóster/inmunología , Infección por el Virus de la Varicela-Zóster/virología , Células Cultivadas , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Evasión Inmune , Citocinas/metabolismo , Citocinas/inmunología , Astrocitos/inmunología , Astrocitos/virología , Astrocitos/metabolismo , Transducción de Señal/inmunología
18.
J Clin Invest ; 134(19)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352389

RESUMEN

Obesity is a growing public health concern that affects the longevity and lifestyle of all human populations including children and older individuals. Diverse factors drive obesity, making it challenging to understand and treat. While recent studies highlight the importance of GPCR signaling for metabolism and fat accumulation, we lack a molecular description of how obesogenic signals accumulate and propagate in cells, tissues, and organs. In this issue of the JCI, Jiang et al. utilized germline mutagenesis to generate a missense variant of GRP75, encoded by the Thinner allele, which resulted in mice with a lean phenotype. GPR75 accumulated in the cilia of hypothalamic neurons. However, mice with the Thinner allele showed defective ciliary localization with resistance to fat accumulation. Additionally, GPR75 regulation of fat accumulation appeared independent of leptin and ADCY3 signaling. These findings shed light on the role of GPR75 in fat accumulation and highlight the need to identify relevant ligands.


Asunto(s)
Cilios , Obesidad , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ratones , Cilios/metabolismo , Cilios/genética , Obesidad/metabolismo , Obesidad/genética , Obesidad/patología , Humanos , Mutación Missense , Transducción de Señal , Hipotálamo/metabolismo , Neuronas/metabolismo , Tejido Adiposo/metabolismo , Leptina/metabolismo , Leptina/genética , Adenilil Ciclasas
19.
Proc Natl Acad Sci U S A ; 121(41): e2302730121, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39352933

RESUMEN

The critical brain hypothesis states that the brain can benefit from operating close to a second-order phase transition. While it has been shown that several computational aspects of sensory processing (e.g., sensitivity to input) can be optimal in this regime, it is still unclear whether these computational benefits of criticality can be leveraged by neural systems performing behaviorally relevant computations. To address this question, we investigate signatures of criticality in networks optimized to perform efficient coding. We consider a spike-coding network of leaky integrate-and-fire neurons with synaptic transmission delays. Previously, it was shown that the performance of such networks varies nonmonotonically with the noise amplitude. Interestingly, we find that in the vicinity of the optimal noise level for efficient coding, the network dynamics exhibit some signatures of criticality, namely, scale-free dynamics of the spiking and the presence of crackling noise relation. Our work suggests that two influential, and previously disparate theories of neural processing optimization (efficient coding and criticality) may be intimately related.


Asunto(s)
Potenciales de Acción , Modelos Neurológicos , Red Nerviosa , Neuronas , Transmisión Sináptica , Neuronas/fisiología , Red Nerviosa/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/fisiología , Encéfalo/fisiología , Humanos , Animales
20.
Sci Signal ; 17(856): eadk2345, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39353037

RESUMEN

The axon guidance cue netrin-1 signals through its receptor DCC (deleted in colorectal cancer) to attract commissural axons to the midline. Variants in DCC are frequently associated with congenital mirror movements (CMMs). A CMM-associated variant in the cytoplasmic tail of DCC is located in a conserved motif predicted to bind to a regulator of actin dynamics called the WAVE (Wiskott-Aldrich syndrome protein-family verprolin homologous protein) regulatory complex (WRC). Here, we explored how this variant affects DCC function and may contribute to CMM. We found that a conserved WRC-interacting receptor sequence (WIRS) motif in the cytoplasmic tail of DCC mediated the interaction between DCC and the WRC. This interaction was required for netrin-1-mediated axon guidance in cultured rodent commissural neurons. Furthermore, the WIRS motif of Fra, the Drosophila DCC ortholog, was required for attractive signaling in vivo at the Drosophila midline. The CMM-associated R1343H variant of DCC, which altered the WIRS motif, prevented the DCC-WRC interaction and impaired axon guidance in cultured commissural neurons and in Drosophila. The findings reveal the WRC as a pivotal component of netrin-1-DCC signaling and uncover a molecular mechanism explaining how a human genetic variant in the cytoplasmic tail of DCC may lead to CMM.


Asunto(s)
Orientación del Axón , Receptor DCC , Proteínas de Drosophila , Netrina-1 , Netrina-1/metabolismo , Netrina-1/genética , Receptor DCC/metabolismo , Receptor DCC/genética , Animales , Humanos , Orientación del Axón/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Ratas , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Axones/metabolismo , Axones/fisiología , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Transducción de Señal , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ratones , Neuronas/metabolismo , Células HEK293 , Receptores de Netrina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA