Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 557
Filtrar
1.
Sci Adv ; 10(17): eadj9581, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669335

RESUMEN

The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. While much previous work has emphasized the role of descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We describe pain-related activity throughout this circuit and report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings substantially revise current models of the DPMS and establish a supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.


Asunto(s)
Analgésicos Opioides , Locus Coeruleus , Bulbo Raquídeo , Dolor , Sustancia Gris Periacueductal , Locus Coeruleus/metabolismo , Locus Coeruleus/efectos de los fármacos , Sustancia Gris Periacueductal/metabolismo , Sustancia Gris Periacueductal/efectos de los fármacos , Animales , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/efectos de los fármacos , Dolor/tratamiento farmacológico , Dolor/metabolismo , Analgésicos Opioides/farmacología , Masculino , Neuronas Adrenérgicas/metabolismo , Neuronas Adrenérgicas/efectos de los fármacos , Ratones , Vías Nerviosas/efectos de los fármacos
2.
J Headache Pain ; 25(1): 31, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443795

RESUMEN

BACKGROUND: Both epidemiological and clinical studies have indicated that headache and sleep disturbances share a complex relationship. Although headache and sleep share common neurophysiological and anatomical foundations, the mechanism underlying their interaction remains poorly understood. The structures of the diencephalon and brainstem, particularly the locus coeruleus (LC), are the primary sites where the sleep and headache pathways intersect. To better understand the intricate nature of the relationship between headache and sleep, our study focused on investigating the role and function of noradrenergic neurons in the LC during acute headache and acute sleep disturbance. METHOD: To explore the relationship between acute headache and acute sleep disturbance, we primarily employed nitroglycerin (NTG)-induced migraine-like headache and acute sleep deprivation (ASD) models. Initially, we conducted experiments to confirm that ASD enhances headache and that acute headache can lead to acute sleep disturbance. Subsequently, we examined the separate roles of the LC in sleep and headache. We observed the effects of drug-induced activation and inhibition and chemogenetic manipulation of LC noradrenergic neurons on ASD-induced headache facilitation and acute headache-related sleep disturbance. This approach enabled us to demonstrate the bidirectional function of LC noradrenergic neurons. RESULTS: Our findings indicate that ASD facilitated the development of NTG-induced migraine-like headache, while acute headache affected sleep quality. Furthermore, activating the LC reduced the headache threshold and increased sleep latency, whereas inhibiting the LC had the opposite effect. Additional investigations demonstrated that activating LC noradrenergic neurons further intensified pain facilitation from ASD, while inhibiting these neurons reduced this pain facilitation. Moreover, activating LC noradrenergic neurons exacerbated the impact of acute headache on sleep quality, while inhibiting them alleviated this influence. CONCLUSION: The LC serves as a significant anatomical and functional region in the interaction between acute sleep disturbance and acute headache. The involvement of LC noradrenergic neurons is pivotal in facilitating headache triggered by ASD and influencing the effects of headache on sleep quality.


Asunto(s)
Dolor Agudo , Neuronas Adrenérgicas , Trastornos Migrañosos , Trastornos del Sueño-Vigilia , Humanos , Locus Coeruleus , Trastornos del Sueño-Vigilia/complicaciones , Cefalea , Privación de Sueño , Sueño , Nitroglicerina
3.
Acta Physiol (Oxf) ; 240(4): e14123, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38459766

RESUMEN

AIMS: This study aimed to characterize the properties of locus coeruleus (LC) noradrenergic neurons in male and female mice. We also sought to investigate sex-specific differences in membrane properties, action potential generation, and protein expression profiles to understand the mechanisms underlying neuronal excitability variations. METHODS: Utilizing a genetic mouse model by crossing Dbhcre knock-in mice with tdTomato Ai14 transgenic mice, LC neurons were identified using fluorescence microscopy. Neuronal functional properties were assessed using patch-clamp recordings. Proteomic analyses of individual LC neuron soma was conducted using mass spectrometry to discern protein expression profiles. Data are available via ProteomeXchange with identifier PXD045844. RESULTS: Female LC noradrenergic neurons displayed greater membrane capacitance than those in male mice. Male LC neurons demonstrated greater spontaneous and evoked action potential generation compared to females. Male LC neurons exhibited a lower rheobase and achieved higher peak frequencies with similar current injections. Proteomic analysis revealed differences in protein expression profiles between sexes, with male mice displaying a notably larger unique protein set compared to females. Notably, pathways pertinent to protein synthesis, degradation, and recycling, such as EIF2 and glucocorticoid receptor signaling, showed reduced expression in females. CONCLUSIONS: Male LC noradrenergic neurons exhibit higher intrinsic excitability compared to those from females. The discernible sex-based differences in excitability could be ascribed to varying protein expression profiles, especially within pathways that regulate protein synthesis and degradation. This study lays the groundwork for future studies focusing on the interplay between proteomics and neuronal function examined in individual cells.


Asunto(s)
Neuronas Adrenérgicas , Locus Coeruleus , Proteína Fluorescente Roja , Ratones , Femenino , Masculino , Animales , Locus Coeruleus/metabolismo , Caracteres Sexuales , Proteómica , Ratones Transgénicos , Espectrometría de Masas
4.
Commun Biol ; 7(1): 287, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459113

RESUMEN

Dynamic changes in astrocyte Ca2+ are recognized as contributors to functional hyperemia, a critical response to increased neuronal activity mediated by a process known as neurovascular coupling (NVC). Although the critical role of glutamatergic signaling in this process has been extensively investigated, the impact of behavioral state, and the release of behavior-associated neurotransmitters, such as norepinephrine and serotonin, on astrocyte Ca2+ dynamics and functional hyperemia have received less attention. We used two-photon imaging of the barrel cortex in awake mice to examine the role of noradrenergic and serotonergic projections in NVC. We found that both neurotransmitters facilitated sensory stimulation-induced increases in astrocyte Ca2+. Interestingly, while ablation of serotonergic neurons reduced sensory stimulation-induced functional hyperemia, ablation of noradrenergic neurons caused both attenuation and potentiation of functional hyperemia. Our study demonstrates that norepinephrine and serotonin are involved in modulating sensory stimulation-induced astrocyte Ca2+ elevations and identifies their differential effects in regulating functional hyperemia.


Asunto(s)
Neuronas Adrenérgicas , Hiperemia , Acoplamiento Neurovascular , Ratones , Animales , Acoplamiento Neurovascular/fisiología , Serotonina , Neurotransmisores , Norepinefrina , Transducción de Señal
5.
J Neurosci ; 43(47): 7982-7999, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37734949

RESUMEN

Neuronal activity is modulated not only by inputs from other neurons but also by various factors, such as bioactive substances. Noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons) are involved in diverse physiological functions, including sleep/wakefulness and stress responses. Previous studies have identified various substances and receptors that modulate LC-NA neuronal activity through techniques including electrophysiology, calcium imaging, and single-cell RNA sequencing. However, many substances with unknown physiological significance have been overlooked. Here, we established an efficient screening method for identifying substances that modulate LC-NA neuronal activity through intracellular calcium ([Ca2+]i) imaging using brain slices. Using both sexes of mice, we screened 53 bioactive substances, and identified five novel substances: gastrin-releasing peptide, neuromedin U, and angiotensin II, which increase [Ca2+]i, and pancreatic polypeptide and prostaglandin D2, which decrease [Ca2+]i Among them, neuromedin U induced the greatest response in female mice. In terms of the duration of [Ca2+]i change, we focused on prostaglandin E2 (PGE2), since it induces a long-lasting decrease in [Ca2+]i via the EP3 receptor. Conditional knock-out of the receptor in LC-NA neurons resulted in increased depression-like behavior, prolonged wakefulness in the dark period, and increased [Ca2+]i after stress exposure. Our results demonstrate the effectiveness of our screening method for identifying substances that modulate a specific neuronal population in an unbiased manner and suggest that stress-induced prostaglandin E2 can suppress LC-NA neuronal activity to moderate the behavioral response to stressors. Our screening method will contribute to uncovering previously unknown physiological functions of uncharacterized bioactive substances in specific neuronal populations.SIGNIFICANCE STATEMENT Bioactive substances modulate the activity of specific neuronal populations. However, since only a limited number of substances with predicted effects have been investigated, many substances that may modulate neuronal activity have gone unrecognized. Here, we established an unbiased method for identifying modulatory substances by measuring the intracellular calcium signal, which reflects neuronal activity. We examined noradrenergic (NA) neurons in the locus coeruleus (LC-NA neurons), which are involved in diverse physiological functions. We identified five novel substances that modulate LC-NA neuronal activity. We also found that stress-induced prostaglandin E2 (PGE2) may suppress LC-NA neuronal activity and influence behavioral outcomes. Our screening method will help uncover previously overlooked functions of bioactive substances and provide insight into unrecognized roles of specific neuronal populations.


Asunto(s)
Neuronas Adrenérgicas , Locus Coeruleus , Masculino , Ratones , Femenino , Animales , Locus Coeruleus/fisiología , Calcio/farmacología , Norepinefrina/farmacología , Prostaglandinas
6.
J Neuroinflammation ; 20(1): 198, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658434

RESUMEN

BACKGROUND: Most current disease-modifying therapies approved for multiple sclerosis (MS) are immunomodulatory drugs that counteract the aberrant activity of the immune system. Hence, new pharmacological interventions that drive anti-inflammatory activity and neuroprotection would represent interesting alternative therapeutic approaches or complementary strategies to treat progressive forms of MS. There is evidence of reduced noradrenaline levels and alterations to locus coeruleus (LC) noradrenergic neurons in MS patients, as well as in animal models of this disease, potentially factors contributing to the pathophysiology. Drugs that enhance noradrenaline appear to have some beneficial effects in MS, suggesting their potential to dampen the underlying pathology and disease progression. METHODS: Therefore, we explored the consequences of chronic LC noradrenergic neurons activation by chemogenetics in experimental autoimmune encephalomyelitis (EAE) mice, the most widely used experimental model of MS. LC activation from the onset or the peak of motor symptoms was explored as two different therapeutic approaches, assessing the motor and non-motor behavioral changes as EAE progresses, and studying demyelination, inflammation and glial activation in the spinal cord and cerebral cortex during the chronic phase of EAE. RESULTS: LC activation from the onset of motor symptoms markedly alleviated the motor deficits in EAE mice, as well as their anxiety-like behavior and sickness, in conjunction with reduced demyelination and perivascular infiltration in the spinal cord and glial activation in the spinal cord and prefrontal cortex (PFC). When animals exhibited severe paralysis, LC activation produced a modest alleviation of EAE motor symptoms and it enhanced animal well-being, in association with an improvement of the EAE pathology at the spinal cord and PFC level. Interestingly, the reduced dopamine beta-hydroxylase expression associated with EAE in the spinal cord and PFC was reversed through chemogenetic LC activation. CONCLUSION: Therefore, clear anti-inflammatory and neuroprotective effects were produced by the selective activation of LC noradrenergic neurons in EAE mice, having greater benefits when LC activation commenced earlier. Overall, these data suggest noradrenergic LC neurons may be targets to potentially alleviate some of the motor and non-motor symptoms in MS.


Asunto(s)
Neuronas Adrenérgicas , Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Ratones , Locus Coeruleus , Norepinefrina
7.
Cell Stem Cell ; 30(9): 1166-1178.e8, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37597516

RESUMEN

The intestinal epithelium has high intrinsic turnover rate, and the precise renewal of the epithelium is dependent on the microenvironment. The intestine is innervated by a dense network of peripheral nerves that controls various aspects of intestinal physiology. However, the role of neurons in regulating epithelial cell regeneration remains largely unknown. Here, we investigated the effects of gut-innervating adrenergic nerves on epithelial cell repair following irradiation (IR)-induced injury. We observed that adrenergic nerve density in the small intestine increased post IR, while chemical adrenergic denervation impaired epithelial regeneration. Single-cell RNA sequencing experiments revealed a decrease in IL-22 signaling post IR in denervated animals. Combining pharmacologic and genetic tools, we demonstrate that ß-adrenergic receptor signaling drives IL-22 production from type 3 innate lymphoid cells (ILC3s) post IR, which in turn promotes epithelial regeneration. These results define an adrenergic-ILC3 axis important for intestinal regeneration.


Asunto(s)
Neuronas Adrenérgicas , Inmunidad Innata , Mucosa Intestinal , Linfocitos , Regeneración , Animales , Transducción de Señal , Neuronas Adrenérgicas/fisiología , Mucosa Intestinal/inmunología , Mucosa Intestinal/inervación , Mucosa Intestinal/fisiología , Ratones , Interleucina-22
8.
Neuron ; 111(12): 1887-1897.e6, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37098353

RESUMEN

Corticosteroid-mediated stress responses require the activation of complex brain circuits involving mitochondrial activity, but the underlying cellular and molecular mechanisms are scantly known. The endocannabinoid system is implicated in stress coping, and it can directly regulate brain mitochondrial functions via type 1 cannabinoid (CB1) receptors associated with mitochondrial membranes (mtCB1). In this study, we show that the impairing effect of corticosterone in the novel object recognition (NOR) task in mice requires mtCB1 receptors and the regulation of mitochondrial calcium levels in neurons. Different brain circuits are modulated by this mechanism to mediate the impact of corticosterone during specific phases of the task. Thus, whereas corticosterone recruits mtCB1 receptors in noradrenergic neurons to impair NOR consolidation, mtCB1 receptors in local hippocampal GABAergic interneurons are required to inhibit NOR retrieval. These data reveal unforeseen mechanisms mediating the effects of corticosteroids during different phases of NOR, involving mitochondrial calcium alterations in different brain circuits.


Asunto(s)
Neuronas Adrenérgicas , Corticosterona , Ratones , Animales , Corticosterona/farmacología , Receptores de Cannabinoides , Calcio , Mitocondrias , Endocannabinoides , Receptor Cannabinoide CB1 , Hipocampo/fisiología
9.
J Neurosci ; 43(13): 2338-2348, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36849414

RESUMEN

Photoaffinity ligands are best known as tools used to identify the specific binding sites of drugs to their molecular targets. However, photoaffinity ligands have the potential to further define critical neuroanatomic targets of drug action. In the brains of WT male mice, we demonstrate the feasibility of using photoaffinity ligands in vivo to prolong anesthesia via targeted yet spatially restricted photoadduction of azi-m-propofol (aziPm), a photoreactive analog of the general anesthetic propofol. Systemic administration of aziPm with bilateral near-ultraviolet photoadduction in the rostral pons, at the border of the parabrachial nucleus and locus coeruleus, produced a 20-fold increase in the duration of sedative and hypnotic effects compared with control mice without UV illumination. Photoadduction that missed the parabrachial-coerulean complex also failed to extend the sedative or hypnotic actions of aziPm and was indistinguishable from nonadducted controls. Paralleling the prolonged behavioral and EEG consequences of on target in vivo photoadduction, we conducted electrophysiologic recordings in rostral pontine brain slices. Using neurons within the locus coeruleus to further highlight the cellular consequences of irreversible aziPm binding, we demonstrate transient slowing of spontaneous action potentials with a brief bath application of aziPm that becomes irreversible on photoadduction. Together, these findings suggest that photochemistry-based strategies are a viable new approach for probing CNS physiology and pathophysiology.SIGNIFICANCE STATEMENT Photoaffinity ligands are drugs capable of light-induced irreversible binding, which have unexploited potential to identify the neuroanatomic sites of drug action. We systemically administer a centrally acting anesthetic photoaffinity ligand in mice, conduct localized photoillumination within the brain to covalently adduct the drug at its in vivo sites of action, and successfully enrich irreversible drug binding within a restricted 250 µm radius. When photoadduction encompassed the pontine parabrachial-coerulean complex, anesthetic sedation and hypnosis was prolonged 20-fold, thus illustrating the power of in vivo photochemistry to help unravel neuronal mechanisms of drug action.


Asunto(s)
Anestésicos Intravenosos , Encéfalo , Hipnosis , Hipnóticos y Sedantes , Ligandos , Etiquetas de Fotoafinidad , Propofol , Animales , Masculino , Ratones , Neuronas Adrenérgicas/efectos de los fármacos , Anestesia Intravenosa , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/efectos de la radiación , Electrocorticografía , Electroencefalografía , Hipnosis/métodos , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/química , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/efectos de la radiación , Locus Coeruleus/citología , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/metabolismo , Locus Coeruleus/efectos de la radiación , Ratones Endogámicos C57BL , Núcleos Parabraquiales/efectos de los fármacos , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/efectos de la radiación , Etiquetas de Fotoafinidad/química , Etiquetas de Fotoafinidad/efectos de la radiación , Propofol/administración & dosificación , Propofol/análogos & derivados , Propofol/farmacología , Propofol/efectos de la radiación , Factores de Tiempo , Rayos Ultravioleta , Anestésicos Intravenosos/administración & dosificación , Anestésicos Intravenosos/química , Anestésicos Intravenosos/farmacología , Anestésicos Intravenosos/efectos de la radiación
10.
J Physiol ; 601(7): 1247-1264, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36797985

RESUMEN

The sympathetic nervous system vitally regulates autonomic functions, including cardiac activity. Postganglionic neurons of the sympathetic chain ganglia relay signals from the central nervous system to autonomic peripheral targets. Disrupting this flow of information often dysregulates organ function and leads to poor health outcomes. Despite the importance of these sympathetic neurons, fundamental aspects of the neurocircuitry within peripheral ganglia remain poorly understood. Conventionally, simple monosynaptic cholinergic pathways from preganglionic neurons are thought to activate postganglionic sympathetic neurons. However, early studies suggested more complex neurocircuits may be present within sympathetic ganglia. The present study recorded synaptic responses in sympathetic stellate ganglia neurons following electrical activation of the pre- and postganglionic nerve trunks and used genetic strategies to assess the presence of collateral projections between postganglionic neurons of the stellate ganglia. Orthograde activation of the preganglionic nerve trunk, T-2, uncovered high jitter synaptic latencies consistent with polysynaptic connections. Pharmacological inhibition of nicotinic acetylcholine receptors with hexamethonium blocked all synaptic events. To confirm that high jitter, polysynaptic events were due to the presence of cholinergic collaterals from postganglionic neurons within the stellate ganglion, we knocked out choline acetyltransferase in adult noradrenergic neurons. This genetic knockout eliminated orthograde high jitter synaptic events and EPSCs evoked by retrograde activation. These findings suggest that cholinergic collateral projections arise from noradrenergic neurons within sympathetic ganglia. Identifying the contributions of collateral excitation to normal physiology and pathophysiology is an important area of future study and may offer novel therapeutic targets for the treatment of autonomic imbalance. KEY POINTS: Electrical stimulation of a preganglionic nerve trunk evoked fast synaptic transmission in stellate ganglion neurons with low and high jitter latencies. Retrograde stimulation of a postganglionic nerve trunk evoked direct, all-or-none action currents and delayed nicotinic EPSCs indistinguishable from orthogradely-evoked EPSCs in stellate neurons. Nicotinic acetylcholine receptor blockade prevented all spontaneous and evoked synaptic activity. Knockout of acetylcholine production in noradrenergic neurons eliminated all retrogradely-evoked EPSCs but did not change retrograde action currents, indicating that noradrenergic neurons have cholinergic collaterals connecting neurons within the stellate ganglion.


Asunto(s)
Neuronas Adrenérgicas , Ratones , Animales , Ratones Noqueados , Sistema Nervioso Simpático/fisiología , Ganglios Simpáticos/fisiología , Colinérgicos
11.
Neuropeptides ; 99: 102324, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36791640

RESUMEN

BACKGROUND: The oxidizable glycolytic end-product L-lactate is a gauge of nerve cell metabolic fuel stability that metabolic-sensory hindbrain A2 noradrenergic neurons impart to the brain glucose-regulatory network. Current research investigated the premise that hindbrain lactate deficiency exerts sex-specific control of energy sensor and transmitter marker protein responses to hypoglycemia in ventromedial hypothalamic nucleus (VMN) glucose-regulatory nitrergic and γ-aminobutyric acid (GABA) neurons. METHODS: Nitric oxide synthase (nNOS)- or glutamate decarboxylase65/67 (GAD)-immunoreactive neurons were laser-catapult-microdissected from male and female rat VMN after subcutaneous insulin injection and caudal fourth ventricular L-lactate or vehicle infusion for Western blot protein analysis. RESULTS: Hindbrain lactate repletion reversed hypoglycemia-associated augmentation (males) or inhibition (females) of nitrergic neuron nNOS expression, and prevented up-regulation of phosphorylated AMPK 5'-AMP-activated protein kinase (pAMPK) expression in those neurons. Hypoglycemic suppression of GABAergic neuron GAD protein was averted by exogenous lactate over the rostro-caudal length of the male VMN and in the middle region of the female VMN. Lactate normalized GABA neuron pAMPK profiles in hypoglycemic male (caudal VMN) and female (all VMN segments) rats. Hypoglycemic patterns of norepinephrine (NE) signaling were lactate-dependent throughout the male VMN, but confined to the rostral and middle female VMN. CONCLUSIONS: Results document, in each sex, regional VMN glucose-regulatory transmitter responses to hypoglycemia that are controlled by hindbrain lactate status. Hindbrain metabolic-sensory regulation of hypoglycemia-correlated nitric oxide or GABA release may entail AMPK-dependent mechanisms in specific VMN rostro-caudal segments in each sex. Additional effort is required to examine the role of hindbrain lactoprivic-sensitive VMN neurotransmitters in lactate-mediated attenuation of hypoglycemic hyperglucagonemia and hypercorticosteronemia in male and female rats.


Asunto(s)
Neuronas Adrenérgicas , Hipoglucemia , Ratas , Femenino , Masculino , Animales , Núcleo Hipotalámico Ventromedial/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ácido Láctico , Ratas Sprague-Dawley , Glucosa/metabolismo , Hipoglucemia/metabolismo , Rombencéfalo/metabolismo , Norepinefrina/metabolismo , Hipoglucemiantes , Neuronas Adrenérgicas/metabolismo
12.
Life Sci ; 317: 121472, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36750138

RESUMEN

AIMS: The transient receptor potential vanilloid subfamily 1 (TRPV1) not only plays a role as a nociceptor but also has some regulatory effects on the immune system. We investigated the effects of TRPV1 on abdominal pain and the immune system in lipopolysaccharide (LPS)-induced peritonitis and the association between TRPV1 and peripheral noradrenergic neurons. MAIN METHODS: Experiments were performed in 8- to 14-week-old male wild-type (WT) and TRPV1 knockout (KO) mice. The mice were intraperitoneally injected with a non-lethal dose of LPS. Pain assessment and investigation of changes in the immune system were performed. Denervation of sympathetic nerves and the noradrenergic splenic nerve was induced by intraperitoneal administration of 6-hydroxydopamine. KEY FINDINGS: The levels of serum cytokines were not significantly different in WT mice and TRPV1 KO mice. Abdominal mechanical hyperalgesia was greater in WT mice than in TRPV1 KO mice from 6 h to 3 days. The numbers of macrophages, neutrophils, dendritic cells, and CD4 T cells in the spleens of TRPV1 KO mice were significantly increased compared to those in WT mice 4 days after LPS administration. By noradrenergic denervation, the numbers of those cells in WT mice increased to levels comparable to those in TRPV1 KO mice. SIGNIFICANCE: In LPS-induced peritonitis, abdominal inflammatory pain was transmitted via TRPV1. In addition, TRPV1 had an anti-inflammatory effect on the spleen in the late phase of peritonitis. This anti-inflammatory effect was thought to be mediated by activation of the sympathetic nervous system and/or noradrenergic splenic nerve induced by TRPV1 activation.


Asunto(s)
Neuronas Adrenérgicas , Antineoplásicos , Peritonitis , Masculino , Animales , Ratones , Hiperalgesia , Lipopolisacáridos , Modelos Animales de Enfermedad , Ratones Noqueados , Inmunidad , Antiinflamatorios , Canales Catiónicos TRPV , Ratones Endogámicos C57BL
13.
Elife ; 122023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36734517

RESUMEN

The locus coeruleus (LC) houses the vast majority of noradrenergic neurons in the brain and regulates many fundamental functions, including fight and flight response, attention control, and sleep/wake cycles. While efferent projections of the LC have been extensively investigated, little is known about its local circuit organization. Here, we performed large-scale multipatch recordings of noradrenergic neurons in adult mouse LC to profile their morpho-electric properties while simultaneously examining their interactions. LC noradrenergic neurons are diverse and could be classified into two major morpho-electric types. While fast excitatory synaptic transmission among LC noradrenergic neurons was not observed in our preparation, these mature LC neurons connected via gap junction at a rate similar to their early developmental stage and comparable to other brain regions. Most electrical connections form between dendrites and are restricted to narrowly spaced pairs or small clusters of neurons of the same type. In addition, more than two electrically coupled cell pairs were often identified across a cohort of neurons from individual multicell recording sets that followed a chain-like organizational pattern. The assembly of LC noradrenergic neurons thus follows a spatial and cell-type-specific wiring principle that may be imposed by a unique chain-like rule.


Asunto(s)
Neuronas Adrenérgicas , Locus Coeruleus , Ratones , Animales , Locus Coeruleus/fisiología , Neuronas Adrenérgicas/fisiología , Transmisión Sináptica , Atención
14.
Eur J Pharmacol ; 943: 175518, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36706800

RESUMEN

Central post-stroke pain (CPSP) is a type of central neuropathic pain, whose underlying mechanisms remain unknown. We previously reported that bilateral carotid artery occlusion (BCAO)-induced CPSP model mice showed mechanical hypersensitivity and decreased mRNA levels of preproorexin, an orexin precursor, in the hypothalamus. Recently, nicotine was shown to regulate the neuronal activity of orexin in the lateral hypothalamus (LH) and suppress inflammatory and neuropathic pain. In this study, we evaluated whether nicotine could suppress BCAO-induced mechanical allodynia through the activation of orexinergic neurons. Mice were subjected to BCAO for 30 min. Mechanical hypersensitivity was assessed by the von Frey test. BCAO mice showed hypersensitivity to mechanical stimuli three days after BCAO surgery. The intracerebroventricular injection of nicotine suppressed BCAO-induced mechanical hypersensitivity in a dose-dependent manner. These effects were inhibited by α7 or α4ß2-nicotinic receptor antagonists. After nicotine injection, the level of c-fos, a neuronal activity marker, increased in the LH and locus coeruleus (LC) of Sham and BCAO mice. Increased number of c-Fos-positive cells partly colocalized with orexin A-positive cells in the LH, as well as tyrosine hydroxylase-positive cells in the LC. Orexinergic neurons project to the LC area. Nicotine-induced antinociception tended to cancel by the pretreatment of SB334867, an orexin receptor1 antagonist into the LC. Intra-LH microinjection of nicotine attenuated BCAO-induced mechanical hypersensitivity. Nicotine-induced antinociception was inhibited by intrathecal pre-treatment with yohimbine, an α2 adrenergic receptor antagonist. These results indicated that nicotine may suppress BCAO-induced mechanical hypersensitivity through the activation of the descending pain control system via orexin neurons.


Asunto(s)
Neuronas Adrenérgicas , Neuralgia , Ratones , Animales , Orexinas/farmacología , Nicotina/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Receptores de Orexina
15.
Cell Mol Neurobiol ; 43(5): 2359-2376, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36577871

RESUMEN

Stress-coping strategies have been implicated in depression. The control of stress coping may improve the symptom and higher prevalence of depression during the postpartum period in women. However, the neuronal mechanisms underlying stress coping remain to be fully elucidated in postpartum women. In this study, we examined how locus coeruleus-noradrenergic (LC-NA) neurons, which have been associated with both stress coping and depression, regulate changes in coping style induced by subchronic exposure to unfamiliar male mice as a social threat in postpartum female mice. In contrast to virgin females, dams exposed to unfamiliar males daily for four consecutive days showed reduced immobility duration in the forced swim test, indicating that exposure to unfamiliar males decreased passive stress coping in dams. Exposure to unfamiliar males also decreased sucrose palatability in the sucrose preference test and suppressed the crouching behavior in the maternal care test but did not affect anxiety-like behavior in the hole-board test in dams. In fiber photometry analyses, LC-NA neurons showed differential activity between dams and virgin females in response to unfamiliar males. Chemogenetic inhibition of LC-NA neurons during exposure to unfamiliar males prevented the social threat-induced decrease in immobility duration in the forced swim test in dams. Furthermore, inhibition or activation of LC-NA neurons exacerbated crouching behavior in dams. These results indicate that LC-NA neurons regulate the social threat-induced decrease in passive stress coping and relieve social threat-induced inhibition of maternal care in postpartum female mice.


Asunto(s)
Neuronas Adrenérgicas , Locus Coeruleus , Humanos , Ratones , Femenino , Masculino , Animales , Adaptación Psicológica , Periodo Posparto , Sacarosa
16.
Eur J Neurosci ; 57(1): 32-53, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36382388

RESUMEN

The locus coeruleus (LC) consists of noradrenergic (NA) neurons and plays an important role in controlling behaviours. Although much of the knowledge regarding LC functions comes from studying behavioural outcomes upon administration of muscarinic acetylcholine receptor (mAChR) agonists into the nucleus, the exact mechanisms remain unclear. Here, we report that the application of carbachol (CCh), an mAChR agonist, increased the spontaneous action potentials (sAPs) of both LC-NA neurons and local inhibitory interneurons (LC I-INs) in acute brain slices by activating M1/M3 mAChRs (m1/3 AChRs). Optogenetic activation of LC I-INs evoked inhibitory postsynaptic currents (IPSCs) in LC-NA neurons that were mediated by γ-aminobutyric acid type A (GABAA ) and glycine receptors, and CCh application decreased the IPSC amplitude through a presynaptic mechanism by activating M4 mAChRs (m4 AChRs). LC-NA neurons also exhibited spontaneous phasic-like activity (sPLA); CCh application increased the incidence of this activity. This effect of CCh application was not observed with blockade of GABAA and glycine receptors, suggesting that the sPLA enhancement occurred likely because of the decreased synaptic transmission of LC I-INs onto LC-NA neurons by the m4 AChR activation and/or increased spiking rate of LC I-INs by the m1/3 AChR activation, which could lead to fatigue of the synaptic transmission. In conclusion, we report that CCh application, while inhibiting their synaptic transmission, increases sAP rates of LC-NA neurons and LC I-INs. Collectively, these effects provide insight into the cellular mechanisms underlying the behaviour modulations following the administration of muscarinic receptor agonists into the LC reported by the previous studies.


Asunto(s)
Neuronas Adrenérgicas , Carbacol/farmacología , Neuronas Adrenérgicas/metabolismo , Locus Coeruleus/metabolismo , Receptores de Glicina , Transmisión Sináptica/fisiología , Receptores Muscarínicos/metabolismo , Agonistas Muscarínicos/farmacología , Interneuronas/metabolismo , Ácido gamma-Aminobutírico/fisiología
17.
Pflugers Arch ; 475(1): 89-99, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35680670

RESUMEN

We recently demonstrated that the hypoxic ventilatory response (HVR) is facilitated by the AMP-activated protein kinase (AMPK) in catecholaminergic neural networks that likely lie downstream of the carotid bodies within the caudal brainstem. Here, we further subcategorise the neurons involved, by cross-comparison of mice in which the genes encoding the AMPK-α1 (Prkaa1) and AMPK-α2 (Prkaa2) catalytic subunits were deleted in catecholaminergic (TH-Cre) or adrenergic (PNMT-Cre) neurons. As expected, the HVR was markedly attenuated in mice with AMPK-α1/α2 deletion in catecholaminergic neurons, but surprisingly was modestly augmented in mice with AMPK-α1/α2 deletion in adrenergic neurons when compared against a variety of controls (TH-Cre, PNMT-Cre, AMPK-α1/α2 floxed). Moreover, AMPK-α1/α2 deletion in catecholaminergic neurons precipitated marked hypoventilation and apnoea during poikilocapnic hypoxia, relative to controls, while mice with AMPK-α1/α2 deletion in adrenergic neurons entered relative hyperventilation with reduced apnoea frequency and duration. We conclude, therefore, that AMPK-dependent modulation of non-adrenergic networks may facilitate increases in ventilatory drive that shape the classical HVR, whereas AMPK-dependent modulation of adrenergic networks may provide some form of negative feedback or inhibitory input to moderate HVR, which could, for example, protect against hyperventilation-induced hypocapnia and respiratory alkalosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Neuronas Adrenérgicas , Tronco Encefálico , Hiperventilación , Hipocapnia , Animales , Ratones , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Apnea/etiología , Apnea/genética , Tronco Encefálico/enzimología , Hiperventilación/complicaciones , Hipoxia/metabolismo , Neuronas Adrenérgicas/enzimología , Hipocapnia/etnología , Hipocapnia/genética , Eliminación de Gen
18.
Acta Physiol (Oxf) ; 236(3): e13887, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36073023

RESUMEN

Brainstem noradrenergic neuron clusters form a node integrating efferents projecting to distinct areas such as those regulating cognition and skeletal muscle structure and function, and receive dissimilar afferents through established circuits to coordinate organismal responses to internal and environmental challenges. Genetic lineage tracing shows the remarkable heterogeneity of brainstem noradrenergic neurons, which may explain their varied functions. They project to the locus coeruleus, the primary source of noradrenaline in the brain, which supports learning and cognition. They also project to pre-ganglionic neurons, which lie within the spinal cord and form synapses onto post-ganglionic neurons. The synapse between descending brainstem noradrenergic neurons and pre-ganglionic spinal neurons, and these in turn with post-ganglionic noradrenergic neurons located at the paravertebral sympathetic ganglia, support an anatomical hierarchy that regulates skeletal muscle innervation, neuromuscular transmission, and muscle trophism. Whether any noradrenergic neuron subpopulation is more susceptible to damaged protein deposit and death with ageing and neurodegeneration is a relevant question that answer will help us to detect neurodegeneration at an early stage, establish prognosis, and anticipate disease progression. Loss of muscle mass and strength with ageing, termed sarcopenia, may predict impaired cognition with ageing and neurodegeneration and establish an early time to start interventions aimed at reducing central noradrenergic neurons hyperactivity. Complex multidisciplinary approaches, including genetic tracing, specific circuit labelling, optogenetics and chemogenetics, electrophysiology, and single-cell transcriptomics and proteomics, are required to test this hypothesis pre-clinical.


Asunto(s)
Neuronas Adrenérgicas , Neuronas Adrenérgicas/metabolismo , Locus Coeruleus/metabolismo , Tronco Encefálico , Norepinefrina/metabolismo , Cognición , Músculo Esquelético/metabolismo
19.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R512-R531, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35993562

RESUMEN

In mammals, the pontine noradrenergic system influences nearly every aspect of central nervous system function. A subpopulation of pontine noradrenergic neurons, called A5, are thought to be important in the cardiovascular response to physical stressors, yet their function is poorly defined. We hypothesized that activation of A5 neurons drives a sympathetically mediated increase in blood pressure (BP). To test this hypothesis, we conducted a comprehensive assessment of the cardiovascular effects of chemogenetic stimulation of A5 neurons in male and female adult rats using intersectional genetic and anatomical targeting approaches. Chemogenetic stimulation of A5 neurons in freely behaving rats elevated BP by 15 mmHg and increased cardiac baroreflex sensitivity with a negligible effect on resting HR. Importantly, A5 stimulation had no detectable effect on locomotor activity, metabolic rate, or respiration. Under anesthesia, stimulation of A5 neurons produced a marked elevation in visceral sympathetic nerve activity (SNA) and no change in skeletal muscle SNA, showing that A5 neurons preferentially stimulate visceral SNA. Interestingly, projection mapping indicates that A5 neurons target sympathetic preganglionic neurons throughout the spinal cord and parasympathetic preganglionic neurons throughout in the brainstem, as well as the nucleus of the solitary tract, and ventrolateral medulla. Moreover, in situ hybridization and immunohistochemistry indicate that a subpopulation of A5 neurons coreleases glutamate and monoamines. Collectively, this study suggests A5 neurons are a central modulator of autonomic function with a potentially important role in sympathetically driven redistribution of blood flow from the visceral circulation to critical organs and skeletal muscle.


Asunto(s)
Neuronas Adrenérgicas , Neuronas Adrenérgicas/fisiología , Animales , Presión Sanguínea/fisiología , Femenino , Glutamatos/farmacología , Masculino , Mamíferos , Puente/fisiología , Ratas , Sistema Nervioso Simpático/fisiología
20.
Int J Mol Sci ; 23(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35682822

RESUMEN

A growing body of evidence demonstrates the important role of the noradrenergic system in the pathogenesis of many neurodegenerative processes, especially Alzheimer's disease, due to its ability to control glial activation and chemokine production resulting in anti-inflammatory and neuroprotective effects. Noradrenaline involvement in this disease was first proposed after finding deficits of noradrenergic neurons in the locus coeruleus from Alzheimer's disease patients. Based on this, it has been hypothesized that the early loss of noradrenergic projections and the subsequent reduction of noradrenaline brain levels contribute to cognitive dysfunctions and the progression of neurodegeneration. Several studies have focused on analyzing the role of noradrenaline in the development and progression of Alzheimer's disease. In this review we summarize some of the most relevant data describing the alterations of the noradrenergic system normally occurring in Alzheimer's disease as well as experimental studies in which noradrenaline concentration was modified in order to further analyze how these alterations affect the behavior and viability of different nervous cells. The combination of the different studies here presented suggests that the maintenance of adequate noradrenaline levels in the central nervous system constitutes a key factor of the endogenous defense systems that help prevent or delay the development of Alzheimer's disease. For this reason, the use of noradrenaline modulating drugs is proposed as an interesting alternative therapeutic option for Alzheimer's disease.


Asunto(s)
Neuronas Adrenérgicas , Enfermedad de Alzheimer , Neuronas Adrenérgicas/patología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Encéfalo/patología , Humanos , Locus Coeruleus/patología , Norepinefrina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...