Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34156533

RESUMEN

The Delta Smelt (Hypomesus transpacificus) is a small, semi-anadromous fish native to the San Francisco Bay-Delta Estuary and has been declared as critically endangered. Their olfactory biology, in particular, is poorly understood and a basic description of their sensory anatomy is needed to advance our understanding of the sensory ecology of species to inform conservation efforts to manage and protect them. We provide a description of the gross morphology, histological, immunohistochemical, and ultrastructural features of the olfactory rosette in this fish and discuss some of the functional implications in relation to olfactory ability. We show that Delta Smelt have a multilamellar olfactory rosette with allometric growth. Calretinin immunohistochemistry revealed a diffuse distribution of olfactory receptor neurons within the epithelium. Ciliated, microvillous and crypt neurons were clearly identified using morphological and immunohistochemical features. The olfactory neurons were supported by robust ciliated and secretory sustentacular cells. Although the sense of smell has been overlooked in Delta Smelt, we conclude that the olfactory epithelium has many characteristics of macrosmatic fish. With this study, we provide a foundation for future research into the sensory ecology of this imperiled fish.


Asunto(s)
Conducta Animal/fisiología , Especies en Peligro de Extinción , Mucosa Olfatoria/anatomía & histología , Osmeriformes/anatomía & histología , Olfato/fisiología , Estimulación Acústica , Animales , Calbindina 2/metabolismo , Estuarios , Femenino , Inmunohistoquímica , Masculino , Mucosa Olfatoria/fisiología , Mucosa Olfatoria/ultraestructura , Vías Olfatorias/anatomía & histología , Vías Olfatorias/fisiología , Vías Olfatorias/ultraestructura , Neuronas Receptoras Olfatorias/fisiología , Neuronas Receptoras Olfatorias/ultraestructura , Osmeriformes/fisiología
2.
Open Biol ; 10(10): 200252, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33022193

RESUMEN

Insects thrive in diverse ecological niches in large part because of their highly sophisticated olfactory systems. Over the last two decades, a major focus in the study of insect olfaction has been on the role of olfactory receptors in mediating neuronal responses to environmental chemicals. In vivo, these receptors operate in specialized structures, called sensilla, which comprise neurons and non-neuronal support cells, extracellular lymph fluid and a precisely shaped cuticle. While sensilla are inherent to odour sensing in insects, we are only just beginning to understand their construction and function. Here, we review recent work that illuminates how odour-evoked neuronal activity is impacted by sensillar morphology, lymph fluid biochemistry, accessory signalling molecules in neurons and the physiological crosstalk between sensillar cells. These advances reveal multi-layered molecular and cellular mechanisms that determine the selectivity, sensitivity and dynamic modulation of odour-evoked responses in insects.


Asunto(s)
Insectos/fisiología , Vías Olfatorias , Neuronas Receptoras Olfatorias/fisiología , Animales , Biomarcadores , Fenómenos Biofísicos , Insectos/ultraestructura , Odorantes , Neuronas Receptoras Olfatorias/ultraestructura , Unión Proteica , Transducción de Señal
3.
Sci Rep ; 10(1): 17923, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087814

RESUMEN

Detection of chemical cues via chemosensory receptor proteins are essential for most animals, and underlies critical behaviors, including location and discrimination of food resources, identification of sexual partners and avoidance of predators. The current knowledge of how chemical cues are detected is based primarily on data acquired from studies on insects, while our understanding of the molecular basis for chemoreception in acari, mites in particular, remains limited. The poultry red mite (PRM), Dermanyssus gallinae, is one of the most important blood-feeding ectoparasites of poultry. PRM are active at night which suck the birds' blood during periods of darkness and hide themselves in all kinds of gaps and cracks during the daytime. The diversity in habitat usage, as well as the demonstrated host finding and avoidance behaviors suggest that PRM relies on their sense of smell to orchestrate complex behavioral decisions. Comparative transcriptome analyses revealed the presence of candidate variant ionotropic receptors, odorant binding proteins, niemann-pick proteins type C2 and sensory neuron membrane proteins. Some of these proteins were highly and differentially expressed in the forelegs of PRM. Rhodopsin-like G protein-coupled receptors were also identified, while insect-specific odorant receptors and odorant co-receptors were not detected. Furthermore, using scanning electron microscopy, the tarsomeres of all leg pairs were shown to be equipped with sensilla chaetica with or without tip pores, while wall-pored olfactory sensilla chaetica were restricted to the distal-most tarsomeres of the forelegs. This study is the first to describe the presence of chemosensory genes in any Dermanyssidae family. Our findings make a significant step forward in understanding the chemosensory abilities of D. gallinae.


Asunto(s)
Conducta Animal/fisiología , Ácaros/genética , Ácaros/ultraestructura , Aves de Corral/parasitología , Olfato/genética , Olfato/fisiología , Transcriptoma , Animales , Oscuridad , Femenino , Masculino , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Microscopía Electrónica de Rastreo , Ácaros/fisiología , Neuronas Receptoras Olfatorias/ultraestructura , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo
4.
Respir Res ; 21(1): 259, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33036612

RESUMEN

BACKGROUND: To aid in the diagnosis of Primary Ciliary Dyskinesia (PCD) and to evaluate the respiratory epithelium in respiratory disease, normal age-related reference ranges are needed for ciliary beat frequency (CBF), beat pattern and ultrastructure. Our aim was to establish reference ranges for healthy Chinese children. METHODS: Ciliated epithelial samples were obtained from 135 healthy Chinese children aged below 18 years by brushing the inferior nasal turbinate. CBF and beat pattern were analysed from high speed video recordings. Epithelial integrity and ciliary ultrastructure were assessed using transmission electronic microscopy. RESULTS: The mean CBF from 135 children studied was 10.1 Hz (95% CI 9.8 to 10.4). Approximately 20% (ranged 18.0-24.2%) of ciliated epithelial edges were found to have areas of dyskinetically beating cilia. Normal beat pattern was observed in ciliated epithelium from all subjects. We did not find any effect of exposure to second hand smoke on CBF in our subjects. Microtubular defects were found in 9.3% of all of the cilia counted in these children, while other ciliary ultrastructural defects were found in less than 3%. CONCLUSIONS: We established the reference range for CBF, beat pattern and ultrastructure in healthy Chinese children. Using similar methodology, we found a lower overall mean CBF than previously obtained European values. This study highlights the need to establish normative data for ciliary function in different populations.


Asunto(s)
Pueblo Asiatico , Neuronas Receptoras Olfatorias/fisiología , Neuronas Receptoras Olfatorias/ultraestructura , Adolescente , Adulto , Niño , Preescolar , Cilios/fisiología , Cilios/ultraestructura , Femenino , Hong Kong/epidemiología , Humanos , Masculino , Microscopía Electrónica/métodos , Persona de Mediana Edad , Mucosa Nasal/fisiología , Mucosa Nasal/ultraestructura , Mucosa Respiratoria/fisiología , Mucosa Respiratoria/ultraestructura , Grabación en Video/métodos , Adulto Joven
5.
PLoS Biol ; 18(9): e3000852, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32931487

RESUMEN

Olfaction in most animals is mediated by neurons bearing cilia that are accessible to the environment. Olfactory sensory neurons (OSNs) in chordates usually have multiple cilia, each with a centriole at its base. OSNs differentiate from stem cells in the olfactory epithelium, and how the epithelium generates cells with many centrioles is not yet understood. We show that centrioles are amplified via centriole rosette formation in both embryonic development and turnover of the olfactory epithelium in adult mice, and rosette-bearing cells often have free centrioles in addition. Cells with amplified centrioles can go on to divide, with centrioles clustered at each pole. Additionally, we found that centrioles are amplified in immediate neuronal precursors (INPs) concomitant with elevation of mRNA for polo-like kinase 4 (Plk4) and SCL/Tal1-interrupting locus gene (Stil), key regulators of centriole duplication. These results support a model in which centriole amplification occurs during a transient state characterized by elevated Plk4 and Stil in early INP cells. These cells then go on to divide at least once to become OSNs, demonstrating that cell division with amplified centrioles, known to be tolerated in disease states, can occur as part of a normal developmental program.


Asunto(s)
División Celular/fisiología , Centriolos/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neuronas Receptoras Olfatorias/fisiología , Envejecimiento/fisiología , Animales , Ciclo Celular/fisiología , Células Cultivadas , Embrión de Mamíferos , Desarrollo Embrionario/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Corteza Olfatoria/citología , Corteza Olfatoria/embriología , Mucosa Olfatoria/citología , Mucosa Olfatoria/embriología , Mucosa Olfatoria/ultraestructura , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/ultraestructura
6.
Sci Rep ; 10(1): 5259, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32210257

RESUMEN

Sindbis virus (SINV) is an alphavirus that causes age-dependent encephalomyelitis in mice. Within 7-8 days after infection infectious virus is cleared from neurons through the antiviral effects of antibody and interferon-gamma (IFNγ), but RNA persists. To better understand changes in viral RNA associated with immune-mediated clearance we developed recombinant strains of SINV that have genomic and subgenomic viral RNAs tagged with the Broccoli RNA aptamer that binds and activates a conditional fluorophore for live cell imaging of RNA. Treatment of SINV-Broccoli-infected cells with antibody to the SINV E2 glycoprotein had cell type-specific effects. In BHK cells, antibody increased levels of intracellular viral RNA and changed the primary location of genomic RNA from the perinuclear region to the plasma membrane without improving cell viability. In undifferentiated and differentiated AP7 (dAP7) neuronal cells, antibody treatment decreased levels of viral RNA. Occasional dAP7 cells escaped antibody-mediated clearance by not expressing cell surface E2 or binding antibody to the plasma membrane. IFNγ decreased viral RNA levels only in dAP7 cells and synergized with antibody for RNA clearance and improved cell survival. Therefore, analysis of aptamer-tagged SINV RNAs identified cell type- and neuronal maturation-dependent responses to immune mediators of virus clearance.


Asunto(s)
Anticuerpos Antivirales/farmacología , Aptámeros de Nucleótidos/análisis , Fibroblastos/virología , Glicoproteínas/inmunología , Interferón gamma/farmacología , Neuronas/virología , ARN Viral/análisis , Virus Sindbis/genética , Análisis de la Célula Individual/métodos , Imagen de Lapso de Tiempo/métodos , Proteínas no Estructurales Virales/análisis , Proteínas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos , Diferenciación Celular , Línea Celular , Línea Celular Transformada , Cricetinae , Fibroblastos/ultraestructura , Proteínas Luminiscentes , Mesocricetus , Neuronas/ultraestructura , Neuronas Receptoras Olfatorias/ultraestructura , Neuronas Receptoras Olfatorias/virología , Ratas , Proteínas Recombinantes/análisis , Virus Sindbis/inmunología , Fracciones Subcelulares/química , Fracciones Subcelulares/ultraestructura , Proteína Fluorescente Roja
7.
Cell Rep ; 29(13): 4334-4348.e7, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875544

RESUMEN

In mammals, odorant receptors not only detect odors but also define the target in the olfactory bulb, where sensory neurons project to give rise to the sensory map. The odorant receptor is expressed at the cilia, where it binds odorants, and at the axon terminal. The mechanism of activation and function of the odorant receptor at the axon terminal is, however, still unknown. Here, we identify phosphatidylethanolamine-binding protein 1 as a putative ligand that activates the odorant receptor at the axon terminal and affects the turning behavior of sensory axons. Genetic ablation of phosphatidylethanolamine-binding protein 1 in mice results in a strongly disturbed olfactory sensory map. Our data suggest that the odorant receptor at the axon terminal of olfactory neurons acts as an axon guidance cue that responds to molecules originating in the olfactory bulb. The dual function of the odorant receptor links specificity of odor perception and axon targeting.


Asunto(s)
Axones/metabolismo , Percepción Olfatoria/fisiología , Neuronas Receptoras Olfatorias/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/genética , Receptores Odorantes/genética , Animales , Axones/ultraestructura , Calcio/metabolismo , Cilios/metabolismo , Cilios/ultraestructura , Mezclas Complejas/química , Embrión de Mamíferos , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Odorantes/análisis , Bulbo Olfatorio/química , Bulbo Olfatorio/metabolismo , Neuronas Receptoras Olfatorias/ultraestructura , Proteínas de Unión a Fosfatidiletanolamina/deficiencia , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Odorantes/metabolismo , Transducción de Señal , Olfato/fisiología
8.
Sci Rep ; 9(1): 11554, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31399611

RESUMEN

Olfactory systems across the animal kingdom show astonishing similarities in their morphological and functional organization. In mouse and Drosophila, olfactory sensory neurons are characterized by the selective expression of a single odorant receptor (OR) type and by the OR class-specific connection in the olfactory brain center. Monospecific OR expression in mouse provides each sensory neuron with a unique recognition identity underlying class-specific axon sorting into synaptic glomeruli. Here we show that in Drosophila, although OR genes are not involved in sensory neuron connectivity, afferent sorting via OR class-specific recognition defines a central mechanism of odortopic map formation. Sensory neurons mutant for the Ig-domain receptor Dscam converge into ectopic glomeruli with single OR class identity independent of their target cells. Mosaic analysis showed that Dscam prevents premature recognition among sensory axons of the same OR class. Single Dscam isoform expression in projecting axons revealed the importance of Dscam diversity for spatially restricted glomerular convergence. These data support a model in which the precise temporal-spatial regulation of Dscam activity controls class-specific axon sorting thereby indicating convergent evolution of olfactory map formation via self-patterning of sensory neurons.


Asunto(s)
Axones/metabolismo , Drosophila/fisiología , Neuronas Receptoras Olfatorias/metabolismo , Animales , Axones/ultraestructura , Drosophila/genética , Drosophila/ultraestructura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutación , Vías Olfatorias/fisiología , Vías Olfatorias/ultraestructura , Neuronas Receptoras Olfatorias/ultraestructura , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato
9.
Elife ; 72018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-30465650

RESUMEN

Sensory navigation results from coordinated transitions between distinct behavioral programs. During chemotaxis in the Drosophila melanogaster larva, the detection of positive odor gradients extends runs while negative gradients promote stops and turns. This algorithm represents a foundation for the control of sensory navigation across phyla. In the present work, we identified an olfactory descending neuron, PDM-DN, which plays a pivotal role in the organization of stops and turns in response to the detection of graded changes in odor concentrations. Artificial activation of this descending neuron induces deterministic stops followed by the initiation of turning maneuvers through head casts. Using electron microscopy, we reconstructed the main pathway that connects the PDM-DN neuron to the peripheral olfactory system and to the pre-motor circuit responsible for the actuation of forward peristalsis. Our results set the stage for a detailed mechanistic analysis of the sensorimotor conversion of graded olfactory inputs into action selection to perform goal-oriented navigation.


Asunto(s)
Conducta Animal , Quimiotaxis , Drosophila melanogaster/citología , Corteza Sensoriomotora/fisiología , Animales , Bioensayo , Pruebas Genéticas , Larva/citología , Locomoción/fisiología , Actividad Motora/fisiología , Neuronas Motoras/fisiología , Neuronas Receptoras Olfatorias/fisiología , Neuronas Receptoras Olfatorias/ultraestructura , Optogenética , Peristaltismo , Fenotipo , Olfato/fisiología
10.
J Neurosci ; 38(34): 7462-7475, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30061191

RESUMEN

Cilia of olfactory sensory neurons (OSNs) are the primary site of odor binding; hence, their loss results in anosmia, a clinical manifestation of pleiotropic ciliopathies for which there are no curative therapies. We used OSN-specific Ift88 knock-out mice (Ift88osnKO) of both sexes to examine the mechanisms of ciliopathy-induced olfactory dysfunction and the potential for gene replacement to rescue odorant detection, restore olfactory circuitry, and restore odor-guided behaviors. Loss of OSN cilia in Ift88osnKO mice resulted in substantially reduced odor detection and odor-driven synaptic activity in the olfactory bulb (OB). Defects in OSN axon targeting to the OB were also observed in parallel with aberrant odor-guided behavior. Intranasal gene delivery of wild-type IFT88 to Ift88osnKO mice rescued OSN ciliation and peripheral olfactory function. Importantly, this recovery of sensory input in a limited number of mature OSNs was sufficient to restore axonal targeting in the OB of juvenile mice, and with delayed onset in adult mice. In addition, restoration of sensory input re-established course odor-guided behaviors. These findings highlight the spare capacity of the olfactory epithelium and the plasticity of primary synaptic input into the central olfactory system. The restoration of peripheral and central neuronal function supports the potential for treatment of ciliopathy-related anosmia using gene therapy.SIGNIFICANCE STATEMENT Ciliopathies, for which there are no curative therapies, are genetic disorders that alter cilia morphology and/or function in numerous tissue types, including the olfactory system, leading to sensory dysfunction. We show that in vivo intranasal gene delivery restores peripheral olfactory function in a ciliopathy mouse model, including axonal targeting in the juvenile and adult olfactory bulb. Gene therapy also demonstrated restoration of olfactory perception by rescuing odor-guided behaviors. Understanding the therapeutic window and viability for gene therapy to restore odor detection and perception may facilitate translation of therapies to ciliopathy patients with olfactory dysfunctions.


Asunto(s)
Ciliopatías/terapia , Terapia Genética , Trastornos del Olfato/terapia , Neuronas Receptoras Olfatorias/fisiología , Proteínas Supresoras de Tumor/uso terapéutico , Adenoviridae , Administración Intranasal , Factores de Edad , Animales , Axones/fisiología , Axones/ultraestructura , Cilios/ultraestructura , Femenino , Genes Reporteros , Vectores Genéticos/administración & dosificación , Masculino , Aprendizaje por Laberinto , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Odorantes , Bulbo Olfatorio/fisiopatología , Mucosa Olfatoria/patología , Percepción Olfatoria/fisiología , Neuronas Receptoras Olfatorias/ultraestructura , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/fisiología
11.
Elife ; 72018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30080137

RESUMEN

Centrioles are cylindrical assemblies comprised of 9 singlet, doublet, or triplet microtubules, essential for the formation of motile and sensory cilia. While the structure of the cilium is being defined at increasing resolution, centriolar structure remains poorly understood. Here, we used electron cryo-tomography to determine the structure of mammalian (triplet) and Drosophila (doublet) centrioles. Mammalian centrioles have two distinct domains: a 200 nm proximal core region connected by A-C linkers, and a distal domain where the C-tubule is incomplete and a pair of novel linkages stabilize the assembly producing a geometry more closely resembling the ciliary axoneme. Drosophila centrioles resemble the mammalian core, but with their doublet microtubules linked through the A tubules. The commonality of core-region length, and the abrupt transition in mammalian centrioles, suggests a conserved length-setting mechanism. The unexpected linker diversity suggests how unique centriolar architectures arise in different tissues and organisms.


Asunto(s)
Centriolos/ultraestructura , Cilios/ultraestructura , Microscopía por Crioelectrón , Neuronas Receptoras Olfatorias/ultraestructura , Animales , Células CHO , Centriolos/química , Cilios/química , Cricetulus , Drosophila melanogaster , Tomografía con Microscopio Electrónico , Microtúbulos/química , Microtúbulos/ultraestructura , Neuronas Receptoras Olfatorias/química
12.
Environ Entomol ; 47(3): 700-706, 2018 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-29668908

RESUMEN

Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a devastating global pest of berry crops and cherries. Little is understood about its biology during the winter in northern temperate regions, including potential resources that it may utilize during this period. In this study, olfactory and behavioral responses of female D. suzukii to six volatiles (methionol, acetic acid, linalool, bornyl acetate, isoamyl acetate, and geosmin) were evaluated separately for electroantennogram (EAG) and behavioral assays between summer and winter morphs. Results of EAG indicated that isoamyl acetate, acetic acid, and geosmin elicited significantly higher olfactory responses from the antennae of female summer morph D. suzukii compared with those of female winter morph D. suzukii. Winter morph D. suzukii showed reduced antennal response to the volatiles overall. Geosmin and bornyl acetate elicited significantly different behavioral responses from the two morphs in no-choice laboratory behavioral assays. T-maze behavioral assays with geosmin further revealed that summer morphs had a significant aversion, while winter morphs showed no significant aversion to geosmin. Overall, we demonstrate that responses of the two seasonally induced morphs to environmental stimuli are different, and future studies are justified to further understand how these physiological and behavioral differences may contribute to improved pest management of D. suzukii.


Asunto(s)
Antenas de Artrópodos/fisiología , Quimiotaxis , Drosophila/fisiología , Odorantes/análisis , Compuestos Orgánicos Volátiles/metabolismo , Animales , Conducta de Elección , Drosophila/ultraestructura , Microscopía Electrónica de Rastreo , Neuronas Receptoras Olfatorias/ultraestructura , Estaciones del Año
13.
J Anat ; 232(4): 674-685, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29313978

RESUMEN

The mammalian olfactory epithelium (OE) sustains persistent neurogenesis even in the adult. Sustentacular cells therein play both epithelial and neuroglial roles, although their relation with olfactory receptor neurons (ORNs) and their function in ORN maturation remain insufficiently understood. Sustentacular wrapping of ORN dendrites has been long known but always considered a minor presence, as opposed to the supposedly unwrapped majority of ORN dendrites at inter-sustentacular borderlines. Using immunofluorescence, confocal and immuno-electron microscopy, the current study examined cytoarchitectonic organization and maturation of ORN dendrites at the rat OE apical layer. Contrary to common belief, the observations here on tangential histological sections of the OE apical junctional belt layer showed on average 53.93% sustentacular cell-enwrapped, 18.46% partially wrapped (in the vertical grooves on the sides of sustentacular apices) and 27.61% unwrapped ORN dendrites (at the borderlines between sustentacular cells). The enwrapped dendrites were found within the confines of sustentacular apices but linked to the sides of the latter each by a mesentery (mesodendrite) of sustentacular plasma membranes and autotypic cell junctions. Up to six dendrites were seen in one sustentacular apical process. As marked by high and low immunoreactivity for class III beta-tubulin, respectively, immature and mature ORN dendrites accounted on average for 12.46 and 87.54% of the total ORN dendrites at the OE apical layer. By correlative analysis of the maturity level and wrapping status, most immature ORN dendrites were found unwrapped (immature unwrapped = 9.71% of the total dendrites), and practically no immature dendrites appeared enwrapped. In contrast, mature ORN dendrites comprised all the enwrapped (mature enwrapped = 53.93% of the total), most of the partially wrapped (mature partially wrapped = 15.71% of the total) and a portion of the unwrapped ORN dendrites (mature unwrapped = 17.9% of the total dendrites). Based on the current findings and previous data by other researchers, it is concluded that immature ORN dendrites emerge vertically from the OE apical surface between sustentacular cell apices. A large majority of the newly emerged dendrites then undergo sideways migration, sustentacular enwrapment and further maturation. Only a small minority of the newly emerged dendrites reach maturity and remain unwrapped. These divergent maturational courses imply structural or functional differences between the enwrapped and unwrapped mature ORN dendrites.


Asunto(s)
Dendritas/fisiología , Dendritas/ultraestructura , Neurogénesis/fisiología , Mucosa Olfatoria/fisiología , Neuronas Receptoras Olfatorias/fisiología , Neuronas Receptoras Olfatorias/ultraestructura , Animales , Femenino , Técnica del Anticuerpo Fluorescente , Masculino , Microscopía Confocal , Microscopía Inmunoelectrónica , Plasticidad Neuronal/fisiología , Mucosa Olfatoria/ultraestructura , Ratas , Ratas Wistar , Receptores Odorantes/fisiología
14.
J Comp Neurol ; 525(17): 3769-3783, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28815589

RESUMEN

Olfactory sensory neurons (OSNs) are chemoreceptors that establish excitatory synapses within glomeruli of the olfactory bulb. OSNs undergo continuous turnover throughout life, causing the constant replacement of their synaptic contacts. Using Xenopus tadpoles as an experimental system to investigate rewiring of glomerular connectivity, we show that novel OSN synapses can transfer information immediately after formation, mediating olfactory-guided behavior. Tadpoles recover the ability to detect amino acids 4 days after bilateral olfactory nerve transection. Restoration of olfactory-guided behavior depends on the efficient reinsertion of OSNs to the olfactory bulb. Presynaptic terminals of incipient synaptic contacts generate calcium transients in response to odors, triggering long lasting depolarization of olfactory glomeruli. The functionality of reconnected terminals relies on well-defined readily releasable and cytoplasmic vesicle pools. The continuous growth of non-compartmentalized axonal processes provides a vesicle reservoir to nascent release sites, which contrasts to the gradual development of cytoplasmic vesicle pools in conventional excitatory synapses. The immediate availability of fully functional synapses upon formation supports an age-independent contribution of OSNs to the generation of odor maps.


Asunto(s)
Odorantes , Traumatismos del Nervio Olfatorio/fisiopatología , Neuronas Receptoras Olfatorias/fisiología , Recuperación de la Función/fisiología , Sinapsis/metabolismo , Factores de Edad , Aminoácidos/metabolismo , Animales , Animales Modificados Genéticamente , Electrofisiología , Potenciales Evocados/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Larva , Microscopía Electrónica , Bulbo Olfatorio/metabolismo , Neuronas Receptoras Olfatorias/ultraestructura , Natación/fisiología , Sinapsis/ultraestructura , Sinaptofisina/metabolismo , Factores de Tiempo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Xenopus laevis/fisiología
15.
Elife ; 62017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28530904

RESUMEN

Neural network function can be shaped by varying the strength of synaptic connections. One way to achieve this is to vary connection structure. To investigate how structural variation among synaptic connections might affect neural computation, we examined primary afferent connections in the Drosophila olfactory system. We used large-scale serial section electron microscopy to reconstruct all the olfactory receptor neuron (ORN) axons that target a left-right pair of glomeruli, as well as all the projection neurons (PNs) postsynaptic to these ORNs. We found three variations in ORN→PN connectivity. First, we found a systematic co-variation in synapse number and PN dendrite size, suggesting total synaptic conductance is tuned to postsynaptic excitability. Second, we discovered that PNs receive more synapses from ipsilateral than contralateral ORNs, providing a structural basis for odor lateralization behavior. Finally, we found evidence of imprecision in ORN→PN connections that can diminish network performance.


Asunto(s)
Drosophila , Red Nerviosa/fisiología , Red Nerviosa/ultraestructura , Neuronas Receptoras Olfatorias/fisiología , Neuronas Receptoras Olfatorias/ultraestructura , Olfato , Animales , Microscopía Electrónica
16.
Sci Rep ; 7: 44295, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28290515

RESUMEN

Zebrafish larvae imprint on visual and olfactory cues of their kin on day 5 and 6 postfertilization, respectively. Only imprinted (but not non-imprinted) larvae show strongly activated crypt (and some microvillous) cells demonstrated by pERK levels after subsequent exposure to kin odor. Here, we investigate the olfactory bulb of zebrafish larvae for activated neurons located at the sole glomerulus mdG2 which receives crypt cell input. Imprinted larvae show a significantly increased activation of olfactory bulb cells compared to non-imprinted larvae after exposure to kin odor. Surprisingly, pERK activated Orthopedia-positive cell numbers in the intermediate ventral telencephalic nucleus were higher in non-imprinted, kin odor stimulated larvae compared to control and to kin-odor stimulated imprinted larvae and control. Moreover, DiI tracing experiments in adult zebrafish show a neuronal circuit from crypt/microvillous olfactory sensory neurons via dorsomedial olfactory bulb and intermediate ventral telencephalic nucleus (thus, arguably the teleostean medial amygdala) to tuberal hypothalamus, demonstrating for the first time an accessory olfactory system in teleosts.


Asunto(s)
Amígdala del Cerebelo/fisiología , Larva/fisiología , Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/fisiología , Pez Cebra/fisiología , Amígdala del Cerebelo/anatomía & histología , Amígdala del Cerebelo/citología , Animales , Carbocianinas/química , Colorantes Fluorescentes/química , Expresión Génica , Impronta Psicológica , Larva/anatomía & histología , Larva/citología , Microscopía Confocal , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Odorantes/análisis , Bulbo Olfatorio/anatomía & histología , Bulbo Olfatorio/citología , Vías Olfatorias/anatomía & histología , Vías Olfatorias/citología , Neuronas Receptoras Olfatorias/ultraestructura , Fosforilación , Olfato/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/anatomía & histología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
J Exp Biol ; 220(Pt 7): 1350-1359, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28183864

RESUMEN

Olfactory sensory neurons innervate the olfactory bulb, where responses to different odorants generate a chemotopic map of increased neural activity within different bulbar regions. In this study, insight into the basal pattern of neural organization of the vertebrate olfactory bulb was gained by investigating the lamprey. Retrograde labelling established that lateral and dorsal bulbar territories receive the axons of sensory neurons broadly distributed in the main olfactory epithelium and that the medial region receives sensory neuron input only from neurons projecting from the accessory olfactory organ. The response duration for local field potential recordings was similar in the lateral and dorsal regions, and both were longer than medial responses. All three regions responded to amino acid odorants. The dorsal and medial regions, but not the lateral region, responded to steroids. These findings show evidence for olfactory streams in the sea lamprey olfactory bulb: the lateral region responds to amino acids from sensory input in the main olfactory epithelium, the dorsal region responds to steroids (taurocholic acid and pheromones) and to amino acids from sensory input in the main olfactory epithelium, and the medial bulbar region responds to amino acids and steroids stimulating the accessory olfactory organ. These findings indicate that olfactory subsystems are present at the base of vertebrate evolution and that regionality in the lamprey olfactory bulb has some aspects previously seen in other vertebrate species.


Asunto(s)
Petromyzon/anatomía & histología , Petromyzon/fisiología , Olfato , Animales , Odorantes/análisis , Bulbo Olfatorio/anatomía & histología , Bulbo Olfatorio/fisiología , Bulbo Olfatorio/ultraestructura , Neuronas Receptoras Olfatorias/citología , Neuronas Receptoras Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/ultraestructura
18.
Int J Mol Sci ; 17(9)2016 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-27589738

RESUMEN

Zinc sulfate is a known olfactory toxicant, although its specific effects on the olfactory epithelium of zebrafish are unknown. Olfactory organs of adult zebrafish were exposed to zinc sulfate and, after 2, 3, 5, 7, 10 or 14 days, fish were processed for histological, immunohistochemical, ultrastructural, and behavioral analyses. Severe morphological disruption of the olfactory organ was observed two days following zinc sulfate exposure, including fusion of lamellae, epithelial inflammation, and significant loss of anti-calretinin labeling. Scanning electron microscopy revealed the apical surface of the sensory region was absent of ciliated structures, but microvilli were still present. Behavioral analysis showed significant loss of the ability to perceive bile salts and some fish also had no response to amino acids. Over the next several days, olfactory organ morphology, epithelial structure, and anti-calretinin labeling returned to control-like conditions, although the ability to perceive bile salts remained lost until day 14. Thus, exposure to zinc sulfate results in rapid degeneration of the olfactory organ, followed by restoration of morphology and function within two weeks. Zinc sulfate appears to have a greater effect on ciliated olfactory sensory neurons than on microvillous olfactory sensory neurons, suggesting differential effects on sensory neuron subtypes.


Asunto(s)
Neuronas Receptoras Olfatorias/efectos de los fármacos , Sulfato de Zinc/toxicidad , Aminoácidos/farmacología , Animales , Calbindina 2/genética , Calbindina 2/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/ultraestructura , Sales (Química)/farmacología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
J Biomed Opt ; 21(6): 66017, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27367253

RESUMEN

We performed stimulated emission depletion (STED) imaging of isolated olfactory sensory neurons (OSNs) using a custom-built microscope. The STED microscope uses a single pulsed laser to excite two separate fluorophores, Atto 590 and Atto 647N. A gated timing circuit combined with temporal interleaving of the different color excitation/STED laser pulses filters the two channel detection and greatly minimizes crosstalk. We quantified the instrument resolution to be ∼81 and ∼44 nm, for the Atto 590 and Atto 647N channels. The spatial separation between the two channels was measured to be under 10 nm, well below the resolution limit. The custom-STED microscope is incorporated onto a commercial research microscope allowing brightfield, differential interference contrast, and epifluorescence imaging on the same field of view. We performed immunolabeling of OSNs in mice to image localization of ciliary membrane proteins involved in olfactory transduction. We imaged Ca2+-permeable cyclic nucleotide gated (CNG) channel (Atto 594) and adenylyl cyclase type III (ACIII) (Atto 647N) in distinct cilia. STED imaging resolved well-separated subdiffraction limited clusters for each protein. We quantified the size of each cluster to have a mean value of 88±48 nm and 124±43 nm, for CNG and ACIII, respectively. STED imaging showed separated clusters that were not resolvable in confocal images.


Asunto(s)
Cilios/ultraestructura , Rayos Láser , Microscopía Fluorescente , Neuronas Receptoras Olfatorias/ultraestructura , Imagen Óptica/métodos , Animales , Colorantes Fluorescentes , Ratones
20.
PLoS One ; 11(5): e0155384, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27163287

RESUMEN

In the Drosophila olfactory system, odorant information is sensed by olfactory sensory neurons and relayed from the primary olfactory center, the antennal lobe (AL), to higher olfactory centers via olfactory projection neurons (PNs). A major portion of the AL is constituted with dendrites of four groups of PNs, anterodorsal PNs (adPNs), lateral PNs (lPNs), lateroventral PNs (lvPNs) and ventral PNs (vPNs). Previous studies have been focused on the development and function of adPNs and lPNs, while the investigation on those of lvPNs and vPNs received less attention. Here, we study the molecular and cellular mechanisms underlying the morphogenesis of a putative male-pheromone responding vPN, the DA1 vPN. Using an intersection strategy to remove background neurons labeled within a DA1 vPN-containing GAL4 line, we depicted morphological changes of the DA1 vPN that occurs at the pupal stage. We then conducted a pilot screen using RNA interference knock-down approach to identify cell surface molecules, including Down syndrome cell adhesion molecule 1 and Semaphorin-1a, that might play essential roles for the DA1 vPN morphogenesis. Taken together, by revealing molecular and cellular basis of the DA1 vPN morphogenesis, we should provide insights into future comprehension of how vPNs are assembled into the olfactory neural circuitry.


Asunto(s)
Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Vías Olfatorias/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Atractivos Sexuales/metabolismo , Animales , Animales Modificados Genéticamente , Moléculas de Adhesión Celular , Dendritas/metabolismo , Dendritas/ultraestructura , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Masculino , Moléculas de Adhesión de Célula Nerviosa/antagonistas & inhibidores , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Vías Olfatorias/ultraestructura , Neuronas Receptoras Olfatorias/ultraestructura , Pupa/anatomía & histología , Pupa/genética , Pupa/crecimiento & desarrollo , Pupa/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Semaforinas/antagonistas & inhibidores , Semaforinas/genética , Semaforinas/metabolismo , Atractivos Sexuales/genética , Transducción de Señal , Olfato/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...