Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.346
Filtrar
1.
Pharmacol Res ; 203: 107173, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580186

RESUMEN

Our recent multi-omics studies have revealed rich sources of novel bioactive proteins and polypeptides from marine organisms including cnidarians. In the present study, we initially conducted a transcriptomic analysis to review the composition profile of polypeptides from Zoanthus sociatus. Then, a newly discovered NPY-like polypeptide-ZoaNPY was selected for further in silico structural, binding and virtually pharmacological studies. To evaluate the pro-angiogenic effects of ZoaNPY, we employed an in vitro HUVECs model and an in vivo zebrafish model. Our results indicate that ZoaNPY, at 1-100 pmol, enhances cell survival, migration and tube formation in the endothelial cells. Besides, treatment with ZoaNPY could restore a chemically-induced vascular insufficiency in zebrafish embryos. Western blot results demonstrated the application of ZoaNPY could increase the phosphorylation of proteins related to angiogenesis signaling including PKC, PLC, FAK, Src, Akt, mTOR, MEK, and ERK1/2. Furthermore, through molecular docking and surface plasmon resonance (SPR) verification, ZoaNPY was shown to directly and physically interact with NPY Y2 receptor. In view of this, all evidence showed that the pro-angiogenic effects of ZoaNPY involve the activation of NPY Y2 receptor, thereby activating the Akt/mTOR, PLC/PKC, ERK/MEK and Src- FAK-dependent signaling pathways. Furthermore, in an excision wound model, the treatment with ZoaNPY was shown to accelerate the wound healing process in mice. Our findings provide new insights into the discovery and development of novel pro-angiogenic drugs derived from NPY-like polypeptides in the future.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Receptores de Neuropéptido Y , Transducción de Señal , Pez Cebra , Animales , Humanos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptores de Neuropéptido Y/metabolismo , Proteína Quinasa C/metabolismo , Ratones , Neuropéptido Y/metabolismo , Neuropéptido Y/farmacología , Ligandos , Péptidos/farmacología , Simulación del Acoplamiento Molecular , Quinasa 1 de Adhesión Focal/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Familia-src Quinasas/metabolismo , Movimiento Celular/efectos de los fármacos
2.
In Vivo ; 38(3): 1133-1142, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38688635

RESUMEN

BACKGROUND/AIM: Cancer-induced bone pain (CIBP) is one of the most common symptoms of bone metastasis of tumor cells. The hypothalamus may play a pivotal role in the regulation of CIBP. However, little is known about the exact mechanisms. MATERIALS AND METHODS: First, we established a CIBP model to explore the relationship among hypothalamic ghrelin, NPY and CIBP. Then, we exogenously administered NPY and NPY receptor antagonists to investigate whether hypothalamic NPY exerted an antinociceptive effect through binding to NPY receptors. Finally, we exogenously administered ghrelin to investigate whether ghrelin alleviated CIBP by inducing the production of hypothalamic NPY through the AMPK-mTOR pathway. Body weight, food intake and behavioral indicators of CIBP were measured every 3 days. Hypothalamic ghrelin, NPY and the AMPK-mTOR pathway were also measured. RESULTS: The expression of hypothalamic ghrelin and NPY was simultaneously decreased in cancer-bearing rats, which was accompanied by CIBP. Intracerebroventricular (i.c.v.) administration of NPY significantly alleviated CIBP in the short term. The antinociceptive effect of NPY was reversed with the i.c.v. administration of the Y1R and Y2R antagonists. The administration of ghrelin activated the AMPK-mTOR pathway and induced hypothalamic NPY production to alleviate CIBP. This effect of ghrelin on NPY and antinociception was reversed with the administration of a GHS-R1α antagonist. CONCLUSION: Ghrelin could induce the production of hypothalamic NPY through the AMPK-mTOR pathway to alleviate CIBP, which can provide a novel therapeutic mechanism for CIBP.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Neoplasias Óseas , Dolor en Cáncer , Modelos Animales de Enfermedad , Ghrelina , Hipotálamo , Neuropéptido Y , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Ghrelina/farmacología , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Neuropéptido Y/metabolismo , Ratas , Dolor en Cáncer/etiología , Dolor en Cáncer/tratamiento farmacológico , Dolor en Cáncer/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Neoplasias Óseas/metabolismo , Neoplasias Óseas/complicaciones , Neoplasias Óseas/tratamiento farmacológico , Masculino , Línea Celular Tumoral , Femenino
3.
Acta Med Okayama ; 78(2): 95-106, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38688827

RESUMEN

The lungs are very complex organs, and the respiratory system performs the dual roles of repairing tissue while protecting against infection from various environmental stimuli. Persistent external irritation disrupts the immune responses of tissues and cells in the respiratory system, ultimately leading to respiratory disease. Neuropeptide Y (NPY) is a 36-amino-acid polypeptide and a neurotransmitter that regulates homeostasis. The NPY receptor is a seven-transmembrane-domain G-protein-coupled receptor with six subtypes (Y1, Y2, Y3, Y4, Y5, and Y6). Of these receptors, Y1, Y2, Y4, and Y5 are functional in humans, and Y1 plays important roles in the immune responses of many organs, including the respiratory system. NPY and the Y1 receptor have critical roles in the pathogenesis of asthma, chronic obstructive pulmonary disease, and idiopathic pulmonary fibrosis. The effects of NPY on the airway immune response and pathogenesis differ among respiratory diseases. This review focuses on the involvement of NPY in the airway immune response and pathogenesis of various respiratory diseases.


Asunto(s)
Neuropéptido Y , Receptores de Neuropéptido Y , Humanos , Neuropéptido Y/fisiología , Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/fisiología , Animales , Enfermedades Respiratorias/inmunología , Asma/inmunología , Sistema Respiratorio/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología
4.
Neuropeptides ; 105: 102425, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554699

RESUMEN

The control of feeding and physical activity is tightly linked and coordinated. However the underlying mechanisms are unclear. One of the major regulatory systems of feeding behaviour involves neuropeptide Y (NPY) signalling, with the signalling mediated through NPY Y4 receptor also known to influence activity. Here we show that mice globally lacking the Npy4r (Npy4r-/-) in the absence of access to a running wheel behaved WT-like with regards to food intake, energy expenditure, respiratory exchange ratio and locomotion regardless of being fed on a chow or high fat diet. Interestingly however, when given the access to a running wheel, Npy4r-/- mice while having a comparable locomotor activity, showed significantly higher wheel-running activity than WT, again regardless of dietary conditions. This higher wheel-running activity in Npy4r-/-mice arose from an increased dark-phase running time rather than changes in number of running bouts or the running speed. Consistently, energy expenditure was higher in Npy4r-/- than WT mice. Importantly, food intake was reduced in Npy4r-/-mice under wheel access condition which was due to decreased feeding bouts rather than changes in meal size. Together, these findings demonstrate an important role of Npy4r signalling in the dual control of feeding and physical activity, particularly in the form of wheel-running activity.


Asunto(s)
Ingestión de Alimentos , Metabolismo Energético , Conducta Alimentaria , Ratones Noqueados , Neuropéptido Y , Receptores de Neuropéptido Y , Transducción de Señal , Animales , Receptores de Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/genética , Transducción de Señal/fisiología , Neuropéptido Y/metabolismo , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Ingestión de Alimentos/fisiología , Ratones , Masculino , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Condicionamiento Físico Animal/fisiología , Dieta Alta en Grasa , Locomoción/fisiología
5.
Nat Commun ; 15(1): 2382, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493217

RESUMEN

Maternal overnutrition during lactation predisposes offspring to develop metabolic diseases and exacerbates the relevant syndromes in males more than females in later life. The hypothalamus is a heterogenous brain region that regulates energy balance. Here we combined metabolic trait quantification of mother and offspring mice under low and high fat diet (HFD) feeding during lactation, with single nucleus transcriptomic profiling of their offspring hypothalamus at peak lacation to understand the cellular and molecular alterations in response to maternal dietary pertubation. We found significant expansion in neuronal subpopulations including histaminergic (Hdc), arginine vasopressin/retinoic acid receptor-related orphan receptor ß (Avp/Rorb) and agouti-related peptide/neuropeptide Y (AgRP/Npy) in male offspring when their mothers were fed HFD, and increased Npy-astrocyte interactions in offspring responding to maternal overnutrition. Our study provides a comprehensive offspring hypothalamus map at the peak lactation and reveals how the cellular subpopulations respond to maternal dietary fat in a sex-specific manner during development.


Asunto(s)
Grasas de la Dieta , Obesidad , Humanos , Femenino , Ratones , Masculino , Animales , Grasas de la Dieta/metabolismo , Obesidad/metabolismo , Hipotálamo/metabolismo , Dieta Alta en Grasa/efectos adversos , Neuropéptido Y/metabolismo , Lactancia , Perfilación de la Expresión Génica , Fenómenos Fisiologicos Nutricionales Maternos
6.
Clin Nucl Med ; 49(5): 419-426, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38546331

RESUMEN

INTRODUCTION: 123 I-MIBG has been well established as a functional imaging tool, and 131 I-MIBG therapy is being considered for catecholamine-secreting tumors. Tumors with the characteristics of a noradrenergic biochemical phenotype, small, malignant, metastatic, extra-adrenal, bilateral, and hereditary, especially SDHx -related tumors, are reported to correlate with reduced MIBG uptake. However, the potential molecular mechanisms influencing MIBG uptake have been poorly studied. PATIENTS AND METHODS: To identify critical genes that may enhance MIBG accumulation in pheochromocytomas (PCCs), we performed RNA-seq analyses for 16 operated patients with PCCs (6 MIBG-negative and 10 MIBG-positive) combined with RT-qPCR for 27 PCCs (5 MIBG-negative and 22 MIBG-positive) and examined primary cultures of the surgical tissues. RESULTS: In the present study, 6 adrenal nodules of 66 nodules surgically removed from 63 patients with PCCs (9%) were MIBG negative. MIBG, a guanethidine analog of norepinephrine, can enter chromaffin cells through active uptake via the cellular membrane, be deposited in chromaffin granules, and be released via Ca 2+ -triggered exocytosis from adrenal chromaffin cells. When we compared expression of several catecholamine biosynthesis and secretion-associated genes between MIBG-negative and MIBG-positive tumors using transcriptome analyses, we found that neuropeptide Y, which is contained in chromaffin granules, was significantly increased in MIBG-negative tumors. NPY stimulated norepinephrine secretion dose-dependently in primary cell culture derived from MIBG-positive PCC. In our study, MIBG-negative PCCs were all norepinephrine-hypersecreting tumors. CONCLUSIONS: These data indicate that NPY upregulation in PCCs may stimulate chromaffin granule catecholamine secretion, which is associated with false-negative 123 I-MIBG scintigraphy.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Feocromocitoma , Humanos , Feocromocitoma/patología , 3-Yodobencilguanidina , Neuropéptido Y/metabolismo , Neoplasias de las Glándulas Suprarrenales/metabolismo , Catecolaminas/metabolismo , Cintigrafía , Norepinefrina/metabolismo
7.
Endocrinology ; 165(5)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38368624

RESUMEN

Glucoprivic feeding is one of several counterregulatory responses (CRRs) that facilitates restoration of euglycemia following acute glucose deficit (glucoprivation). Our previous work established that glucoprivic feeding requires ventrolateral medullary (VLM) catecholamine (CA) neurons that coexpress neuropeptide Y (NPY). However, the connections by which VLM CA/NPY neurons trigger increased feeding are uncertain. We have previously shown that glucoprivation, induced by an anti-glycolygic agent 2-deoxy-D-glucose (2DG), activates perifornical lateral hypothalamus (PeFLH) neurons and that expression of NPY in the VLM CA/NPY neurons is required for glucoprivic feeding. We therefore hypothesized that glucoprivic feeding and possibly other CRRs require NPY-sensitive PeFLH neurons. To test this, we used the ribosomal toxin conjugate NPY-saporin (NPY-SAP) to selectively lesion NPY receptor-expressing neurons in the PeFLH of male rats. We found that NPY-SAP destroyed a significant number of PeFLH neurons, including those expressing orexin, but not those expressing melanin-concentrating hormone. The PeFLH NPY-SAP lesions attenuated 2DG-induced feeding but did not affect 2DG-induced increase in locomotor activity, sympathoadrenal hyperglycemia, or corticosterone release. The 2DG-induced feeding response was also significantly attenuated in NPY-SAP-treated female rats. Interestingly, PeFLH NPY-SAP lesioned male rats had reduced body weights and decreased dark cycle feeding, but this effect was not seen in female rats. We conclude that a NPY projection to the PeFLH is necessary for glucoprivic feeding, but not locomotor activity, hyperglycemia, or corticosterone release, in both male and female rats.


Asunto(s)
Conducta Alimentaria , Hipotálamo , Neuronas , Neuropéptido Y , Ratas Sprague-Dawley , Animales , Femenino , Masculino , Ratas , Desoxiglucosa/farmacología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Conducta Alimentaria/efectos de los fármacos , Glucosa/metabolismo , Área Hipotalámica Lateral/metabolismo , Área Hipotalámica Lateral/efectos de los fármacos , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Melaninas/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuropéptido Y/metabolismo , Neuropéptido Y/farmacología , Neuropéptidos/metabolismo , Orexinas/metabolismo , Hormonas Hipofisarias/metabolismo , Receptores de Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/genética , Proteínas Inactivadoras de Ribosomas Tipo 1/farmacología , Saporinas/farmacología
8.
Neuropeptides ; 104: 102412, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38330680

RESUMEN

Neuropeptide Y (NPY), an extensively distributed neurotransmitter within the central nervous system (CNS), was initially detected and isolated from the brain of a pig in 1982. By binding to its G protein-coupled receptors, NPY regulates immune responses and contributes to the pathogenesis of numerous inflammatory diseases. The hippocampus contained the maximum concentration in the CNS, with the cerebral cortex, hypothalamus, thalamus, brainstem, and cerebellum following suit. This arrangement suggests that the substance has a specific function within the CNS. More and more studies have shown that NPY is involved in the physiological and pathological mechanism of stroke, and its serum concentration can be one of the specific biomarkers of stroke and related complications because of its high activity, broad and complex effects. By summarizing relevant literature, this article aims to gain a thorough understanding of the potential clinical applications of NPY in the treatment of stroke, identification of stroke and its related complications, and assessment of prognosis.


Asunto(s)
Neuropéptido Y , Receptores de Neuropéptido Y , Accidente Cerebrovascular , Animales , Neuropéptido Y/metabolismo , Neuropéptido Y/uso terapéutico , Pronóstico , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/terapia , Porcinos , Humanos
9.
Gen Comp Endocrinol ; 351: 114480, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401858

RESUMEN

Neuropeptide Y is known to be directly or indirectly involved in immune regulation. The immune effects of NPY include immune cell transport, helper T cell differentiation, cytokine secretion, staining and killer cell activity, phagocytosis and production of reactive oxygen species. In this study, we investigated the immunoprotective effect of synthetic NPY on largemouth bass larvae. For the first time, the dose and time effects of NPY injection on largemouth bass was explored, and then Poly I:C and LPS infection was carried out in juvenile largemouth bass, respectively, after the injection of NPY. The results showed that NPY could reduce the inflammatory response by inhibiting the expression of il-1ß, tgf-ß, ifn-γ and other immune factors in head kidney, spleen and brain, and alleviate the immune stress caused by strong inflammatory response in the early stage of infection. Meanwhile, NPY injection ameliorated the intestinal tissue damage caused by infection. This study provides a new way to protect juvenile fish and improve its innate immunity.


Asunto(s)
Lubina , Animales , Lubina/genética , Neuropéptido Y/farmacología , Neuropéptido Y/metabolismo , Inmunidad Innata , Expresión Génica
10.
Mol Cell Endocrinol ; 586: 112179, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387703

RESUMEN

Neuropeptide Y (Npy) is an abundant neuropeptide expressed in the central and peripheral nervous systems. NPY-secreting neurons in the hypothalamic arcuate nucleus regulate energy homeostasis, and Npy mRNA expression is regulated by peripheral nutrient and hormonal signals like leptin, interleukin-6 (IL-6), and fatty acids. This study demonstrates that IL-6, which phosphorylates tyrosine 705 (Y705) of STAT3, decreased Npy mRNA in arcuate immortalized hypothalamic neurons. In parallel, inhibitors of STAT3-Y705 phosphorylation, stattic and cucurbitacin I, robustly upregulated Npy mRNA. Chromatin-immunoprecipitation showed high baseline total STAT3 binding to multiple regulatory regions of the Npy gene, which are decreased by IL-6 exposure. The STAT3-Npy interaction was further examined in obesity-related pathologies. Notably, in four different hypothalamic neuronal models where palmitate potently stimulated Npy mRNA, Socs3, a specific STAT3 activity marker, was downregulated and was negatively correlated with Npy mRNA levels (R2 = 0.40, p < 0.001), suggesting that disrupted STAT3 signaling is involved in lipotoxicity-mediated dysregulation of Npy. Finally, human NPY SNPs that map to human obesity or body mass index were investigated for potential STAT3 binding sites. Although none of the SNPs were linked to direct STAT3 binding, analysis show that rs17149106 (-602 G > T) is located on an upstream enhancer element of NPY, where the variant is predicted to disrupt validated binding of KLF4, a known inhibitory cofactor of STAT3 and downstream effector of leptin signaling. Collectively, this study demonstrates that STAT3 signaling negatively regulates Npy transcription, and that disruption of this interaction may contribute to metabolic disorders.


Asunto(s)
Leptina , Neuropéptido Y , Humanos , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Leptina/farmacología , Leptina/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Hipotálamo/metabolismo , Obesidad/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Neuronas/metabolismo , ARN Mensajero/genética , Factor de Transcripción STAT3/metabolismo
11.
Theranostics ; 14(1): 363-378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164144

RESUMEN

Rationale: In the physiological states, the act of scratching protects the person from harmful substances, while in certain pathological conditions, the patient suffers from chronic itch, both physically and mentally. Chronic itch sufferers are more sensitive to mechanical stimuli, and mechanical hyperknesis relief is essential for chronic itch treatment. While neuropeptide Y-Y1 receptor (NPY-Y1R) system is known to play a crucial role in modulating mechanical itch in physiological conditions, it is elusive how they are altered during chronic itch. We hypothesize that the negative regulatory effect of Y1Rs on Tac2 neurons, the key neurons that transmit mechanical itch, declines during chronic itch. Methods: We combined transgenic mice, chemogenetic manipulation, immunofluorescence, rabies virus circuit tracing, and electrophysiology to investigate the plasticity of Y1Rs on Tac2 neurons during chronic itch. Results: We found that Tac2 neurons receive direct input from Npy neurons and that inhibition of Npy neurons induces activation of Tac2 neurons. Moreover, the expression of Y1Rs on Tac2 neurons is reduced, and the regulatory effect is also reduced during chronic itch. Conclusion: Our study clarifies the plasticity of Y1Rs on Tac2 neurons during chronic itch and further elucidates the mechanism by which NPY-Y1R system is responsible for modulating mechanical itch. We highlight Y1Rs as a promising therapeutic target for mechanical hyperknesis during chronic itch.


Asunto(s)
Neuropéptido Y , Receptores de Neuropéptido Y , Humanos , Ratones , Animales , Neuropéptido Y/metabolismo , Neuropéptido Y/farmacología , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo , Neuronas/metabolismo , Prurito/metabolismo
12.
Mol Med ; 30(1): 2, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172658

RESUMEN

BACKGROUND: Umbilical cord blood-derived therapeutics, such as serum (UCS) and platelet-rich plasma (UCPRP), are popular treatment options in clinical trials and can potentially be utilized to address a clinically unmet need caused by preservatives, specifically benzalkonium chloride (BAK), present in ophthalmic formulations. As current clinical interventions for secondary injuries caused by BAK are suboptimal, this study will explore the feasibility of utilizing UCS and UCPRP for cornea treatment and investigate the underlying mechanisms associated with this approach. METHODS: Mice's corneas were administered BAK to induce damage. UCS and UCPRP were then utilized to attempt to treat the injuries. Ocular tests were performed on the animals to evaluate recovery, while immunostaining, RNA-seq, and subsequent bioinformatics analysis were conducted to investigate the treatment mechanism. RESULTS: BAK administration led to widespread inflammatory responses in the cornea. Subsequent treatment with UCS and UCPRP led to the downregulation of immune-related 'interactions between cytokine receptors' and 'IL-17 signaling' pathways. Although axonal enhancers such as Ngf, Rac2, Robo2, Srgap1, and Rock2 were found to be present in the injured group, robust axonal regeneration was observed only in the UCS and UCPRP treatment groups. Further analysis revealed that, as compared to normal corneas, inflammation was not restored to pre-injury levels post-treatment. Importantly, Neuropeptide Y (Npy) was also involved in regulating immune responses, indicating neuroimmune axis interactions. CONCLUSIONS: Cord blood-derived therapeutics are feasible options for overcoming the sustained injuries induced by BAK in the cornea. They also have potential applications in areas where axonal regeneration is required.


Asunto(s)
Compuestos de Benzalconio , Productos Biológicos , Ratones , Animales , Compuestos de Benzalconio/metabolismo , Compuestos de Benzalconio/farmacología , Neuropéptido Y/metabolismo , Sangre Fetal , Interleucina-17/metabolismo , Córnea/metabolismo
13.
Neuropharmacology ; 246: 109847, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38218578

RESUMEN

Neuropeptide Y (NPY) has anxiolytic-like effects and facilitates the extinction of cued and contextual fear in rodents. We have previously shown that intracerebroventricular administration of NPY reduces the expression of social fear via simultaneous activation of Y1 and Y2 receptors in a mouse model of social fear conditioning (SFC). In the present study, we investigated whether the anteroventral bed nucleus of the stria terminalis (BNSTav) mediates these effects of NPY, given the important role of BNSTav in regulating anxiety- and fear-related behaviors. We show that while NPY (0.1 nmol/0.2 µl/side) did not reduce the expression of SFC-induced social fear in male CD1 mice, it reduced the expression of both cued and contextual fear by acting on Y2 but not on Y1 receptors within the BNSTav. Prior administration of the Y2 receptor antagonist BIIE0246 (0.2 nmol/0.2 µl/side) but not of the Y1 receptor antagonist BIBO3304 trifluoroacetate (0.2 nmol/0.2 µl/side) blocked the effects of NPY on the expression of cued and contextual fear. Similarly, NPY exerted non-social anxiolytic-like effects in the elevated plus maze test but not social anxiolytic-like effects in the social approach avoidance test by acting on Y2 receptors and not on Y1 receptors within the BNSTav. These results suggest that administration of NPY within the BNSTav exerts robust Y2 receptor-mediated fear-reducing and anxiolytic-like effects specifically in non-social contexts and add a novel piece of evidence regarding the neural underpinnings underlying the effects of NPY on conditioned fear and anxiety-like behavior.


Asunto(s)
Núcleos Talámicos Anteriores , Ansiolíticos , Núcleos Septales , Masculino , Ratones , Animales , Neuropéptido Y/farmacología , Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/metabolismo , Ansiolíticos/farmacología , Núcleos Septales/metabolismo , Ansiedad/tratamiento farmacológico , Miedo , Núcleos Talámicos Anteriores/metabolismo
14.
Acta Neuropsychiatr ; 36(1): 1-8, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37070394

RESUMEN

OBJECTIVE: Neuropeptide Y (NPY) is a powerful regulator of anxious states, including social anxiety, but evidence from human genetic studies is limited. Associations of common gene variants with behaviour have been described as subject to birth cohort effects, especially if the behaviour is socially motivated. This study aimed to examine the association of NPY rs16147 and rs5574 with personality traits in highly representative samples of two birth cohorts of young adults, the samples having been formed during a period of rapid societal transition. METHODS: Both birth cohorts (original n = 1238) of the Estonian Children Personality Behaviour and Health Study (ECPBHS) self-reported personality traits of the five-factor model at 25 years of age. RESULTS: A significant interaction effect of the NPY rs16147 and rs5574 and birth cohort on Agreeableness was found. The T/T genotype of NPY rs16147 resulted in low Agreeableness in the older cohort (born 1983) and in high Agreeableness in the younger cohort (born 1989). The C/C genotype of NPY rs5574 was associated with higher Agreeableness in the younger but not in the older cohort. In the NPY rs16147 T/T homozygotes, the deviations from average in Agreeableness within the birth cohort were dependent on the serotonin transporter promoter polymorphism. CONCLUSIONS: The association between the NPY gene variants and a personality domain reflecting social desirability is subject to change qualitatively in times of rapid societal changes, serving as an example of the relationship between the plasticity genes and environment. The underlying mechanism may involve the development of the serotonergic system.


Asunto(s)
Cohorte de Nacimiento , Neuropéptido Y , Niño , Adulto Joven , Humanos , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Polimorfismo de Nucleótido Simple , Genotipo
15.
Physiol Behav ; 275: 114431, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38072036

RESUMEN

Intermittent fasting (IMF) is associated with many health benefits in animals and humans. Yet, little is known if an IMF diet affects mood and cognitive processing. We have previously identified that IMF in diet-induced obese males increases norepinephrine and dopamine content in the hypothalamus and increases arcuate neuropeptide Y (NPY) gene expression more than in ad libitum control males. This suggests that IMF may improve cognition through activation of the hindbrain norepinephrine neuronal network and reverse the age-dependent decline in NPY expression. Less is known about the association between anxiety and IMF. Although, in humans, IMF during Ramadan may alleviate anxiety. Here, we address the impact of IMF on anxiety-like behavior using the open field test, hippocampal-dependent memory using the Y-maze and spatial object recognition, and hippocampal-independent memory using novel object recognition in middle-aged male and female (12 mo) and aged male and female (18 mo) mice. Using ELISA, we determined norepinephrine (NE) content in the dorsal hippocampus (DH) and prefrontal cortex (PFC). We also investigated gene expression in the arcuate nucleus (ARC), the lateral hypothalamus (LH), and the locus coeruleus (LC). In IMF-treated females at both ages, we observed an improvement in spatial navigation although an impairment in spatial object orientation. IMF-treated females (12 mo) had a reduction and IMF-treated males (12 mo) displayed an improvement in novel object recognition memory. IMF-treated females (18 mo) exhibited anxiolytic-like behavior and increased locomotion. In the DH, IMF-treated males (12 mo) had a greater amount of NE content and IMF-treated males (18 mo) had a reduction. In the ARC, IMF-treated males (12 mo) exhibited an increase in Agrp and Npy and a decrease in Adr1a. In the ARC, IMF-treated males (18 mo) exhibited an increase in Npy and a decrease in Adr1a; females had a trending decrease in Cart. In the LH at 12 months, IMF-treated males had a decrease in Npy5r, Adr1a, and Adr1b; both males and females had a reduction in Npy1r. In the LH, IMF-treated females (18 mo) had a decrease in Hcrt. In the LC at both ages, mice largely exhibited sex effects. Our findings indicate that IMF produces alterations in mood, cognition, DH NE content, and ARC, LH, and LC gene expression depending on sex and age.


Asunto(s)
Ayuno Intermitente , Norepinefrina , Humanos , Ratones , Masculino , Femenino , Animales , Persona de Mediana Edad , Anciano , Norepinefrina/metabolismo , Neuropéptido Y/metabolismo , Hipotálamo/metabolismo , Hipocampo/metabolismo
16.
Neuropsychopharmacology ; 49(4): 690-698, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37758802

RESUMEN

Neuropeptide Y (NPY) signaling regulation of corticolimbic communication is known to modulate binge-like ethanol consumption in rodents. In this work we sought to assess the impact of intra-BLA NPY system modulation on binge-like ethanol intake and to assess the role of the NPY1R+ projection from the BLA to the mPFC in this behavior. We used "drinking-in-the-dark" (DID) procedures in C57BL6J mice to address these questions. First, the impact of intra-BLA administration of NPY on binge-like ethanol intake was assessed. Next, the impact of repeated cycles of DID intake on NPY1R expression in the BLA was assessed with use of immunohistochemistry (IHC). Finally, chemogenetic inhibition of BLA→mPFC NPY1R+ projections was assessed to determine if limbic communication with the mPFC was specifically involved in binge-like ethanol intake. Importantly, as both the BLA and NPY system are sexually dimorphic, both sexes were assessed in these studies. Intra-BLA NPY dose-dependently decreased binge-like ethanol intake in males only. Repeated DID reduced NPY1R expression in the BLA of both sexes. Silencing of BLA→mPFC NPY1R+ neurons significantly reduced binge-like ethanol intake in both sexes in a dose-dependent manner. We provide novel evidence that (1) intra-BLA NPY reduces binge-like ethanol intake in males; (2) binge-like ethanol intake reduces NPY1R levels in the BLA; and (3) chemogenetic inhibition of BLA→mPFC NPY1R+ neurons blunts binge-like drinking in male and female mice. These observations provide the first direct evidence that NPY signaling in the BLA, and specifically BLA communication with the mPFC, modulates binge-like ethanol consumption.


Asunto(s)
Complejo Nuclear Basolateral , Consumo Excesivo de Bebidas Alcohólicas , Ratones , Masculino , Femenino , Animales , Complejo Nuclear Basolateral/metabolismo , Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/metabolismo , Etanol , Neuronas/metabolismo , Consumo Excesivo de Bebidas Alcohólicas/metabolismo
17.
J Neuroendocrinol ; 36(1): e13357, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056947

RESUMEN

This study furthers the investigation of how pituitary adenylate cyclase activating polypeptide (PACAP) and the PAC1 receptor (PAC1R) regulate the homeostatic energy balance circuitry. We hypothesized that apoptotic ablation of PACAP neurones in the hypothalamic ventromedial nucleus (VMN) would affect both energy intake and energy expenditure. We also hypothesized that selective PAC1R knockdown would impair the PACAP-induced excitation in anorexigenic proopiomelanocortin (POMC) neurones and inhibition of orexigenic neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurones in the hypothalamic arcuate nucleus (ARC). The results show CASPASE-3-induced ablation of VMN PACAP neurones leads to increased energy intake and meal frequency as well as decreased energy expenditure in lean animals. The effects were more robust in obese males, whereas we saw the opposite effects in obese females. We then utilized visualized whole-cell patch clamp recordings in hypothalamic slices. PAC1R knockdown in POMC neurones diminishes the PACAP-induced depolarization, increase in firing, decreases in energy intake and meal size, as well as increases in CO2 production and O2 consumption. Similarly, the lack of expression of the PAC1R in NPY/AgRP neurones greatly attenuates the PACAP-induced hyperpolarization, suppression of firing, decreases in energy intake and meal frequency, as well as increases in energy expenditure. The PACAP response in NPY/AgRP neurones switched from predominantly inhibitory to excitatory in fasted animals. Finally, the anorexigenic effect of PACAP was potentiated when oestradiol was injected into the ARC in ovariectomized females. This study demonstrates the critical role of anorexigenic VMN PACAP neurones and the PAC1R in exciting POMC and inhibiting NPY/AgRP neurons to control homeostatic feeding.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Proopiomelanocortina , Animales , Masculino , Femenino , Proopiomelanocortina/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Neuropéptido Y/metabolismo , Proteína Relacionada con Agouti/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Dieta , Neuronas/metabolismo , Obesidad/metabolismo
18.
Neuroendocrinology ; 114(4): 365-385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38142691

RESUMEN

INTRODUCTION: The perception of hunger is a complex physiological process that requires precise coordination between the central and peripheral tissues. METHODS: In this study, tilapia fasted for 24 h was chosen to establish a hunger model to study the mechanism of homeostasis recovery under the joint regulation of the central nervous system (CNS) and peripheral tissues. RESULTS: The gastric and intestinal contents of tilapia were predominantly depleted after a fasting period of 9 h and 24 h, respectively. The serum glucose level significantly decreased at the 9-h and 24-h fasting, respectively, and the glucokinase-dependent glucosensing mechanism in the liver was identified as well as the significant activation of phospho-AMPK. However, fasting for 24 h did not activate glucosensing mechanisms and AMPK signaling pathways in the hypothalamus. On the other hand, significant reductions were observed in the mRNA levels of the lipid synthesis-related genes fas and accα, and the serum triglyceride levels as well. The mRNA levels of npy, agrp, pomc, and cart in the hypothalamus fluctuated during the fasting period without significant differences. With in situ hybridization npy signals upregulated in the ventral zone of posterior periventricular nucleus after 24-h fasting, pomc signals enhanced in the lateral tuberal nucleus. Based on the serum metabolomic analysis, the levels of branched-chain amino acids, butyrate, and short-chain acylcarnitine decreased, while those of medium- and long-chain acylcarnitine increased. CONCLUSION: Fasting for 24 h resulted in changes in npy and pomc signals within the hypothalamus and triggered the glucosensing mechanism in the liver of tilapia. This study is beneficial for elucidating the response of neuropeptides in the CNS to the changes of nutritional factors when hungry.


Asunto(s)
Carnitina/análogos & derivados , Neuropéptido Y , Neuropéptidos , Neuropéptido Y/metabolismo , Hambre , Proopiomelanocortina/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Neuropéptidos/metabolismo , Hipotálamo/metabolismo , Ayuno , Proteína Relacionada con Agouti/metabolismo , ARN Mensajero/metabolismo
19.
Acta Neurol Taiwan ; 33(4): 175-184, 2024 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38073167

RESUMEN

PURPOSE: With the extensive presence of Covid-19, it is imperative to find compounds that can obstruct the virus's inflammatory activity and perhaps even stop the inflammatory phase from occurring. Several neuropeptides act as immune system regulators, which nerve terminals release as co-transmitters. It has been suggested that Neuropeptide Y (NPY) may be involved in inflammatory diseases through its ability to regulate the function of inflammatory cells. Consequently, the present study was designed to examine the changes in this neuropeptide in the serum of patients with Covid-19 disease, particularly following anti-inflammatory treatment, and its relationship with other inflammatory factors such as TNF-α. METHODS: The demographic information, vital and clinical signs (blood oxygen saturation level, blood pressure, heart rate, and body temperature), laboratory factors such as blood factors, inflammation, and blood electrolytes, as well as the use of steroids, were collected before and after steroid treatment the patient files. As part of the study, serum samples from patients were used to measure levels of NPY and TNF-α inflammatory factors using an ELISA kit. Additionally, the correlation between NPY values, other inflammatory factors, and other variables was examined before and after treatment. RESULTS: NPY, TNF-α, c-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) levels were significantly reduced after steroid treatment. But the blood urea nitrogen (BUN) factor level increased after treatment compared to the initial evaluation. Lymphocytes and neutrophils also changed after drug treatment. Results indicated a high correlation between NPY and TNF-α. In addition to TNF-α, NPY, creatinine, and BUN presented a direct and significant relationship. ESR and BUN factors showed a positive and significant correlation regarding the length of hospitalization. However, the correlation between NPY and TNF-α with hospitalization length was insignificant. CONCLUSION: Since the current study had a significant association between NPY and TNF-α, the regulating function of this peptide in Covid-19 inflammatory processes may be validated. Enough that it is crucial to consider NPY as a marker and its antagonist as a potential Covid-19 therapy. Also, the considerable reduction in NPY levels after steroid therapy to lower inflammatory variables supports the regulatory function of this peptide in inflammatory processes.


Asunto(s)
COVID-19 , Neuropéptido Y , Humanos , Neuropéptido Y/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Hospitales , Esteroides
20.
Artículo en Inglés | MEDLINE | ID: mdl-38147959

RESUMEN

Zymosan is a fungi-derived pathogen-associated molecular pattern. It activates the immune system and induces the reduction of feed passage rate in the gastrointestinal tract of vertebrates including birds. However, the mechanism mediating the zymosan-induced inhibition of feed passage in the gastrointestinal tract remains unknown. Since the medulla oblongata regulates the digestive function, it is plausible that the medulla oblongata is involved in the zymosan-induced inhibition of feed passage. The present study was performed to identify the genes that were affected by zymosan within the medulla oblongata of chicks (Gallus gallus) using an RNA sequencing approach. We found that mRNAs of several bioactive molecules including neuropeptide Y (NPY) were increased with an intraperitoneal (IP) injection of zymosan. The increase of mRNA expression of NPY in the medulla oblongata was also observed after the IP injection of lipopolysaccharide, derived from gram-negative bacteria. These results suggest that medullary NPY is associated with physiological changes during fungal and bacterial infection. Furthermore, we found that intracerebroventricular injection of NPY and its receptor agonists reduced the feed passage from the crop. Additionally, the injection of NPY reduced the feed passage from the proventriculus to lower digestive tract. NPY also suppressed the activity of duodenal activities of amylase and trypsin. The present study suggests that fungi- and bacteria-induced activation of the immune system may activate the NPY neurons in the medulla oblongata and thereby reduce the digestive function in chicks.


Asunto(s)
Lipopolisacáridos , Neuropéptido Y , Animales , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Lipopolisacáridos/farmacología , Zimosan/farmacología , Pollos/metabolismo , Bulbo Raquídeo/metabolismo , Tracto Gastrointestinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...