Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.157
Filtrar
1.
Cell Biol Toxicol ; 40(1): 32, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767703

RESUMEN

BACKGROUND: Recent studies have emphasized the critical role of Telocytes (TCs)-derived exosomes in organ tissue injury and repair. Our previous research showed a significant increase in ITGB1 within TCs. Pulmonary Arterial Hypertension (PAH) is marked by a loss of microvessel regeneration and progressive vascular remodeling. This study aims to investigate whether exosomes derived from ITGB1-modified TCs (ITGB1-Exo) could mitigate PAH. METHODS: We analyzed differentially expressed microRNAs (DEmiRs) in TCs using Affymetrix Genechip miRNA 4.0 arrays. Exosomes isolated from TC culture supernatants were verified through transmission electron microscopy and Nanoparticle Tracking Analysis. The impact of miR-429-3p-enriched exosomes (Exo-ITGB1) on hypoxia-induced pulmonary arterial smooth muscle cells (PASMCs) was evaluated using CCK-8, transwell assay, and inflammatory factor analysis. A four-week hypoxia-induced mouse model of PAH was constructed, and H&E staining, along with Immunofluorescence staining, were employed to assess PAH progression. RESULTS: Forty-five miRNAs exhibited significant differential expression in TCs following ITGB1 knockdown. Mus-miR-429-3p, significantly upregulated in ITGB1-overexpressing TCs and in ITGB1-modified TC-derived exosomes, was selected for further investigation. Exo-ITGB1 notably inhibited the migration, proliferation, and inflammation of PASMCs by targeting Rac1. Overexpressing Rac1 partly counteracted Exo-ITGB1's effects. In vivo administration of Exo-ITGB1 effectively reduced pulmonary vascular remodeling and inflammation. CONCLUSIONS: Our findings reveal that ITGB1-modified TC-derived exosomes exert anti-inflammatory effects and reverse vascular remodeling through the miR-429-3p/Rac1 axis. This provides potential therapeutic strategies for PAH treatment.


Asunto(s)
Exosomas , Integrina beta1 , MicroARNs , Telocitos , Proteína de Unión al GTP rac1 , MicroARNs/genética , MicroARNs/metabolismo , Animales , Exosomas/metabolismo , Exosomas/genética , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Ratones , Telocitos/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones Endogámicos C57BL , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Hipoxia/metabolismo , Hipoxia/genética , Hipoxia/complicaciones , Proliferación Celular/genética , Movimiento Celular/genética , Humanos , Remodelación Vascular/genética , Neuropéptidos
2.
Mol Biol Rep ; 51(1): 656, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740671

RESUMEN

BACKGROUND: Prokineticin 2 (PROK2), an important neuropeptide that plays a key role in the neuronal migration of gonadotropin-releasing hormone (GnRH) in the hypothalamus, is known to have regulatory effects on the gonads. In the present study, the impact of intracerebroventricular (icv) PROK2 infusion on hypothalamic-pituitary-gonadal axis (HPG) hormones, testicular tissues, and sperm concentration was investigated. METHODS AND RESULTS: Rats were randomly divided into four groups: control, sham, PROK2 1.5 and PROK2 4.5. Rats in the PROK2 1.5 and PROK2 4.5 groups were administered 1.5 nmol and 4.5 nmol PROK2 intracerebroventricularly for 7 days via an osmotic mini pump (1 µl/h), respectively. Rat blood serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone hormone levels were determined with the ELISA method in the blood samples after 7 days of infusion. GnRH mRNA expression was determined with the RT-PCR in hypothalamus tissues. analyze Sperm concentration was determined, and testicular tissue was examined histologically with the hematoxylin-eosin staining method. It was observed that GnRH mRNA expression increased in both PROK2 infusion groups. Serum FSH, LH and testosterone hormone levels also increased in these groups. Although sperm concentration increased in PROK2 infusion groups when compared to the control and sham, the differences were not statistically significant. Testicular tissue seminiferous epithelial thickness was higher in the PROK2 groups when compared to the control and sham groups. CONCLUSION: The present study findings demonstrated that icv PROK2 infusion induced the HPG axis. It could be suggested that PROK2 could be a potential agent in the treatment of male infertility induced by endocrinological defects.


Asunto(s)
Hormona Folículo Estimulante , Hormonas Gastrointestinales , Hormona Liberadora de Gonadotropina , Hormona Luteinizante , Neuropéptidos , Testículo , Testosterona , Masculino , Animales , Ratas , Hormonas Gastrointestinales/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Testosterona/sangre , Testosterona/metabolismo , Hormona Folículo Estimulante/sangre , Hormona Folículo Estimulante/metabolismo , Testículo/metabolismo , Testículo/efectos de los fármacos , Hormona Luteinizante/sangre , Hormona Luteinizante/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/farmacología , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Infusiones Intraventriculares , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Recuento de Espermatozoides , Ratas Sprague-Dawley , Eje Hipotálamico-Pituitario-Gonadal
3.
J Zhejiang Univ Sci B ; 25(5): 389-409, 2024 May 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38725339

RESUMEN

The short neuropeptide F (sNPF) family of peptides is a multifunctional group of neurohormones involved in the regulation of various physiological processes in insects. They have been found in a broad spectrum of species, but the number of isoforms in the precursor molecule varies from one to four. The receptor for sNPF (sNPFR), which belongs to the G protein-coupled receptor family, has been characterized in various insect orders and was shown to be an ortholog of the mammalian prolactin-releasing peptide receptor (PrPR). The sNPF signaling pathway interacts with other neurohormones such as insulin-like peptides, SIFamide, and pigment-dispersing factors (PDFs) to regulate various processes. The main physiological function of sNPF seems to be involved in the regulation of feeding, but the observed effects are species-specific. sNPF is also connected with the regulation of foraging behavior and the olfactory system. The influence of sNPF on feeding and thus energy metabolism may also indirectly affect other vital processes, such as reproduction and development. In addition, these neurohormones are involved in the regulation of locomotor activity and circadian rhythm in insects. This review summarizes the current state of knowledge about the sNPF system in insects.


Asunto(s)
Insectos , Neuropéptidos , Transducción de Señal , Animales , Neuropéptidos/metabolismo , Neuropéptidos/fisiología , Insectos/fisiología , Insectos/metabolismo , Ritmo Circadiano/fisiología , Conducta Alimentaria , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Metabolismo Energético
4.
Nat Commun ; 15(1): 3965, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730017

RESUMEN

Currently, there is no pesticide available for the selective control of the pine processionary moth (Thaumetopoea pityocampa-specific), and conventional methods typically rely on mechanical techniques such as pheromone traps or broad-spectrum larvicidal chemicals. As climate change increases the range and dispersion capacity of crop and forest pests, outbreaks of the pine processionary occur with greater frequency and significantly impact forestry and public health. Our study is carried out to provide a T. pityocampa-specific pesticide targeting the Allatostatin Type-C Receptor (AlstR-C). We use a combination of computational biology methods, a cell-based screening assay, and in vivo toxicity and side effect assays to identify, for the first time, a series of AlstR-C ligands suitable for use as T. pityocampa-specific insecticides. We further demonstrate that the novel AlstR-C targeted agonists are specific to lepidopteran larvae, with no harmful effects on coleopteran larvae or adults. Overall, our study represents an important initial advance toward an insect GPCR-targeted next-generation pesticide design. Our approach may apply to other invertebrate GPCRs involved in vital metabolic pathways.


Asunto(s)
Insecticidas , Larva , Mariposas Nocturnas , Animales , Mariposas Nocturnas/efectos de los fármacos , Insecticidas/farmacología , Larva/efectos de los fármacos , Proteínas de Insectos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Ligandos , Neuropéptidos
5.
Neuromolecular Med ; 26(1): 18, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691185

RESUMEN

Seipin is a key regulator of lipid metabolism, the deficiency of which leads to severe lipodystrophy. Hypothalamus is the pivotal center of brain that modulates appetite and energy homeostasis, where Seipin is abundantly expressed. Whether and how Seipin deficiency leads to systemic metabolic disorders via hypothalamus-involved energy metabolism dysregulation remains to be elucidated. In the present study, we demonstrated that Seipin-deficiency induced hypothalamic inflammation, reduction of anorexigenic pro-opiomelanocortin (POMC), and elevation of orexigenic agonist-related peptide (AgRP). Importantly, administration of rosiglitazone, a thiazolidinedione antidiabetic agent, rescued POMC and AgRP expression, suppressed hypothalamic inflammation, and restored energy homeostasis in Seipin knockout mice. Our findings offer crucial insights into the mechanism of Seipin deficiency-associated energy imbalance and indicates that rosiglitazone could serve as potential intervening agent towards metabolic disorders linked to Seipin.


Asunto(s)
Proteína Relacionada con Agouti , Metabolismo Energético , Subunidades gamma de la Proteína de Unión al GTP , Homeostasis , Hipotálamo , Ratones Noqueados , Proopiomelanocortina , Rosiglitazona , Animales , Ratones , Hipotálamo/metabolismo , Metabolismo Energético/efectos de los fármacos , Proopiomelanocortina/genética , Proopiomelanocortina/biosíntesis , Proteína Relacionada con Agouti/genética , Subunidades gamma de la Proteína de Unión al GTP/genética , Rosiglitazona/farmacología , Masculino , Enfermedades Neuroinflamatorias/etiología , Ratones Endogámicos C57BL , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Neuropéptidos/genética , Neuropéptidos/deficiencia , Regulación de la Expresión Génica/efectos de los fármacos
6.
Elife ; 122024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727714

RESUMEN

Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) - the most common receptors of bilaterian neuropeptides - but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.


Asunto(s)
Neuropéptidos , Filogenia , Receptores Acoplados a Proteínas G , Anémonas de Mar , Animales , Anémonas de Mar/genética , Neuropéptidos/metabolismo , Neuropéptidos/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal
7.
Nat Commun ; 15(1): 4273, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769103

RESUMEN

Sex-specific traits and behaviors emerge during development by the acquisition of unique properties in the nervous system of each sex. However, the genetic events responsible for introducing these sex-specific features remain poorly understood. In this study, we create a comprehensive gene expression atlas of pure populations of hermaphrodites and males of the nematode Caenorhabditis elegans across development. We discover numerous differentially expressed genes, including neuronal gene families like transcription factors, neuropeptides, and G protein-coupled receptors. We identify INS-39, an insulin-like peptide, as a prominent male-biased gene expressed specifically in ciliated sensory neurons. We show that INS-39 serves as an early-stage male marker, facilitating the effective isolation of males in high-throughput experiments. Through complex and sex-specific regulation, ins-39 plays pleiotropic sexually dimorphic roles in various behaviors, while also playing a shared, dimorphic role in early life stress. This study offers a comparative sexual and developmental gene expression database for C. elegans. Furthermore, it highlights conserved genes that may underlie the sexually dimorphic manifestation of different human diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Caracteres Sexuales , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Masculino , Femenino , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Células Receptoras Sensoriales/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Perfilación de la Expresión Génica
8.
J Agric Food Chem ; 72(20): 11341-11350, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38713071

RESUMEN

Insect neuropeptides play an essential role in regulating growth, development, reproduction, nerve conduction, metabolism, and behavior in insects; therefore, G protein-coupled receptors of neuropeptides are considered important targets for designing green insecticides. Cockroach-type allatostatins (ASTs) (FGLamides allatostatins) are important insect neuropeptides in Diploptera punctata that inhibit juvenile hormone (JH) synthesis in the corpora allata and affect growth, development, and reproduction of insects. Therefore, the pursuit of novel insecticides targeting the allatostatin receptor (AstR) holds significant importance. Previously, we identified an AST analogue, H17, as a promising candidate for pest control. Herein, we first modeled the 3D structure of AstR in D. punctata (Dippu-AstR) and predicted the binding mode of H17 with Dippu-AstR to study the critical interactions and residues favorable to its bioactivity. Based on this binding mode, we designed and synthesized a series of H17 derivatives and assessed their insecticidal activity against D. punctata. Among them, compound Q6 showed higher insecticidal activity than H17 against D. punctata by inhibiting JH biosynthesis, indicating that Q6 is a potential candidate for a novel insect growth regulator (IGR)-based insecticide. Moreover, Q6 exhibited insecticidal activity against Plutella xylostella, indicating that these AST analogs may have a wider insecticidal spectrum. The underlying mechanisms and molecular conformations mediating the interactions of Q6 with Dippu-AstR were explored to understand its effects on the bioactivity. The present work clarifies how a target-based strategy facilitates the discovery of new peptide mimics with better bioactivity, enabling improved IGR-based insecticide potency in sustainable agriculture.


Asunto(s)
Proteínas de Insectos , Insecticidas , Neuropéptidos , Peptidomiméticos , Insecticidas/química , Insecticidas/farmacología , Insecticidas/síntesis química , Animales , Neuropéptidos/química , Neuropéptidos/farmacología , Neuropéptidos/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Peptidomiméticos/química , Peptidomiméticos/farmacología , Peptidomiméticos/síntesis química , Diseño de Fármacos , Hormonas Juveniles/química , Hormonas Juveniles/farmacología , Hormonas Juveniles/metabolismo , Cucarachas/efectos de los fármacos , Cucarachas/química
9.
Cell Commun Signal ; 22(1): 256, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38705997

RESUMEN

BACKGROUND: Melanoma is a highly heterogeneous cancer, in which frequent changes in activation of signaling pathways lead to a high adaptability to ever changing tumor microenvironments. The elucidation of cancer specific signaling pathways is of great importance, as demonstrated by the inhibitor of the common BrafV600E mutation PLX4032 in melanoma treatment. We therefore investigated signaling pathways that were influenced by neurotrophin NRN1, which has been shown to be upregulated in melanoma. METHODS: Using a cell culture model system with an NRN1 overexpression, we investigated the influence of NRN1 on melanoma cells' functionality and signaling. We employed real time cell analysis and spheroid formation assays, while for investigation of molecular mechanisms we used a kinase phosphorylation kit as well as promotor activity analysis followed by mRNA and protein analysis. RESULTS: We revealed that NRN1 interacts directly with the cleaved intracellular domain (NICD) of Notch1 and Notch3, causing a potential retention of NICD in the cytoplasm and thereby reducing the expression of its direct downstream target Hes1. This leads to decreased sequestration of JAK and STAT3 in a Hes1-driven phosphorylation complex. Consequently, our data shows less phosphorylation of STAT3 while presenting an accumulation of total protein levels of STAT3 in association with NRN1 overexpression. The potential of the STAT3 signaling pathway to act in both a tumor suppressive and oncogenic manner led us to investigate specific downstream targets - namely Vegf A, Mdr1, cMet - which were found to be upregulated under oncogenic levels of NRN1. CONCLUSIONS: In summary, we were able to show that NRN1 links oncogenic signaling events between Notch and STAT3 in melanoma. We also suggest that in future research more attention should be payed to cellular regulation of signaling molecules outside of the classically known phosphorylation events.


Asunto(s)
Melanoma , Neuropéptidos , Factor de Transcripción STAT3 , Transducción de Señal , Humanos , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular Tumoral , Melanoma/metabolismo , Melanoma/genética , Melanoma/patología , Fosforilación , Unión Proteica , Receptor Notch1/metabolismo , Receptor Notch1/genética , Receptor Notch3/metabolismo , Receptor Notch3/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética
10.
Physiol Res ; 73(2): 305-314, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38710054

RESUMEN

Netrin-1 (NTN-1) plays a vital role in the progress of nervous system development and inflammatory diseases. However, the role and underlying mechanism of NTN-1 in inflammatory pain (IP) are unclear. BV2 microglia were treated with LPS to mimic the cell status under IP. Adeno-associated virus carrying the NTN-1 gene (AAV-NTN-1) was used to overexpress NTN-1. Complete Freund's Adjuvant (CFA)-induced mouse was recruited as an in vivo model. MTT and commercial kits were utilized to evaluate cell viability and cell death of BV2 cells. The mRNA expressions and secretions of cytokines were measured using the ELISA method. Also, the pyroptosis and activation of BV2 cells were investigated based on western blotting. To verify the role of Rac1/NF-kappaB signaling, isochamaejasmin (ISO) and AAV-Rac1 were presented. The results showed that NTN-1 expression was decreased in LPS-treated BV2 microglia and spinal cord tissues of CFA-injected mice. Overexpressing NTN-1 dramatically reversed cell viability and decreased cell death rate of BV2 microglia under lipopolysaccharide (LPS) stimulation, while the level of pyroptosis was inhibited. Besides, AAV-NTN-1 rescued the activation of microglia and inflammatory injury induced by LPS, decreasing IBA-1 expression, as well as iNOS, IL-1beta and IL-6 secretions. Meanwhile AAV-NTN-1 promoted the anti-inflammation response, including increases in Arg-1, IL-4 and IL-10 levels. In addition, the LPS-induced activation of Rac1/NF-kappaB signaling was depressed by NTN-1 overexpression. The same results were verified in a CFA-induced mouse model. In conclusion, NTN-1 alleviated IP by suppressing pyroptosis and promoting M2 type activation of microglia via inhibiting Rac1/NF-?B signaling, suggesting the protective role of NTN-1 in IP. Keywords: Netrin-1, Inflammatory pain, Pyroptosis, Microglia M2 activation, Rac1/NF-kappaB.


Asunto(s)
Inflamación , Microglía , FN-kappa B , Netrina-1 , Neuropéptidos , Piroptosis , Transducción de Señal , Proteína de Unión al GTP rac1 , Animales , Piroptosis/fisiología , Piroptosis/efectos de los fármacos , Microglía/metabolismo , Ratones , Netrina-1/metabolismo , Proteína de Unión al GTP rac1/metabolismo , FN-kappa B/metabolismo , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Dolor/metabolismo , Línea Celular , Lipopolisacáridos
11.
Biochem Biophys Res Commun ; 717: 149992, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38714013

RESUMEN

Insects have about 50 neuropeptide genes and about 70 genes, coding for neuropeptide G protein-coupled receptors (GPCRs). An important, but small family of evolutionarily related insect neuropeptides consists of adipokinetic hormone (AKH), corazonin, and AKH/corazonin-related peptide (ACP). Normally, insects have one specific GPCR for each of these neuropeptides. The tick Ixodes scapularis is not an insect, but belongs to the subphylum Chelicerata, which comprises ticks, scorpions, mites, spiders, and horseshoe crabs. Many of the neuropeptides and neuropeptide GPCRs occurring in insects, also occur in chelicerates, illustrating that insects and chelicerates are evolutionarily closely related. The tick I. scapularis is an ectoparasite and health risk for humans, because it infects its human host with dangerous pathogens during a blood meal. Understanding the biology of ticks will help researchers to prevent tick-borne diseases. By annotating the I. scapularis genome sequence, we previously found that ticks contain as many as five genes, coding for presumed ACP receptors. In the current paper, we cloned these receptors and expressed each of them in Chinese Hamster Ovary (CHO) cells. Each expressed receptor was activated by nanomolar concentrations of ACP, demonstrating that all five receptors were functional ACP receptors. Phylogenetic tree analyses showed that the cloned tick ACP receptors were mostly related to insect ACP receptors and, next, to insect AKH receptors, suggesting that ACP receptor genes and AKH receptor genes originated by gene duplications from a common ancestor. Similar duplications have probably occurred for the ligand genes, during a process of ligand/receptor co-evolution. Interestingly, chelicerates, in contrast to all other arthropods, do not have AKH or AKH receptor genes. Therefore, the ancestor of chelicerates might have lost AKH and AKH receptor genes and functionally replaced them by ACP and ACP receptor genes. For the small family of AKH, ACP, and corazonin receptors and their ligands, gene losses and gene gains occur frequently between the various ecdysozoan clades. Tardigrades, for example, which are well known for their survival in extreme environments, have as many as ten corazonin receptor genes and six corazonin peptide genes, while insects only have one of each, or none.


Asunto(s)
Hormonas de Insectos , Ixodes , Neuropéptidos , Oligopéptidos , Ácido Pirrolidona Carboxílico , Receptores Acoplados a Proteínas G , Animales , Neuropéptidos/metabolismo , Neuropéptidos/genética , Hormonas de Insectos/metabolismo , Hormonas de Insectos/genética , Ixodes/metabolismo , Ixodes/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Oligopéptidos/metabolismo , Oligopéptidos/genética , Oligopéptidos/química , Ácido Pirrolidona Carboxílico/análogos & derivados , Ácido Pirrolidona Carboxílico/metabolismo , Filogenia , Secuencia de Aminoácidos , Cricetulus , Células CHO , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Receptores de Neuropéptido/metabolismo , Receptores de Neuropéptido/genética
12.
Sci Rep ; 14(1): 10863, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740831

RESUMEN

Ticks are blood-feeding arthropods that require heme for their successful reproduction. During feeding they also acquire pathogens that are subsequently transmitted to humans, wildlife and/or livestock. Understanding the regulation of tick midgut is important for blood meal digestion, heme and nutrient absorption processes and for aspects of pathogen biology in the host. We previously demonstrated the activity of tick kinins on the cognate G protein-coupled receptor. Herein we uncovered the physiological role of the kinin receptor in the tick midgut. A fluorescently-labeled kinin peptide with the endogenous kinin 8 sequence (TMR-RK8), identical in the ticks Rhipicephalus microplus and R. sanguineus, activated and labeled the recombinant R. microplus receptor expressed in CHO-K1 cells. When applied to the live midgut the TMR-RK8 labeled the kinin receptor in muscles while the labeled peptide with the scrambled-sequence of kinin 8 (TMR-Scrambled) did not. The unlabeled kinin 8 peptide competed TMR-RK8, decreasing confocal microscopy signal intensity, indicating TMR-RK8 specificity to muscles. TMR-RK8 was active, inducing significant midgut peristalsis that was video-recorded and evaluated with video tracking software. The TMR-Scrambled peptide used as a negative control did not elicit peristalsis. The myotropic function of kinins in eliciting tick midgut peristalsis was established.


Asunto(s)
Cricetulus , Cininas , Neuropéptidos , Peristaltismo , Animales , Cininas/metabolismo , Células CHO , Neuropéptidos/metabolismo , Neuropéptidos/genética , Músculos/metabolismo , Músculos/fisiología , Garrapatas/metabolismo , Garrapatas/fisiología , Rhipicephalus/metabolismo , Rhipicephalus/fisiología , Rhipicephalus/genética , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética
13.
Arch Insect Biochem Physiol ; 115(4): e22106, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38597092

RESUMEN

Kissing bugs do not respond to host cues when recently molted and only exhibit robust host-seeking several days after ecdysis. Behavioral plasticity has peripheral correlates in antennal gene expression changes through the week after ecdysis. The mechanisms regulating these peripheral changes are still unknown, but neuropeptide, G-protein coupled receptor, nuclear receptor, and takeout genes likely modulate peripheral sensory physiology. We evaluated their expression in antennal transcriptomes along the first week postecdysis of Rhodnius prolixus 5th instar larvae. Besides, we performed clustering and co-expression analyses to reveal relationships between neuromodulatory (NM) and sensory genes. Significant changes in transcript abundance were detected for 50 NM genes. We identified 73 sensory-related and NM genes that were assigned to nine clusters. According to their expression patterns, clusters were classified into four groups: two including genes up or downregulated immediately after ecdysis; and two with genes with expression altered at day 2. Several NM genes together with sensory genes belong to the first group, suggesting functional interactions. Co-expression network analysis revealed a set of genes that seem to connect with sensory system maturation. Significant expression changes in NM components were described in the antennae of R. prolixus after ecdysis, suggesting that a local NM system acts on antennal physiology. These changes may modify the sensitivity of kissing bugs to host cues during this maturation interval.


Asunto(s)
Neuropéptidos , Rhodnius , Triatoma , Animales , Rhodnius/genética , Rhodnius/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Transcriptoma , Muda
14.
Rapid Commun Mass Spectrom ; 38(12): e9755, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38600731

RESUMEN

RATIONALE: Atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) mass spectrometry has enabled the untargeted analysis and imaging of neuropeptides and proteins in biological tissues under ambient conditions. Sensitivity in AP-MALDI can be improved by using sample-specific preparation methods. METHODS: A comprehensive and detailed optimization strategy including instrument parameters, matrix spraying and sample tissue washing pretreatment was implemented to enhance the sensitivity and coverage of neuropeptides in mouse pituitary tissues by commercial AP-MALDI mass spectrometry imaging (MSI). RESULTS: The sensitivity of a commercial AP-MALDI system for endogenous neuropeptides in mouse pituitary was enhanced by up to 15.2-fold by shortening the transmission gap from the sample plate to the inlet, attaching copper adhesive tape to an indium tin oxide-coated glass slide, optimizing the matrix spray solvent and using sample tissue washing pretreatment. Following careful optimization, the distributions of nine endogenous neuropeptides were successfully visualized in the pituitary. Furthermore, the quantitative capability of AP-MALDI for neuropeptides was evaluated and the concentrations of neuropeptides oxytocin and vasopressin in the pituitary posterior lobe were increased approximately twofold under hypertonic saline stress. CONCLUSION: Mouse pituitary neuropeptides have emerged as important signaling molecules due to their role in stress response. This work indicates the potential of modified AP-MALDI as a promising AP MSI method for in situ visualization and quantification of neuropeptides in complex biological tissues.


Asunto(s)
Neuropéptidos , Ratones , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Neuropéptidos/análisis , Presión Atmosférica , Rayos Láser
15.
Trends Immunol ; 45(5): 371-380, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653601

RESUMEN

Peripheral sensory neurons recognize diverse noxious stimuli, including microbial products and allergens traditionally thought to be targets of the mammalian immune system. Activation of sensory neurons by these stimuli leads to pain and itch responses as well as the release of neuropeptides that interact with their cognate receptors expressed on immune cells, such as dendritic cells (DCs). Neuronal control of immune cell function through neuropeptide release not only affects local inflammatory responses but can impact adaptive immune responses through downstream effects on T cell priming. Numerous neuropeptide receptors are expressed by DCs but only a few have been characterized, presenting opportunities for further investigation of the pathways by which cutaneous neuroimmune interactions modulate host immunity.


Asunto(s)
Células Receptoras Sensoriales , Piel , Humanos , Animales , Células Receptoras Sensoriales/inmunología , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología , Piel/inmunología , Neuropéptidos/metabolismo , Neuropéptidos/inmunología , Células Dendríticas/inmunología , Neuroinmunomodulación , Receptores de Neuropéptido/metabolismo , Receptores de Neuropéptido/inmunología
16.
Zoolog Sci ; 41(1): 60-67, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38587518

RESUMEN

Ovarian follicle development is an essential process for continuation of sexually reproductive animals, and is controlled by a wide variety of regulatory factors such as neuropeptides and peptide hormones in the endocrine, neuroendocrine, and nervous systems. Moreover, while some molecular mechanisms underlying follicle development are conserved, others vary among species. Consequently, follicle development processes are closely related to the evolution and diversity of species. Ciona intestinalis type A (Ciona rubusta) is a cosmopolitan species of ascidians, which are the closest relative of vertebrates. However, unlike vertebrates, ascidians are not endowed with the hypothalamus-pituitary-gonadal axis involving pituitary gonadotropins and sexual steroids. Combined with the phylogenetic position of ascidians as the closest relative of vertebrates, such morphological and endocrine features suggest that ascidians possess both common and species-specific regulatory mechanisms in follicle development. To date, several neuropeptides have been shown to participate in the growth of vitellogenic follicles, oocyte maturation of postvitellogenic follicles, and ovulation of fully mature follicles in a developmental stage-specific fashion. Furthermore, recent studies have shed light on the evolutionary processes of follicle development throughout chordates. In this review, we provide an overview of the neuropeptidergic molecular mechanism in the premature follicle growth, oocyte maturation, and ovulation in Ciona, and comparative views of the follicle development processes of mammals and teleosts.


Asunto(s)
Ciona intestinalis , Neuropéptidos , Animales , Femenino , Filogenia , Ovulación , Folículo Ovárico , Mamíferos
17.
Biol Sex Differ ; 15(1): 33, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570844

RESUMEN

Recent preclinical research exploring how neuropeptide transmitter systems regulate motivated behavior reveal the increasing importance of sex as a critical biological variable. Neuropeptide systems and their central circuits both contribute to sex differences in a range of motivated behaviors and regulate sex-specific behaviors. In this short review, we explore the current research of how sex as a biological variable influences several distinct motivated behaviors that are modulated by the melanin-concentrating hormone (MCH) neuropeptide system. First, we review how MCH regulates feeding behavior within the context of energy homeostasis differently between male and female rodents. Then, we focus on MCH's role in lactation as a sex-specific process within the context of energy homeostasis. Next, we discuss the sex-specific effects of MCH on maternal behavior. Finally, we summarize the role of MCH in drug-motivated behaviors. While these topics are traditionally investigated from different scientific perspectives, in this short review we discuss how these behaviors share commonalities within the larger context of motivated behaviors, and that sex differences discovered in one area of research may impact our understanding in another. Overall, our review highlights the need for further research into how sex differences in energy regulation associated with reproduction and parental care contribute to regulating motivated behaviors.


Asunto(s)
Hormonas Hipotalámicas , Melaninas , Neuropéptidos , Femenino , Masculino , Animales , Caracteres Sexuales , Hormonas Hipotalámicas/farmacología , Hormonas Hipotalámicas/fisiología , Hormonas Hipofisarias/farmacología , Hormonas Hipofisarias/fisiología
18.
FASEB J ; 38(7): e23595, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38572811

RESUMEN

This study evaluates the sustained antidepressant-like effects and neurogenic potential of a 3-day intranasal co-administration regimen of galanin receptor 2 (GALR2) agonist M1145 and neuropeptide Y Y1 receptor (NPY1R) agonist [Leu31, Pro34]NPY in the ventral hippocampus of adult rats, with outcomes analyzed 3 weeks post-treatment. Utilizing the forced swimming test (FST), we found that this co-administration significantly enhances antidepressant-like behaviors, an effect neutralized by the GALR2 antagonist M871, highlighting the synergistic potential of these neuropeptides in modulating mood-related behaviors. In situ proximity ligation assay (PLA) indicated a significant increase in GALR2/NPYY1R heteroreceptor complexes in the ventral hippocampal dentate gyrus, suggesting a molecular basis for the behavioral outcomes observed. Moreover, proliferating cell nuclear antigen (PCNA) immunolabeling revealed increased cell proliferation in the subgranular zone of the dentate gyrus, specifically in neuroblasts as evidenced by co-labeling with doublecortin (DCX), without affecting quiescent neural progenitors or astrocytes. The study also noted a significant uptick in the number of DCX-positive cells and alterations in dendritic morphology in the ventral hippocampus, indicative of enhanced neuronal differentiation and maturation. These morphological changes highlight the potential of these agonists to facilitate the functional integration of new neurons into existing neural circuits. By demonstrating the long-lasting effects of a brief, 3-day intranasal administration of GALR2 and NPY1R agonists, our findings contribute significantly to the understanding of neuropeptide-mediated neuroplasticity and herald novel therapeutic strategies for the treatment of depression and related mood disorders, emphasizing the therapeutic promise of targeting neurogenesis and neuronal maturation processes.


Asunto(s)
Neuropéptido Y , Neuropéptidos , Ratas , Animales , Receptor de Galanina Tipo 2/agonistas , Receptor de Galanina Tipo 2/metabolismo , Administración Intranasal , Galanina/farmacología , Galanina/metabolismo , Hipocampo/metabolismo , Receptores de Neuropéptido Y/metabolismo , Neuropéptidos/farmacología , Antidepresivos/farmacología , Neurogénesis
19.
Pestic Biochem Physiol ; 200: 105840, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582602

RESUMEN

CAPA neuropeptides regulate the diuresis/ antidiuresis process in insects by activating specific cognate receptor, CAPAr. In this study, we characterized the CAPAr gene (BtabCAPAr) in the whitefly, Bemisia tabaci Asia II 1. The two alternatively spliced isoforms of BtabCAPAr gene, BtabCAPAr-1 and BtabCAPAr-2, having six and five exons, respectively, were identified. The BtabCAPAr gene expression was highest in adult whitefly as compared to gene expression in egg, nymphal and pupal stages. Among the three putative CAPA peptides, CAPA-PVK1 and CAPA-PVK2 strongly activated the BtabCAPAr-1 with very low EC50 values of 0.067 nM and 0.053 nM, respectively, in heterologous calcium mobilization assays. None of the peptide activated the alternatively spliced isoform BtabCAPAr-2 that has lost the transmembrane segments 3 and 4. Significant levels of mortality were observed when whiteflies were fed with CAPA-PVK1 at 1.0 µM (50.0%), CAPA-PVK2 at 100.0 nM (43.8%) and CAPA-tryptoPK 1.0 µM (40.0%) at the 96 h after the treatment. This study provides valuable information to design biostable peptides to develop a class of insecticides.


Asunto(s)
Hemípteros , Neuropéptidos , Animales , Péptidos/metabolismo , Neuropéptidos/química , Neuropéptidos/genética , Neuropéptidos/metabolismo , Transducción de Señal , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Hemípteros/genética , Hemípteros/metabolismo
20.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38612683

RESUMEN

The midbrain dopamine system is a sophisticated hub that integrates diverse inputs to control multiple physiological functions, including locomotion, motivation, cognition, reward, as well as maternal and reproductive behaviors. Dopamine is a neurotransmitter that binds to G-protein-coupled receptors. Dopamine also works together with other neurotransmitters and various neuropeptides to maintain the balance of synaptic functions. The dysfunction of the dopamine system leads to several conditions, including Parkinson's disease, Huntington's disease, major depression, schizophrenia, and drug addiction. The ventral tegmental area (VTA) has been identified as an important relay nucleus that modulates homeostatic plasticity in the midbrain dopamine system. Due to the complexity of synaptic transmissions and input-output connections in the VTA, the structure and function of this crucial brain region are still not fully understood. In this review article, we mainly focus on the cell types, neurotransmitters, neuropeptides, ion channels, receptors, and neural circuits of the VTA dopamine system, with the hope of obtaining new insight into the formation and function of this vital brain region.


Asunto(s)
Trastorno Depresivo Mayor , Neuropéptidos , Humanos , Dopamina , Área Tegmental Ventral , Neurotransmisores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...