Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.147
Filtrar
1.
Neurosci Lett ; 837: 137918, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39096756

RESUMEN

Neurons co-expressing kisspeptin, neurokinin B, and dynorphin A (KNDy neurons), located in the arcuate nucleus (ARC) of the hypothalamus, are indicated to be the gonadotropin-releasing hormone (GnRH) pulse generator. Dynorphin A is reported to suppress GnRH pulse generator activity. Nalfurafine is a selective agonist of the κ-opioid receptor (KOR), a receptor for dynorphin A, clinically used as an anti-pruritic drug. This study aimed to evaluate the effects of nalfurafine on GnRH pulse generator activity and luteinizing hormone (LH) pulses using female goats. Nalfurafine (0, 2, 4, 8, or 16 µg/head) was intravenously injected into ovariectomized Shiba goats. The multiple unit activity (MUA) in the ARC area was recorded, and plasma LH concentrations were measured 2 and 48 h before and after injection, respectively. The MUA volley interval during 0-2 h after injection was significantly increased in the nalfurafine 8 and 16 µg groups compared with the vehicle group. In 0-2 h after injection, the number of LH pulses was significantly decreased in the nalfurafine 8 and 16 µg groups, and the mean and baseline LH were significantly decreased in all nalfurafine-treated groups (2, 4, 8, and 16 µg) compared with the vehicle group. These results suggest that nalfurafine inhibits the activity of the GnRH pulse generator in the ARC, thus suppressing pulsatile LH secretion. Therefore, nalfurafine could be used as a reproductive inhibitor in mammals.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Cabras , Hormona Liberadora de Gonadotropina , Morfinanos , Receptores Opioides kappa , Compuestos de Espiro , Animales , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Femenino , Compuestos de Espiro/farmacología , Compuestos de Espiro/administración & dosificación , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/agonistas , Morfinanos/farmacología , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Hormona Luteinizante/sangre , Hormona Luteinizante/metabolismo , Kisspeptinas/metabolismo , Dinorfinas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuroquinina B/metabolismo
2.
PLoS Comput Biol ; 20(7): e1011820, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39083544

RESUMEN

The pulsatile activity of gonadotropin-releasing hormone neurons (GnRH neurons) is a key factor in the regulation of reproductive hormones. This pulsatility is orchestrated by a network of neurons that release the neurotransmitters kisspeptin, neurokinin B, and dynorphin (KNDy neurons), and produce episodic bursts of activity driving the GnRH neurons. We show in this computational study that the features of coordinated KNDy neuron activity can be explained by a neural network in which connectivity among neurons is modular. That is, a network structure consisting of clusters of highly-connected neurons with sparse coupling among the clusters. This modular structure, with distinct parameters for intracluster and intercluster coupling, also yields predictions for the differential effects on synchronization of changes in the coupling strength within clusters versus between clusters.


Asunto(s)
Dinorfinas , Hormona Liberadora de Gonadotropina , Modelos Neurológicos , Red Nerviosa , Neuronas , Neuronas/fisiología , Red Nerviosa/fisiología , Animales , Dinorfinas/metabolismo , Dinorfinas/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Kisspeptinas/fisiología , Neuroquinina B/metabolismo , Neuroquinina B/fisiología , Biología Computacional , Potenciales de Acción/fisiología , Simulación por Computador , Humanos
3.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928237

RESUMEN

The physiology of reproduction has been of interest to researchers for centuries. The purpose of this work is to review the development of our knowledge on the neuroendocrine background of the regulation of ovulation. We first describe the development of the pituitary gland, the structure of the median eminence (ME), the connection between the hypothalamus and the pituitary gland, the ovarian and pituitary hormones involved in ovulation, and the pituitary cell composition. We recall the pioneer physiological and morphological investigations that drove development forward. The description of the supraoptic-paraventricular magnocellular and tuberoinfundibular parvocellular systems and recognizing the role of the hypophysiotropic area were major milestones in understanding the anatomical and physiological basis of reproduction. The discovery of releasing and inhibiting hormones, the significance of pulse and surge generators, the pulsatile secretion of the gonadotropin-releasing hormone (GnRH), and the subsequent pulsatility of luteinizing (LH) and follicle-stimulating hormones (FSH) in the human reproductive physiology were truly transformative. The roles of three critical neuropeptides, kisspeptin (KP), neurokinin B (NKB), and dynorphin (Dy), were also identified. This review also touches on the endocrine background of human infertility and assisted fertilization.


Asunto(s)
Sistemas Neurosecretores , Ovulación , Humanos , Ovulación/fisiología , Femenino , Sistemas Neurosecretores/fisiología , Sistemas Neurosecretores/metabolismo , Animales , Hipófisis/metabolismo , Kisspeptinas/metabolismo , Neuroquinina B/metabolismo , Hormona Luteinizante/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Dinorfinas/metabolismo , Hipotálamo/metabolismo , Hipotálamo/fisiología
4.
Genes (Basel) ; 15(6)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38927724

RESUMEN

Previous studies have demonstrated the essential role of the Kisspeptin/Neurokinin B/Dynorphin A (KNDy) pathway in female reproductive biology by regulating the activity of the hypothalamic-pituitary-gonadal axis. Identified loss-of-function mutations in these genes are linked to various reproductive disorders. This study investigated genetic disorders linked to mutations in the KNDy genes related to premature ovarian insufficiency (POI). A cohort of 14 Mexican POI patients underwent genetic screening using PCR-SSCP and Sanger sequencing, assessing the genetic variations' impact on protein function thereafter using multiple in silico tools. The PCR excluded extensive deletions, insertions, and duplications, while SSCP detected five genetic variants. Variations occurred in the KISS1 (c.58G>A and c.242C>G), KISS1R (c.1091A>T), PDYN (c.600C>T), and OPRK1 (c.36G>T) genes, whereas no genetic anomalies were found in NK3/NK3R genes. Each single-nucleotide variant underwent genotyping using PCR-SSCP in 100 POI-free subjects. Their allelic frequencies paralleled the patient group. These observations indicate that allelic variations in the KNDy genes may not contribute to POI etiology. Hence, screening for mutations in KNDy genes should not be a part of the diagnostic protocol for POI.


Asunto(s)
Kisspeptinas , Neuroquinina B , Insuficiencia Ovárica Primaria , Humanos , Femenino , Insuficiencia Ovárica Primaria/genética , México , Adulto , Neuroquinina B/genética , Kisspeptinas/genética , Estudios de Cohortes , Polimorfismo de Nucleótido Simple , Receptores de Kisspeptina-1/genética , Encefalinas/genética , Precursores de Proteínas
5.
Endocr J ; 71(8): 733-743, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38866494

RESUMEN

In the early 2000s, metastin, an endogenous ligand for G protein-coupled receptor 54 (GPR54), was discovered in human placental extracts. In 2003, GPR54 receptor mutations were found in a family with congenital hypogonadotropic hypogonadism. Metastin was subsequently renamed kisspeptin after its coding gene, Kiss1. Since then, studies in mice and other animals have revealed that kisspeptin is located at the apex of the hypothalamic-pituitary-gonadal axis and regulates reproductive functions by modulating gonadotropin-releasing hormone (GnRH). In rodents, kisspeptin (Kiss1) neurons localize to two regions, the hypothalamic arcuate nucleus (ARC) and the anteroventral periventricular nucleus (AVPV). ARC Kiss1 neurons co-express neurokinin B (NKB) and dynorphin and are thus termed KNDy neurons. Kiss1 neurons in humans are concentrated in the infundibular nucleus (equivalent to the ARC), with few Kiss1 neurons localized to the preoptic area (equivalent to the AVPV), and the mechanisms underlying GnRH surge secretion in humans are poorly understood. However, peripheral administration of kisspeptin to humans promotes gonadotropin secretion, and administration of kisspeptin to patients with hypothalamic amenorrhea or congenital hypogonadotropic hypogonadism restores the pulsatile secretion of GnRH/luteinizing hormone. Thus, kisspeptin undoubtedly plays an important role in reproductive function in humans. Studies are currently underway to develop kisspeptin receptor agonists or antagonists for clinical application. Modification of KNDy neurons by NKB agonists/antagonists is also being attempted to develop therapeutic agents for various menstrual abnormalities, including polycystic ovary syndrome and menopausal hot flashes. Here, we review the role of kisspeptin in humans and its clinical applications.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Hormona Liberadora de Gonadotropina , Kisspeptinas , Neuronas , Humanos , Kisspeptinas/metabolismo , Kisspeptinas/genética , Kisspeptinas/fisiología , Neuronas/metabolismo , Animales , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Salud Reproductiva , Neuroquinina B/metabolismo , Neuroquinina B/genética , Hipogonadismo/genética , Hipogonadismo/metabolismo , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Dinorfinas/metabolismo , Dinorfinas/genética , Reproducción/fisiología
6.
Sci Rep ; 14(1): 8229, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589425

RESUMEN

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder affecting 5-20% of reproductive-age women. However, the treatment of PCOS is mainly based on symptoms and not on its pathophysiology. Neuroendocrine disturbance, as shown by an elevated LH/FSH ratio in PCOS patients, was thought to be the central mechanism of the syndrome, especially in lean PCOS. LH and FSH secretion are influenced by GnRH pulsatility of GnRH neurons in the hypothalamus. Kisspeptin is the main regulator of GnRH secretion, whereas neurokinin B (NKB) and dynorphin regulate kisspeptin secretion in KNDy neurons. This study aims to deepen the understanding of the neuroendocrine disorder in lean PCOS patients and its potential pathophysiology-based therapy. A cross-sectional study was performed at Dr. Cipto Mangunkusumo Kencana Hospital and the IMERI UI HRIFP cluster with 110 lean PCOS patients as subjects. LH, FSH, LH/FSH ratio, kisspeptin, NKB, dynorphin, leptin, adiponectin, AMH, fasting blood glucose, fasting insulin, HOMA-IR, testosterone, and SHBG were measured. Bivariate and path analyses were performed to determine the relationship between variables. There was a negative association between dynorphin and kisspeptin, while NKB levels were not associated with kisspeptin. There was no direct association between kisspeptin and the LH/FSH ratio; interestingly, dynorphin was positively associated with the LH/FSH ratio in both bivariate and pathway analyses. AMH was positively correlated with the LH/FSH ratio in both analyses. Path analysis showed an association between dynorphin and kisspeptin levels in lean PCOS, while NKB was not correlated with kisspeptin. Furthermore, there was a correlation between AMH and the LH/FSH ratio, but kisspeptin levels did not show a direct significant relationship with the LH/FSH ratio. HOMA-IR was negatively associated with adiponectin levels and positively associated with leptin and FAI levels. In conclusion, AMH positively correlates with FAI levels and is directly associated with the LH/FSH ratio, showing its important role in neuroendocrinology in lean PCOS. From the path analysis, AMH was also an intermediary variable between HOMA-IR and FAI with the LH/FSH ratio. Interestingly, this study found a direct positive correlation between dynorphin and the LH/FSH ratio, while no association between kisspeptin and the LH/FSH ratio was found. Further research is needed to investigate AMH and dynorphin as potential therapeutic targets in the management of lean PCOS patients.


Asunto(s)
Hormona Luteinizante , Síndrome del Ovario Poliquístico , Femenino , Humanos , Dinorfinas/metabolismo , Leptina , Kisspeptinas/metabolismo , Estudios Transversales , Adiponectina , Neuroquinina B/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Folículo Estimulante
7.
Biochem Biophys Res Commun ; 705: 149732, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38447390

RESUMEN

Neurokinin B (NKB) is a tachykinin peptide that has diverse roles in biology, including in human reproductive development. Cellular processing of this peptide is thought to involve formation of a dense core vesicle during transit through the regulated secretory pathway. The ability of NKB to rapidly form an amyloid can contribute to formation of the secretory granule but features that support amyloid formation of NKB are not well understood. NKB contains a diphenylalanine sequence well recognised as an important motif for self-assembly of other peptides including amyloid ß. Using mutations of the diphenylalanine motif we show that this motif in NKB is necessary for amyloid formation, and it is the unique combination of aromaticity and hydrophobicity of phenylalanine that is crucial for aggregation. Using disulfide cross-linking we propose that phenylalanine at sequence position 6 is important for stabilising inter-sheet interactions in the NKB amyloid fibril. Although having a highly conserved sequence, the NKB peptide from zebrafish only contains a single phenylalanine and does not fibrillise as extensively as mammalian NKB. Analysis of self-assembly of NKB-like peptides from different species may help in elucidating their biological roles. Taken together, this work shows that mammalian NKB has evolved, within only 10 residues, a sequence optimised for rapid self-assembly, whilst also containing residues for metal-binding, receptor binding and receptor discrimination.


Asunto(s)
Neuroquinina B , Neuropéptidos , Animales , Humanos , Neuroquinina B/química , Amiloide , Fenilalanina , Péptidos beta-Amiloides , Pez Cebra/metabolismo , Proteínas Amiloidogénicas , Mamíferos/metabolismo
8.
Curr Protein Pept Sci ; 25(4): 339-352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38243941

RESUMEN

BACKGROUND: Neurokinin B; an endogenous decapeptide, mediates its reproductive physiological actions through gonadotropin releasing hormone. Despite the potential role of Neurokinin B on seminal vesicles, its effects on seminal vesicles in adult male mammals remain elusive. We aimed to investigate the potentials of variable doses of Neurokinin B, its agonist and antagonist on histomorphology and expression of NK3R on seminal vesicles, and secretory activity of seminal vesicles in adult male rats. METHODS: Adult male Sprague Dawley rats (n=10 in each group) were administered intraperitoneally with Neurokinin B in three variable doses: 1 µg, 1 ηg and 10 ρg while, Senktide (Neurokinin B agonist) and SB222200 (Neurokinin B antagonist) in 1 µg doses consecutively for 12 days. After 12 days of peptide treatment, half of the animals (n=05) in each group were sacrificed while remaining half (n=05) were kept for another 12 days without any treatment to investigate treatment reversal. Seminal vesicles were dissected and excised tissue was processed for light microscopy, immunohistochemistry and estimation of seminal fructose levels. RESULTS: Treatment with Neurokinin B and Senktide significantly increased while SB222200 slightly decrease the seminal vesicles weight, epithelial height and seminal fructose levels as compared to control. Light microscopy revealed increased epithelial height and epithelial folding as compared to control in all Neurokinin B and Senktide treated groups while decreased in SB222200. Effects of various doses of Neurokinin B, Senktide and SB222200 on seminal vesicles weight, epithelial height, seminal fructose levels and histomorphology were reversed when rats were maintained without treatments. Immuno-expression of Neurokinin B shows no change in treatment and reversal groups. CONCLUSION: Continuous administration of Neurokinin B and Senktide effect positively while SB222200 have detrimental effects on cellular morphology, epithelial height and seminal fructose levels in seminal vesicles. Effects of peptide treatments depicted a reversal towards control group when rats were kept without any treatment.


Asunto(s)
Neuroquinina B , Fragmentos de Péptidos , Ratas Sprague-Dawley , Receptores de Neuroquinina-3 , Vesículas Seminales , Sustancia P , Animales , Masculino , Ratas , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Neuroquinina B/metabolismo , Neuroquinina B/farmacología , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/metabolismo , Receptores de Neuroquinina-3/metabolismo , Receptores de Neuroquinina-3/antagonistas & inhibidores , Vesículas Seminales/efectos de los fármacos , Vesículas Seminales/metabolismo , Sustancia P/metabolismo
9.
Best Pract Res Clin Endocrinol Metab ; 38(1): 101774, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37076317

RESUMEN

Vasomotor symptoms (VMS) are characteristic of menopause experienced by over 75% of postmenopausal women with significant health and socioeconomic implications. Although the average duration of symptoms is seven years, 10% of women experience symptoms for more than a decade. Although menopausal hormone therapy (MHT) remains an efficacious and cost-effective treatment, its use may not be suitable in all women, such as those at an increased risk of breast cancer or gynaecological malignancy. The neurokinin B (NKB) signaling pathway, together with its intricate connection to the median preoptic nucleus (MnPO), has been postulated to provide integrated reproductive and thermoregulatory responses, with a central role in mediating postmenopausal VMS. This review describes the physiological hypothalamo-pituitary-ovary (HPO) axis, and subsequently the neuroendocrine changes that occur with menopause using evidence derived from animal and human studies. Finally, data from the latest clinical trials using novel therapeutic agents that antagonise NKB signaling are reviewed.


Asunto(s)
Sofocos , Menopausia , Animales , Femenino , Humanos , Sofocos/tratamiento farmacológico , Sofocos/etiología , Sofocos/metabolismo , Menopausia/fisiología , Neuroquinina B/metabolismo , Terapia de Reemplazo de Hormonas , Transducción de Señal
10.
Endocr Rev ; 45(1): 30-68, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37467734

RESUMEN

Kisspeptin (KP) and neurokinin B (NKB) are neuropeptides that govern the reproductive endocrine axis through regulating hypothalamic gonadotropin-releasing hormone (GnRH) neuronal activity and pulsatile GnRH secretion. Their critical role in reproductive health was first identified after inactivating variants in genes encoding for KP or NKB signaling were shown to result in congenital hypogonadotropic hypogonadism and a failure of pubertal development. Over the past 2 decades since their discovery, a wealth of evidence from both basic and translational research has laid the foundation for potential therapeutic applications. Beyond KP's function in the hypothalamus, it is also expressed in the placenta, liver, pancreas, adipose tissue, bone, and limbic regions, giving rise to several avenues of research for use in the diagnosis and treatment of pregnancy, metabolic, liver, bone, and behavioral disorders. The role played by NKB in stimulating the hypothalamic thermoregulatory center to mediate menopausal hot flashes has led to the development of medications that antagonize its action as a novel nonsteroidal therapeutic agent for this indication. Furthermore, the ability of NKB antagonism to partially suppress (but not abolish) the reproductive endocrine axis has supported its potential use for the treatment of various reproductive disorders including polycystic ovary syndrome, uterine fibroids, and endometriosis. This review will provide a comprehensive up-to-date overview of the preclinical and clinical data that have paved the way for the development of diagnostic and therapeutic applications of KP and NKB.


Asunto(s)
Kisspeptinas , Neuroquinina B , Embarazo , Femenino , Humanos , Neuroquinina B/genética , Neuroquinina B/metabolismo , Kisspeptinas/uso terapéutico , Hormona Liberadora de Gonadotropina/metabolismo , Reproducción/fisiología , Hipotálamo
11.
Biol Reprod ; 110(2): 275-287, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-37930247

RESUMEN

The timing of puberty onset is reliant on increased gonadotropin-releasing hormone (GnRH). This elicits a corresponding increase in luteinizing hormone (LH) due to a lessening of sensitivity to the inhibitory actions of estradiol (E2). The mechanisms underlying the increase in GnRH release likely involve a subset of neurons within the arcuate (ARC) nucleus of the hypothalamus that contain kisspeptin, neurokinin B (NKB), and dynorphin (KNDy neurons). We aimed to determine if KNDy neurons in female sheep are critical for: timely puberty onset; the LH surge; and the response to an intravenous injection of the neurokinin-3 receptor (NK3R) agonist, senktide. Prepubertal ewes received injections aimed at the ARC containing blank-saporin (control, n = 5) or NK3-saporin (NK3-SAP, n = 6) to ablate neurons expressing NK3R. Blood samples taken 3/week for 65 days following surgery were assessed for progesterone to determine onset of puberty. Control ewes exhibited onset of puberty at 33.2 ± 3.9 days post sampling initiation, whereas 5/6 NK3-SAP treated ewes didn't display an increase in progesterone. After an artificial LH surge protocol, surge amplitude was lower in NK3-SAP ewes. Finally, ewes were treated with senktide to determine if an LH response was elicited. LH pulses were evident in both groups in the absence of injections, but the response to senktide vs saline was similar between groups. These results show that KNDy cells are necessary for timely puberty onset and for full expresson of the LH surge. The occurrence of LH pulses in NK3-SAP treated ewes may indicate a recovery from an apulsatile state.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Hormona Luteinizante , Fragmentos de Péptidos , Sustancia P/análogos & derivados , Femenino , Animales , Ovinos , Hormona Luteinizante/farmacología , Núcleo Arqueado del Hipotálamo/metabolismo , Saporinas/farmacología , Progesterona/farmacología , Hormona Liberadora de Gonadotropina/farmacología , Hormona Liberadora de Gonadotropina/metabolismo , Neuroquinina B/metabolismo , Dinorfinas/farmacología , Dinorfinas/metabolismo , Kisspeptinas/metabolismo
12.
Gene ; 895: 148016, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37981083

RESUMEN

Understanding the pathophysiology of idiopathic central precocious puberty (ICPP) is essential, in view of its consequences on reproductive health and metabolic disorders in later life. Towards this, estimation of circulating levels of the neuropeptides, viz; Kisspeptin (Kp-10), Neurokinin B (NKB) and Neuropeptide Y (NPY), acting upstream to Gonadotropin-Releasing Hormone (GnRH), has shown promise. Insights can also be gained from functional studies on genetic variations implicated in ICPP. This study investigated the pathophysiology of ICPP in a girl by exploring the therapeutic relevance of the circulating levels of Kp-10, NKB, NPY and characterizing the nonsynonymous KISS1R variant, L364H, that she harbours, in a homozygous condition. Plasma levels of Kp-10, NKB and NPY before and after GnRH analog (GnRHa) treatment, were determined by ELISA. It was observed that GnRHa treatment resulted in suppression of circulating levels of Kp-10, NKB and NPY. Further, the H364 variant in KISS1R was generated by site directed mutagenesis. Post transient transfection of either L364 or H364 KISS1R variant in CHO cells, receptor expression was ascertained by western blotting, indirect immunofluorescence and flow cytometry. Kp-10 stimulated signalling response was also determined by phospho-ERK and inositol phosphate production. Structure-function studies revealed that, although the receptor expression in H364 KISS1R was comparable to L364 KISS1R, there was an enhanced signalling response through this variant at high doses of Kp-10. Thus, elevated levels of Kp-10, acting through H364 KISS1R, contributed to the manifestation of ICPP, providing further evidence that dysregulation of Kp-10/KISS1R axis impacts the onset of puberty.


Asunto(s)
Pubertad Precoz , Animales , Cricetinae , Femenino , Humanos , Cricetulus , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/genética , Neuroquinina B/genética , Neuroquinina B/metabolismo , Pubertad Precoz/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1/genética
13.
J Mol Endocrinol ; 72(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085702

RESUMEN

The exact neural construct underlying the dynamic secretion of gonadotrophin-releasing hormone (GnRH) has only recently been identified despite the detection of multiunit electrical activity volleys associated with pulsatile luteinising hormone (LH) secretion four decades ago. Since the discovery of kisspeptin/neurokinin B/dynorphin neurons in the mammalian hypothalamus, there has been much research into the role of this neuronal network in controlling the oscillatory secretion of gonadotrophin hormones. In this review, we provide an update of the progressive application of cutting-edge techniques combined with mathematical modelling by the neuroendocrine community, which are transforming the functional investigation of the GnRH pulse generator. Understanding the nature and function of the GnRH pulse generator can greatly inform a wide range of clinical studies investigating infertility treatments.


Asunto(s)
Hormona Liberadora de Gonadotropina , Hormona Luteinizante , Animales , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Neuroquinina B/metabolismo , Dinorfinas/metabolismo , Kisspeptinas/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Mamíferos/metabolismo
14.
Theriogenology ; 215: 302-311, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128223

RESUMEN

Neurokinin B (NKB), a peptide encoded by the tachykinin 3 (TAC3), is critical for reproduction in all studied species. However, its potential roles in birds are less clear. Using the female chicken (c-) as a model, we showed that cTAC3 is composed of five exons with a full-length cDNA of 787 bp, which was predicted to generate the mature NKB peptide containing 10 amino acids. Using cell-based luciferase reporter assays, we demonstrated that cNKB could effectively and specifically activate tachykinin receptor 3 (TACR3) in HEK293 cells, suggesting its physiological function is likely achieved via activating cTACR3 signaling. Notably, cTAC3 and cTACR3 were predominantly and abundantly expressed in the hypothalamus of hens and meanwhile the mRNA expression of cTAC3 was continuously increased during development, suggesting that NKB-TACR3 may emerge as important components of the neuroendocrine reproductive axis. In support, intraperitoneal injection of cNKB could significantly promote hypothalamic cGnRH-Ι, and pituitary cFSHß and cLHß expression in female chickens. Surprisingly, cTAC3 and cTACR3 were also expressed in the pituitary gland, and cNKB treatment significantly increased cLHß and cFSHß expression in cultured primary pituitary cells, suggesting cNKB can also act directly at the pituitary level to stimulate gonadotropin synthesis. Collectively, our results reveal that cNKB functionally regulate GnRH/gonadotropin synthesis in female chickens.


Asunto(s)
Pollos , Gonadotropinas , Humanos , Femenino , Animales , Pollos/genética , Pollos/metabolismo , Células HEK293 , Neuroquinina B/genética , Neuroquinina B/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/farmacología , Hormona Liberadora de Gonadotropina/metabolismo
15.
Endocrinology ; 164(12)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37936337

RESUMEN

The mechanism by which arcuate kisspeptin (ARNKISS) neurons co-expressing glutamate, neurokinin B, and dynorphin intermittently synchronize their activity to drive pulsatile hormone secretion remains unclear in females. In order to study spontaneous synchronization within the ARNKISS neuron network, acute brain slices were prepared from adult female Kiss1-GCaMP6 mice. Analysis of both spontaneous synchronizations and those driven by high frequency stimulation of individual ARNKISS neurons revealed that the network exhibits semi-random emergent excitation dependent upon glutamate signaling through AMPA receptors. No role for NMDA receptors was identified. In contrast to male mice, ongoing tachykinin receptor tone within the slice operated to promote spontaneous synchronizations in females. As previously observed in males, we found that ongoing dynorphin transmission in the slice did not contribute to synchronization events. These observations indicate that a very similar AMPA receptor-dependent mechanism underlies ARNKISS neuron synchronizations in the female mouse supporting the "glutamate two-transition" model for kisspeptin neuron synchronization. However, a potentially important sex difference appears to exist with a more prominent facilitatory role for tachykinin transmission in the female.


Asunto(s)
Dinorfinas , Kisspeptinas , Ratones , Femenino , Masculino , Animales , Kisspeptinas/metabolismo , Dinorfinas/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Neuroquinina B/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Glutamatos , Hormona Liberadora de Gonadotropina/metabolismo
16.
Sci Rep ; 13(1): 20495, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993510

RESUMEN

The gonadotropin-releasing hormone (GnRH) pulse and surge are considered to be generated by arcuate kisspeptin/neurokinin B/dynorphin A (KNDy) neurons and anteroventral periventricular nucleus (AVPV) kisspeptin neurons, respectively, in female rodents. The majority of KNDy and AVPV kisspeptin neurons express κ-opioid receptors (KORs, encoded by Oprk1) in female rodents. Thus, this study aimed to investigate the effect of a conditional Oprk1-dependent Kiss1 deletion in kisspeptin neurons on the luteinizing hormone (LH) pulse/surge and fertility using Kiss1-floxed/Oprk1-Cre rats, in which Kiss1 was deleted in cells expressing or once expressed the Oprk1/Cre. The Kiss1-floxed/Oprk1-Cre female rats, with Kiss1 deleted in a majority of KNDy neurons, showed normal puberty while having a one-day longer estrous cycle and fewer pups than Kiss1-floxed controls. Notably, ovariectomized (OVX) Kiss1-floxed/Oprk1-Cre rats showed profound disruption of LH pulses in the presence of a diestrous level of estrogen but showed apparent LH pulses without estrogen treatment. Furthermore, Kiss1-floxed/Oprk1-Cre rats, with Kiss1 deleted in approximately half of AVPV kisspeptin neurons, showed a lower peak of the estrogen-induced LH surge than controls. These results suggest that arcuate and AVPV kisspeptin neurons expressing or having expressed Oprk1 have a role in maintaining normal GnRH pulse and surge generation, the normal length of the estrous cycle, and the normal offspring number in female rats.


Asunto(s)
Kisspeptinas , Hormona Luteinizante , Ratas , Femenino , Animales , Kisspeptinas/metabolismo , Hormona Luteinizante/farmacología , Estrógenos/farmacología , Hormona Liberadora de Gonadotropina/metabolismo , Neuroquinina B/genética , Neuroquinina B/metabolismo , Dinorfinas/metabolismo , Neuronas/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo
17.
Ageing Res Rev ; 92: 102086, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37821047

RESUMEN

The Kisspeptin1 (KISS1)/neurokinin B (NKB)/Dynorphin (Dyn) [KNDy] neurons in the hypothalamus regulate the reproduction stage in human beings and rodents. KNDy neurons co-expressed all KISS1, NKB, and Dyn peptides, and hence commonly regarded as KISS1 neurons. KNDy neurons contribute to the "GnRH pulse generator" and are implicated in the regulation of pulsatile GnRH release. The estradiol (E2)-estrogen receptor (ER) interactions over GnRH neurons in the hypothalamus cause nitric oxide (NO) discharge, in addition to presynaptic GABA and glutamate discharge from respective neurons. The released GABA and glutamate facilitate the activity of GnRH neurons via GABAA-R and AMPA/kainate-R. The KISS1 stimulates MAPK/ERK1/2 signaling and cause the release of Ca2+ from intracellular store, which contribute to neuroendocrine function, increase apoptosis and decrease cell proliferation and metastasis. The ageing in women deteriorates KISS1/KISS1R interaction in the hypothalamus which causes lower levels of GnRH. Because examining the human brain is so challenging, decades of clinical research have failed to find the causes of KNDy/GnRH dysfunction. The KISS1/KISS1R interactions in the brain have a neuroprotective effect against Alzheimer's disease (AD). These findings modulate the pathophysiological role of the KNDy/GnRH neural network in polycystic ovarian syndrome (PCOS) associated with ageing and, its protective role in cancer and AD. This review concludes with protecting effect of the steroid-derived acute regulatory enzyme (StAR) against neurotoxicity in the hippocampus, and hypothalamus, and these measures are fundamental for delaying ageing with PCOS. StAR could serve as novel diagnostic marker and therapeutic target for the most prevalent hormone-sensitive breast cancers (BCs).


Asunto(s)
Enfermedad de Alzheimer , Síndrome del Ovario Poliquístico , Animales , Femenino , Humanos , Núcleo Arqueado del Hipotálamo/metabolismo , Dinorfinas/metabolismo , Ácido gamma-Aminobutírico , Glutamatos , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neuroquinina B/metabolismo , Receptores de Kisspeptina-1 , Roedores
18.
Endocrinology ; 164(11)2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37776515

RESUMEN

The current model for the synchronization of GnRH neural activity driving GnRH and LH pulses proposes that a set of arcuate (ARC) neurons that contain kisspeptin, neurokinin B, and dynorphin (KNDy neurons) is the GnRH pulse generator. This study tested the functional role of ovine KNDy neurons in pulse generation and explored the roles of nearby Kiss1 receptor (Kiss1R)-containing cells using lesions produced with saporin (SAP) conjugates. Injection of NK3-SAP ablated over 90% of the KNDy cells, while Kiss-SAP (saporin conjugated to kisspeptin-54) lesioned about two-thirds of the Kiss1R population without affecting KNDy or GnRH cell number. Both lesions produced a dramatic decrease in LH pulse amplitude but had different effects on LH pulse patterns. NK3-SAP increased interpulse interval, but Kiss-SAP did not. In contrast, Kiss-SAP disrupted the regular hourly occurrence of LH pulses, but NK3-SAP did not. Because Kiss1R is not expressed in KNDy cells, HiPlex RNAScope was used to assess the colocalization of 8 neurotransmitters and 3 receptors in ARC Kiss1R-containing cells. Kiss1R cells primarily contained transcript markers for GABA (68%), glutamate (28%), ESR1 (estrogen receptor-α) mRNA, and OPRK1 (kappa opioid receptor) mRNA. These data support the conclusion that KNDy neurons are essential for GnRH pulses in ewes, whereas ARC Kiss1R cells are not but do maintain the amplitude and regularity of GnRH pulses. We thus propose that in sheep, ARC Kiss1R neurons form part of a positive feedback circuit that reinforces the activity of the KNDy neural network, with GABA or glutamate likely being involved.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Kisspeptinas , Hormona Luteinizante , Neuronas , Animales , Femenino , Núcleo Arqueado del Hipotálamo/metabolismo , Dinorfinas/metabolismo , Ácido gamma-Aminobutírico , Glutamatos , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neuroquinina B/metabolismo , Neuronas/metabolismo , Receptores de Kisspeptina-1/genética , ARN Mensajero , Saporinas , Ovinos , Hormona Luteinizante/metabolismo
19.
Gene ; 879: 147592, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37356741

RESUMEN

Tachykinins belong to a large, evolutionarily conserved family of brain/gut peptides that are involved in a variety of physiological functions in mammals, such as reproductive regulation. However, little information was available about tachykinins in ancient fish lineage. In the present study, we firstly identified three tachykinin genes (named tac1, tac3 and tac4) and three neurokinin receptors (named nk1r, nk2r and nk3r) from Chinese sturgeon brain and pituitary. Sequence analysis showed that tac1 encoded substance P (SP) and neurokinin A (NKA), tac3 encoded neurokinin B (NKB) and NKB-related peptide (NKBRP), and tac4 encoded hemokin 1 (HK-1) and hemokin 2 (HK-2), respectively. The luciferase reporter assay results showed that NK1R preferentially selected asSP, NK2R preferentially selected asNKA, and NK3R preferentially selected asNKB. Tissue expression analysis showed that the three tac genes were highly detected in the telencephalon and hypothalamus, whereas nkr genes were widely expressed in peripheral tissues. Spatio-temporal expression analysis showed that all three tac genes were highly expressed in unknown sex individuals. Intraperitoneal injection experiments showed that both asSP and asNKB could stimulate luteinizing hormone (LH) release in Chinese sturgeon serum. At the transcriptional level, asSP and asNKB could significantly reduce pituitary follicle-stimulating hormone beta (fshß) mRNA expression, but induce pituitary growth hormone (gh) mRNA expression. In addition, estradiol (E2) could stimulate tac3 mRNA expression in hypothalamus. Taken together, this study provided information on the tachykinin family in Chinese sturgeon and demonstrates that asNKB and asSP could be involved in reproductive and growth regulation in pituitary.


Asunto(s)
Hipófisis , Taquicininas , Animales , Taquicininas/genética , Hipófisis/metabolismo , Hormona Luteinizante/metabolismo , Neuroquinina B/genética , Neuroquinina B/metabolismo , Peces/genética , Peces/metabolismo , ARN Mensajero/metabolismo , Mamíferos/genética
20.
Cell Tissue Res ; 393(2): 377-391, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37278825

RESUMEN

Neurokinin B (NKB), a recently discovered neuropeptide, plays a crucial role in regulating the kiss-GnRH neurons in vertebrate's brain. NKB is also characterized in gonadal tissues; however, its role in gonads is poorly understood. Therefore, in the present study, the effects of NKB on gonadal steroidogenesis and gametogenesis through in vivo and in vitro approaches using NKB antagonist MRK-08 were evaluated. The results suggest that the NKB antagonist decreases the development of advanced ovarian follicles and germ cells in the testis. In addition, MRK-08 further reduces the production of 17ß-estradiol in the ovary and testosterone in the testis under both in vivo and in vitro conditions in a dose-dependent manner. Furthermore, the in vitro MRK-08 treatment of gonadal explants attenuated the expression of steroidogenic marker proteins, i.e., StAR, 3ß-HSD, and 17ß-HSD dose-dependently. Moreover, the MAP kinase proteins, pERK1/2 & ERK1/2 and pAkt & Akt were also downregulated by MRK-08. Thus, the study suggests that NKB downregulates steroidogenesis by modulating the expressions of steroidogenic marker proteins involving ERK1/2 & pERK1/2 and Akt/pAkt signalling pathways. NKB also appears to regulate gametogenesis by regulating gonadal steroidogenesis in the catfish.


Asunto(s)
Bagres , Neuroquinina B , Masculino , Animales , Femenino , Neuroquinina B/metabolismo , Bagres/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Testículo/metabolismo , Gametogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA