Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 825
Filtrar
1.
Pak J Pharm Sci ; 37(1(Special)): 191-197, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38747269

RESUMEN

synthesis of a pyrazole containing compound was achieved by reacting phenyl hydrazine with (E)-2-((4-bromophenyl) diazinyl)-1-phenylbutane-1,3-dione to produce 4-((4-bromophenyl) diazinyl)-5-methyl-1,3-diphenyl-pyrazole and characterization using mass spectrometer, 1H NMR and 13C NMR. The pharmacological evaluation of the synthesized compound, denoted as (KA5), against Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 9027, Staphylococcus aureus ATCC 29213 and Clostridiums sporogeneses ATCC 19404, indicate that there is no promising antibacterial activity. However, KA5 shows a competitive anticancer activity (IC50: 8.5µM) upon its evaluation against hepatocellular carcinoma cell line (HepG 2) compared to sorafenib (IC50: 4.51µM). Moreover, human skin fibroblast (HSF) was used to investigate the effect of KA5 on normal cell lines, (IC50: 5.53µM). The presented biological evaluations resulted in better understanding of structure-activity relationship for 1, 3, 4-trisubstituted pyrazoles and revealed a great opportunity for more investigations for novel pyrazole-containing anticancer agents.


Asunto(s)
Antibacterianos , Antineoplásicos , Pirazoles , Pirazoles/farmacología , Pirazoles/síntesis química , Pirazoles/química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Relación Estructura-Actividad , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Células Hep G2 , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Sorafenib/farmacología , Fibroblastos/efectos de los fármacos , Niacinamida/farmacología , Niacinamida/análogos & derivados , Niacinamida/síntesis química , Niacinamida/química , Pseudomonas aeruginosa/efectos de los fármacos , Escherichia coli/efectos de los fármacos
2.
Bioorg Chem ; 147: 107418, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703441

RESUMEN

A key approach in developing green chemistry involves converting solar energy into chemical energy of biomolecules through photocatalysis. Photocatalysis can facilitate the regeneration of nicotinamide cofactors during redox processes. Nicotinamide cofactor biomimetics (NCBs) are economical substitutes for natural cofactors. Here, photocatalytic regeneration of NADH and reduced NCBs (NCBsred) using graphitic carbon nitride (g-C3N4) was developed. The process involves g-C3N4 as the photocatalyst, Cp*Rh(bpy)H2O2+ as the electron mediator, and Triethanolamine as the electron donor, facilitating the reduction of NAD+ and various oxidative NCBs (NCBsox) under light irradiation. Notably, the highest reduction yield of 48.32 % was achieved with BANA+, outperforming the natural cofactor NAD+. Electrochemical analysis reveals that the reduction efficiency and capacity of cofactors relies on their redox potentials. Additionally, a coupled photo-enzymatic catalysis system was explored for the reduction of 4-Ketoisophorone by Old Yellow Enzyme XenA. Among all the NCBsox and NAD+, the highest conversion ratio of over 99 % was obtained with BANA+. After recycled for 8 times, g-C3N4 maintained over 93.6 % catalytic efficiency. The photocatalytic cofactor regeneration showcases its outstanding performance with NAD+ as well as NCBsox. This work significantly advances the development of photocatalytic cofactor regeneration for artificial cofactors and its potential application.


Asunto(s)
Biocatálisis , Oxidación-Reducción , Procesos Fotoquímicos , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Estructura Molecular , NAD/química , NAD/metabolismo , Biomimética , Niacinamida/química , Niacinamida/metabolismo , Compuestos de Nitrógeno/química , Grafito
3.
J Am Chem Soc ; 146(17): 11592-11598, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630123

RESUMEN

Cocrystal screening and single-crystal growth remain the primary obstacles in the development of pharmaceutical cocrystals. Here, we present a new approach for cocrystal screening, microspacing in-air sublimation (MAS), to obtain new cocrystals and grow high-quality single crystals of cocrystals within tens of minutes. The method possesses the advantages of strong designable ability of devices, user-friendly control, and compatibility with materials, especially for the thermolabile molecules. A novel drug-drug cocrystal of favipiravir (FPV) with salicylamide (SAA) was first discovered by this method, which shows improved physiochemical properties. Furthermore, this method proved effective in cultivating single crystals of FPV-isonicotinamide (FPV-INIA), FPV-urea, FPV-nicotinamide (FPV-NIA), and FPV-tromethamine (FPV-Tro) cocrystals, and the structures of these cocrystals were determined for the first time. By adjusting the growth temperature and growth distance precisely, we also achieved single crystals of 10 different paracetamol (PCA) cocrystals and piracetam (PIR) cocrystals, which underscores the versatility and efficiency of this method in pharmaceutical cocrystal screening.


Asunto(s)
Amidas , Cristalización , Niacinamida , Pirazinas , Niacinamida/química , Pirazinas/química , Amidas/química , Salicilamidas/química , Urea/química , Modelos Moleculares , Cristalografía por Rayos X
4.
Phys Chem Chem Phys ; 26(17): 13420-13431, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647171

RESUMEN

Autoimmune inflammatory diseases, such as rheumatoid arthritis (RA) and ulcerative colitis, are associated with an uncontrolled production of cytokines leading to the pronounced inflammatory response of these disorders. Their therapy is currently focused on the inhibition of cytokine receptors, such as the Janus kinase (JAK) protein family. Tofacitinib and peficitinib are JAK inhibitors that have been recently approved to treat rheumatoid arthritis. In this study, an in-depth analysis was carried out through quantum biochemistry to understand the interactions involved in the complexes formed by JAK1 and tofacitinib or peficitinib. Computational analyses provided new insights into the binding mechanisms between tofacitinib or peficitinib and JAK1. The essential amino acid residues that support the complex are also identified and reported. Additionally, we report new interactions, such as van der Waals; hydrogen bonds; and alkyl, pi-alkyl, and pi-sulfur forces, that stabilize the complexes. The computational results revealed that peficitinib presents a similar affinity to JAK1 compared to tofacitinib based on their interaction energies.


Asunto(s)
Adamantano/análogos & derivados , Janus Quinasa 1 , Niacinamida , Niacinamida/análogos & derivados , Piperidinas , Pirimidinas , Pirimidinas/química , Pirimidinas/farmacología , Piperidinas/química , Piperidinas/farmacología , Piperidinas/uso terapéutico , Niacinamida/química , Janus Quinasa 1/antagonistas & inhibidores , Janus Quinasa 1/metabolismo , Janus Quinasa 1/química , Humanos , Teoría Cuántica , Enfermedades Autoinmunes/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Enlace de Hidrógeno , Inhibidores de las Cinasas Janus/química , Inhibidores de las Cinasas Janus/uso terapéutico , Inhibidores de las Cinasas Janus/farmacología , Adamantano/química , Pirroles/química , Pirroles/farmacología , Simulación del Acoplamiento Molecular
5.
Food Chem ; 444: 138654, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38335685

RESUMEN

The effect of tannic acid (TA) binding on the thermal degradation of boscalid was studied in this work. The results revealed that TA binding has a significant impact on boscalid degradation. The degradation rate constant of bound boscalid was reduced, and its corresponding half-life was significantly prolonged compared to the free state. Four identical degradation products were detected in both states through UHPLC-Q-TOF-MS, indicating that degradation products were not affected by TA binding. Based on DFT and MS analysis, the degradation pathways of boscalid included hydroxyl substitution of chlorine atoms and cleavage of CN and CC bonds. The toxicity of B2 and B3 exceeded that of boscalid. In summary, the binding of TA and boscalid significantly affected the thermal degradation rate of boscalid while preserving the types of degradation products. This study contributed to a fundamental understanding of the degradation process of bound pesticide residues in complex food matrices.


Asunto(s)
Compuestos de Bifenilo , Niacinamida , Niacinamida/análogos & derivados , Polifenoles , Compuestos de Bifenilo/química , Niacinamida/química
6.
Bioorg Med Chem Lett ; 98: 129575, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38065292

RESUMEN

The C797S mutation is one of the major factors behind resistance to the third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. Herein, we describe the discovery of the 2,4-diaminonicotinamide derivative 5j, which shows potent inhibitory activity against EGFR del19/T790M/C797S and L858R/T790M/C797S. We also report the structure-activity relationship of the 2,4-diaminonicotinamide derivatives and the co-crystal structure of 5j and EGFR del19/T790M/C797S.


Asunto(s)
Receptores ErbB , Neoplasias Pulmonares , Niacinamida , Humanos , Resistencia a Antineoplásicos , Receptores ErbB/efectos de los fármacos , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , /farmacología , Niacinamida/análogos & derivados , Niacinamida/química
7.
Molecules ; 28(22)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38005376

RESUMEN

SIRT2 is a member of NAD+-dependent sirtuins and its inhibition has been proposed as a promising therapeutic approach for treating human diseases, including neurodegenerative diseases, cancer, and infections. Expanding SIRT2 inhibitors based on the 3-aminobenzyloxy nicotinamide core structure, we have synthesized and evaluated constrained analogs and selected stereoisomers. Our structure-activity relationship (SAR) study has revealed that 2,3-constrained (S)-isomers possess enhanced in vitro enzymatic inhibitory activity against SIRT2 and retain excellent selectivity over SIRT1 and SIRT3, provided that a suitable ring A is used. This current study further explores SIRT2 inhibitors based on the 3-aminobenzyloxy nicotinamide scaffold and contributes to the discovery of potent, selective SIRT2 inhibitors that have been actively pursued for their potential therapeutic applications.


Asunto(s)
Sirtuina 2 , Sirtuina 3 , Humanos , Relación Estructura-Actividad , Niacinamida/farmacología , Niacinamida/química
8.
Int J Pharm ; 646: 123470, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37793465

RESUMEN

Hydroxytyrosol (HT) is a natural phenolic compound with potent antioxidant activity extracted from olive trees. It is generally a slightly hydrated viscous liquid at ambient conditions, and it is highly susceptible to oxygen due to the presence of catechol moiety. Although encapsulation technique provides HT in powder form, it does not improve its chemical stability. Herein, we propose an efficient solution to the high hygroscopicity and poor stability of HT. Four cocrystals were first reported, and their intermolecular interactions were analyzed in detail. After cocrystallization, the melting point is increased and the hygroscopicity is significantly decreased. HT cocrystals are thus solid at room temperature. Moreover, hydroxytyrosol cocrystals with betaine (HT-BET) and nicotinamide (HT-NIC) demonstrate superior chemical stability than pure HT, olive extract, and HT encapsulation material. Therefore, cocrystallization can be considered as a promising approach to overcome the application obstacles of HT.


Asunto(s)
Niacinamida , Alcohol Feniletílico , Humectabilidad , Niacinamida/química , Antioxidantes
9.
Protein Pept Lett ; 30(9): 734-742, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37622714

RESUMEN

INTRODUCTION: Nicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation of nicotinamide with S-adenosine-L-methionine (SAM) as the methyl donor. Abnormal expression of NNMT is associated with many diseases (such as multiple cancers and metabolic and liver diseases), making NNMT a potential therapeutic target. Limited studies concerning the enzymesubstrate/ inhibitor interactions could be found to fully understand the detailed reaction mechanism. METHODS: The binding affinity and ligand binding epitopes of nicotinamide or SAH for binding NNMT and its mutants were determined using saturated transfer difference (STD) nuclear magnetic resonance (NMR) techniques combined with site-directed mutagenesis. RESULTS: The average dissociation constant of WT NNMT with nicotinamide and S-adenosine homocysteine (SAH) was 5.5 ± 0.9 mM and 1.2 ± 0.3 mM, respectively, while the mutants Y20F and Y20G with nicotinamide were up to nearly 4 times and 20 times that of WT and with SAH nearly 2 times and 5 times that of WT. The data suggested that WT had the highest binding affinity for nicotinamide or SAH, followed by Y20F and Y20G, which was consistent with its catalytic activity. CONCLUSION: The binding affinity of nicotinamide and SAH to NNMT and its mutants were obtained by STD NMR in this study. It was found that nicotinamide and SAH bind to WT in a particular orientation, and Y20 is critical for their binding orientation and affinity to NNMT.


Asunto(s)
Niacinamida , Nicotinamida N-Metiltransferasa , Nicotinamida N-Metiltransferasa/genética , Nicotinamida N-Metiltransferasa/química , Ligandos , Niacinamida/química , Niacinamida/metabolismo , Adenosina , Espectroscopía de Resonancia Magnética
10.
Proc Natl Acad Sci U S A ; 120(34): e2304611120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590418

RESUMEN

Selective orthosteric inhibition of kinases has been challenging due to the conserved active site architecture of kinases and emergence of resistance mutants. Simultaneous inhibition of distant orthosteric and allosteric sites, which we refer to as "double-drugging", has recently been shown to be effective in overcoming drug resistance. However, detailed biophysical characterization of the cooperative nature between orthosteric and allosteric modulators has not been undertaken. Here, we provide a quantitative framework for double-drugging of kinases employing isothermal titration calorimetry, Förster resonance energy transfer, coupled-enzyme assays, and X-ray crystallography. We discern positive and negative cooperativity for Aurora A kinase (AurA) and Abelson kinase (Abl) with different combinations of orthosteric and allosteric modulators. We find that a conformational equilibrium shift is the main principle governing cooperativity. Notably, for both kinases, we find a synergistic decrease of the required orthosteric and allosteric drug dosages when used in combination to inhibit kinase activities to clinically relevant inhibition levels. X-ray crystal structures of the double-drugged kinase complexes reveal the molecular principles underlying the cooperative nature of double-drugging AurA and Abl with orthosteric and allosteric inhibitors. Finally, we observe a fully closed conformation of Abl when bound to a pair of positively cooperative orthosteric and allosteric modulators, shedding light on the puzzling abnormality of previously solved closed Abl structures. Collectively, our data provide mechanistic and structural insights into rational design and evaluation of double-drugging strategies.


Asunto(s)
Aurora Quinasa A , Mesilato de Imatinib , Niacinamida , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-abl , Humanos , Cristalografía por Rayos X , Mesilato de Imatinib/química , Mesilato de Imatinib/farmacología , Niacinamida/química , Niacinamida/farmacología , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-abl/química , Aurora Quinasa A/antagonistas & inhibidores , Aurora Quinasa A/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología
11.
Mol Pharm ; 20(7): 3412-3426, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37253085

RESUMEN

Cocrystal (CC) and coamorphous (CM) techniques have become green technologies to improve the solubility and bioavailability of water-soluble drugs. In this study, hot-melt extrusion (HME) was employed to produce CC and CM formulations of indomethacin (IMC) and nicotinamide (NIC) due to its advantages like solvent-free and large-scale manufacturing. Interestingly, for the first time, IMC-NIC CC and CM were selectively prepared depending on the barrel temperatures of HME at a constant screw speed of 20 rpm and a feed rate of 1.0 g/min. IMC-NIC CC was obtained at 105-120 °C, IMC-NIC CM was produced at 125-150 °C, and the mixture of CC and CM was obtained between 120 and 125 °C (like a door switch of CC and CM). SS NMR combined with RDF and Ebind calculations revealed the formation mechanisms of CC and CM, where strong interactions between heteromeric molecules formed at lower temperatures favored periodic molecular organization of CC, whereas discrete and weak interactions formed at higher temperatures promoted disordered molecular arrangement of CM. Additionally, IMC-NIC CC and CM showed enhanced dissolution and stability over crystalline/amorphous IMC. This study provides an easy-to-operate and environmentally friendly strategy for the flexible regulation of CC and CM formulations with different properties through modulation of the barrel temperature of HME.


Asunto(s)
Indometacina , Niacinamida , Indometacina/química , Niacinamida/química , Composición de Medicamentos/métodos , Solubilidad , Solventes/química , Calor
12.
Eur J Pharm Sci ; 187: 106469, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37209999

RESUMEN

Esculetin (ELT) is one of the best-known and simplest coumarins with powerful natural antioxidant effects but insoluble and difficult to absorb. In order to overcome the problems, cocrystal engineering was first applied to ELT in this paper. Nicotinamide (NAM) was selected as the coformer for its excellent water solubility and potential synergistic antioxidant effect with ELT. The structure of the ELT-NAM cocrystal was successfully prepared and characterized by IR, SCXRD, PXRD, and DSC-TG. Furthermore, the in vitro/vivo properties and antioxidant effects of the cocrystal were adequately studied. The results highlight that the ELT obtained tremendous improvements in water solubility and bioavailability after cocrystal formation. Meanwhile, the synergistic enhancement of ELT with NAM in antioxidant effect was demonstrated by the DPPH assay. Ultimately, the simultaneously optimized in vitro/vivo properties and antioxidant activity of the cocrystal created an improved practical effect of hepatoprotective in rat experiments. The investigation is significant for developing coumarin drugs represented by ELT.


Asunto(s)
Antioxidantes , Niacinamida , Ratas , Animales , Antioxidantes/farmacología , Cristalización/métodos , Niacinamida/farmacología , Niacinamida/química , Solubilidad , Agua
13.
J Magn Reson ; 348: 107379, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36689786

RESUMEN

Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute labile protons and microenvironment properties, yet CEST quantification has been challenging. This difficulty is because the CEST measurement depends not only on the underlying CEST system but also on the scan protocols, including RF saturation amplitude, duration, and repetition time. In addition, T1 normalization is not straightforward under non-equilibrium conditions. Recently, a quasi-steady-state (QUASS) algorithm was established to reconstruct the desired equilibrium state from experimental measurements. Our study aimed to determine the accuracy of spinlock-model-based multi-pool CEST quantification using numerical simulations and phantom experiments. In short, CEST Z-spectra were simulated for a representative 3-pool model, and CEST amplitudes were solved with spinlock model-based multi-pool fitting and assessed as a function of RF saturation time (Ts), repetition time (TR), and T1. Although the apparent CEST signals showed significant T1 dependence, such relationships were not observed following QUASS reconstruction. To test the accuracy of T1 correction, a multi-vial phantom of nicotinamide and creatine was doped with manganese chloride, resulting in T1 ranging from 1 s to beyond 2 s. The multi-labile signals determined from the routine measurements showed significant dependence on Ts, TR, and T1. In contrast, CEST signals from the QUASS reconstruction showed consistent quantification independent of such variables. To summarize, our study demonstrated that accurate CEST quantification is feasible in multi-pool CEST systems with the spinlock-model-based fitting of QUASS CEST MRI.


Asunto(s)
Imagen por Resonancia Magnética , Protones , Algoritmos , Simulación por Computador , Concentración de Iones de Hidrógeno , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Niacinamida/química
14.
Toxins (Basel) ; 15(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36668859

RESUMEN

Background: Panton−Valentine Leukocidin sustains a strong cytotoxic activity, targeting immune cells and, consequently, perforating the plasma membrane and inducing cell death. The present study is aimed to examine the individual effect of ascorbic acid and nicotinamide on PVL cytotoxicity ex vivo, as well as their effect on granulocytes viability when treated with PVL. Materials and Methods: The PVL cytotoxicity assay was performed in triplicates using the commercial Cytotoxicity Detection Kit PLUS (LDH). LDH release was measured to determine cell damage and cell viability was measured via flow cytometry. Results and discussion: A clear reduction in PVL cytotoxicity was demonstrated (p < 0.001). Treatment with ascorbic acid at 5 mg/mL has shown a 3-fold reduction in PVL cytotoxicity; likewise, nicotinamide illustrated a 4-fold reduction in PVL cytotoxicity. Moreover, granulocytes' viability after PVL treatment was maintained when incubated with 5 mg/mL of ascorbic acid and nicotinamide. Conclusions: our findings illustrated that ascorbic acid and nicotinamide exhibit an inhibitory effect on PVL cytotoxicity and promote cell viability, as the cytotoxic effect of the toxin is postulated to be neutralized by antioxidant incubation. Further investigations are needed to assess whether these antioxidants may be viable options in PVL cytotoxicity attenuation in PVL-associated diseases.


Asunto(s)
Ácido Ascórbico , Toxinas Bacterianas , Leucocidinas , Niacinamida , Humanos , Ácido Ascórbico/química , Ácido Ascórbico/farmacología , Toxinas Bacterianas/toxicidad , Exotoxinas/toxicidad , Leucocidinas/toxicidad , Niacinamida/química , Niacinamida/farmacología
15.
J Pharm Sci ; 112(2): 513-524, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36150469

RESUMEN

Recently, coamorphization and cocrystal technologies are of particular interest in the pharmaceutical industry due to their ability to improve the solubility/dissolution and bioavailability of poorly water-soluble drugs, while the coamorphous system often tends to convert into the stable crystalline form usually crystalline physical mixture of each component during formulation preparation or storage. In this paper, BCS II drug baicalein (BAI) along with nicotinamide (NIC) were prepared into a single homogeneous coamorphous system with a single transition temperature at 42.5 °C. Interestingly, instead of the physical mixture of crystalline BAI and NIC, coamorphous BAI-NIC would transform to its cocrystal form under stress of temperature and humidity. The transformation rate under isothermal condition was temperature-dependent, since the crystallinity of the cocrystal enhanced as the temperature increased. Further mechanic studies showed the activation energy for the transformation under non-isothermal condition was calculated to be 184.52 kJ/mol. Additionally, water vapor sorption tests with further solid characterizations indicated the transformation was faster under higher humidity condition due to the faster nucleation process of cocrystal BAI-NIC. This research not only discovered the mechanism of transformation from coamorphous BAI-NIC to cocrystal form, but also provided an unusual method for cocrystal preparation from its coamorphous form.


Asunto(s)
Flavanonas , Niacinamida , Niacinamida/química , Cristalización/métodos , Solubilidad
16.
Faraday Discuss ; 241(0): 357-366, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36196794

RESUMEN

The use of resonant acoustic mixing (RAM) to synthesize variable stoichiometry cocrystals of nicotinamide and vitamin C was investigated. Liquid assisted RAM (LA-RAM) was used to generate two polymorphs, Form I and II, of the 1 : 1 cocrystal of nicotinamide and vitamin C at a 700 mg scale using ethanol and methanol respectively as the liquid additives. LA-RAM was used to scale up polymorphs I and II of the 1 : 1 cocrystal to 20 grams. Finally, LA-RAM used was to produce a high purity 3 : 1 cocrystal of nicotinamide and vitamin C when either methanol or ethanol was used as the liquid additive. LA-RAM is demonstrated to be a scalable, environmentally friendly, ball-free method to make variable stoichiometry cocrystals.


Asunto(s)
Ácido Ascórbico , Niacinamida , Niacinamida/química , Metanol , Etanol , Solubilidad
17.
Faraday Discuss ; 241(0): 178-193, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36169080

RESUMEN

Mechanochemistry offers a unique opportunity to modify and manipulate crystal forms, often providing new products as compared with conventional solution methods. While promising, there is little known about how to control the solid form through mechanochemical means, demanding dedicated investigations. Using a model organic cocrystal system (isonicotinamide:glutaric acid), we here demonstrate that with mechanochemistry, polymorphism can be induced in molecular solids under conditions seemingly different to their conventional thermodynamic (thermal) transition point. Whereas Form II converts to Form I upon heating to 363 K, the same transition can be initiated under ball milling conditions at markedly lower temperatures (348 K). Our results indicate that mechanochemical techniques can help to reduce the energy barriers to solid form transitions, offering new insights into controlling polymorphic forms. Moreover, our results suggest that the nature of mechanochemical transformations could make it difficult to interpret mechanochemical solid form landscapes using conventional equilibrium-based tools.


Asunto(s)
Cristalización , Niacinamida , Temperatura , Termodinámica , Niacinamida/química , Glutaratos/química
18.
Molecules ; 27(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35889478

RESUMEN

A nicotinamide-based derivative was designed as an antiproliferative VEGFR-2 inhibitor with the key pharmacophoric features needed to interact with the VEGFR-2 catalytic pocket. The ability of the designed congener ((E)-N-(4-(1-(2-(4-benzamidobenzoyl)hydrazono)ethyl)phenyl)nicotinamide), compound 10, to bind with the VEGFR-2 enzyme was demonstrated by molecular docking studies. Furthermore, six various MD simulations studies established the excellent binding of compound 10 with VEGFR-2 over 100 ns, exhibiting optimum dynamics. MM-GBSA confirmed the proper binding with a total exact binding energy of -38.36 Kcal/Mol. MM-GBSA studies also revealed the crucial amino acids in the binding through the free binding energy decomposition and declared the interactions variation of compound 10 inside VEGFR-2 via the Protein-Ligand Interaction Profiler (PLIP). Being new, its molecular structure was optimized by DFT. The DFT studies also confirmed the binding mode of compound 10 with the VEGFR-2. ADMET (in silico) profiling indicated the examined compound's acceptable range of drug-likeness. The designed compound was synthesized through the condensation of N-(4-(hydrazinecarbonyl)phenyl)benzamide with N-(4-acetylphenyl)nicotinamide, where the carbonyl group has been replaced by an imine group. The in-vitro studies were consonant with the obtained in silico results as compound 10 prohibited VEGFR-2 with an IC50 value of 51 nM. Compound 10 also showed antiproliferative effects against MCF-7 and HCT 116 cancer cell lines with IC50 values of 8.25 and 6.48 µM, revealing magnificent selectivity indexes of 12.89 and 16.41, respectively.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Niacinamida/química , Niacinamida/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores
19.
Sci Rep ; 12(1): 12484, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864126

RESUMEN

Enzymes with dedicated cofactor preference are essential for advanced biocatalysis and biomanufacturing, especially when employing nonnatural nicotinamide cofactors in redox reactions. However, directed evolution of an enzyme to switch its cofactor preference is often hindered by the lack of efficient and affordable method for screening as the cofactor per se or the substrate can be prohibitively expensive. Here, we developed a growth-based selection platform to identify nonnatural cofactor-dependent oxidoreductase mutants. The growth of bacteria depended on the nicotinamide cytosine dinucleotide (NCD) mediated conversion of non-metabolizable phosphite into phosphate. The strain BW14329 lacking the ability to oxidize phosphite was suitable as host, and NCD-dependent phosphite dehydrogenase (Pdh*) is essential to the selection platform. Previously confirmed NCD synthetase with NCD synthesis capacity and NCD-dependent malic enzyme were successfully identified by using the platform. The feasibility of this strategy was successfully demonstrated using derived NCD-active malic enzyme as well as for the directed evolution of NCD synthetase in Escherichia coli. A phosphite-based screening platform was built for identification of enzymes favoring nonnatural cofactor NCD. In the future, once Pdh variants favoring other biomimetic or nonnatural cofactors are available this selection platform may be readily redesigned to attain new enzyme variants with anticipated cofactor preference, providing opportunities to further expand the chemical space of redox cofactors in chemical biology and synthetic biology.


Asunto(s)
Enzimas , Fosfitos , Enzimas/química , Escherichia coli/genética , Ligasas , NAD , Niacinamida/química , Oxidación-Reducción
20.
Angew Chem Int Ed Engl ; 61(41): e202206293, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35894150

RESUMEN

We present SpeedMixing, a rapid blending technology, as an approach for fast mechanosynthesis and discovery of model pharmaceutical cocrystals through rapid spinning in the absence of bulk solvents and milling/grinding media. Syntheses of pharmaceutical cocrystals based on the active pharmaceutical ingredients (APIs) carbamazepine, dihydrocarbamazepine, and nicotinamide demonstrate SpeedMixing as a method for rapid, scalable, as well as controllable and selective synthesis of cocrystals, cocrystal polymorphs and stoichiomorphs, including the discovery of an unexpected methanol solvate of the archetypal cocrystal of carbamazepine and saccharin, which has eluded extensive screens over 20 years.


Asunto(s)
Metanol , Sacarina , Carbamazepina/química , Cristalización/métodos , Niacinamida/química , Preparaciones Farmacéuticas , Sacarina/química , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...