Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.048
Filtrar
1.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38702852

RESUMEN

Up to 70% of the nitrogen (N) fertilizer applied to agricultural soils is lost through microbially mediated processes, such as nitrification. This can be counteracted by synthetic and biological compounds that inhibit nitrification. However, for many biological nitrification inhibitors (BNIs), the interaction with soil properties, nitrifier specificity, and effective concentrations are unclear. Here, we investigated three synthetic nitrification inhibitors (SNIs) (DCD, DMPP, and nitrapyrin) and three BNIs [methyl 3(4-hydroxyphenyl) propionate (MHPP), methyl 3(4-hydroxyphenyl) acrylate (MHPA), and limonene] in two agricultural soils differing in pH and nitrifier communities. The efficacies of SNIs and BNIs were resilient to short-term pH changes in the neutral pH soil, whereas the efficacy of some BNIs increased by neutralizing the alkaline soil. Among the BNIs, MHPA showed the highest inhibition and was, together with MHPP, identified as a putative AOB/comammox-selective inhibitor. Additionally, MHPA and limonene effectively inhibited nitrification at concentrations comparable to those used for DCD. Moreover, we identified the effective concentrations at which 50% and 80% of inhibition is observed (EC50 and EC80) for the BNIs, and similar EC80 values were observed in both soils. Overall, our results show that these BNIs could potentially serve as effective alternatives to SNIs currently used.


Asunto(s)
Nitrificación , Microbiología del Suelo , Suelo , Suelo/química , Concentración de Iones de Hidrógeno , Fertilizantes , Nitrógeno/metabolismo , Limoneno/farmacología , Agricultura
2.
Sci Total Environ ; 932: 172954, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723956

RESUMEN

Diversified cropping systems and fertilization strategies were proposed to enhance the abundance and diversity of the soil microbiome, thereby stabilizing their beneficial services for maintaining soil fertility and supporting plant growth. Here, we assessed across three different long-term field experiments in Europe (Netherlands, Belgium, Northern Germany) whether diversified cropping systems and fertilization strategies also affect their functional gene abundance. Soil DNA was analyzed by quantitative PCR for quantifying bacteria, archaea and fungi as well as functional genes related to nitrogen (N) transformations; including bacterial and archaeal nitrification (amoA-bac,arch), three steps of the denitrification process (nirK, nirS and nosZ-cladeI,II) and N2 assimilation (nifH), respectively. Crop diversification and fertilization strategies generally enhanced soil total carbon (C), N and microbial abundance, but with variation between sites. Overall effects of diversified cropping systems and fertilization strategies on functional genes were much stronger than on the abundance of bacteria, archaea and fungi. The legume-based cropping systems showed great potential not only in stimulating the growth of N-fixing microorganisms but also in boosting downstream functional potentials for N cycling. The sorghum-based intercropping system suppressed soil ammonia oxidizing prokaryotes. N fertilization reduced the abundance of nitrifiers and denitrifiers except for ammonia-oxidizing bacteria, while the application of the synthetic nitrification inhibitor DMPP combined with mineral N reduced growth of both ammonia-oxidizing bacteria and archaea. In conclusion, this study demonstrates a strong impact of diversified agricultural practices on the soil microbiome and their functional potentials mediating N transformations.


Asunto(s)
Agricultura , Fertilizantes , Nitrificación , Ciclo del Nitrógeno , Nitrógeno , Microbiología del Suelo , Suelo , Agricultura/métodos , Suelo/química , Nitrógeno/metabolismo , Bacterias/metabolismo , Archaea/fisiología , Archaea/genética , Microbiota , Bélgica , Alemania , Países Bajos , Desnitrificación
3.
J Environ Manage ; 359: 121009, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718600

RESUMEN

Nitrification-denitrification process has failed to meet wastewater treatment standards. The completely autotrophic nitrite removal (CANON) process has a huge advantage in the field of low carbon/nitrogen wastewater nitrogen removal. However, slow start-up and system instability limit its applications. In this study, the time of the start-up CANON process was reduced by using bio-rope as loading materials. The establishing of graded dissolved oxygen improved the stability of the CANON process and enhanced the stratification effect between functional microorganisms. Microbial community structure and the abundance of nitrogen removal functional genes are also analyzed. The results showed that the CANON process was initiated within 75 days in the complete absence of anaerobic ammonium oxidizing bacteria (AnAOB) inoculation. The ammonium and nitrogen removal efficiencies of CANON process reached to 94.45% and 80.76% respectively. The results also showed that the relative abundance of nitrogen removal bacterial in the biofilm gradually increases with the dissolved oxygen content in the solution decreases. In contrast, the relative abundance of ammonia oxidizing bacteria was positively correlated with the dissolved oxygen content in the solution. The relative abundance of g__Candidatus_Brocadia in biofilm was 15.56%, and while g__Nitrosomonas was just 0.6613%. Metagenomic analysis showed that g__Candidatus_Brocadia also contributes 66.37% to the partial-nitrification functional gene Hao (K10535). This study presented a new idea for the cooperation between partial-nitrification and anammox, which improved the nitrogen removal system stability.


Asunto(s)
Procesos Autotróficos , Nitritos , Nitrógeno , Aguas Residuales , Nitrógeno/metabolismo , Nitritos/metabolismo , Nitrificación , Desnitrificación , Bacterias/metabolismo , Bacterias/genética , Eliminación de Residuos Líquidos/métodos , Biopelículas , Reactores Biológicos , Compuestos de Amonio/metabolismo
4.
J Environ Manage ; 359: 121075, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723502

RESUMEN

Sequencing batch biofilm reactor (SBBR) has the potential to treat hypersaline high-strength nitrogen wastewater by simultaneous nitrification-denitrification (SND). Dissolved oxygen (DO) and aeration modes are major factors affecting pollutant removal. Low DO (0.35-3.5 mg/L) and alternative anoxic/aerobic (A/O) mode are commonly used for municipal wastewater treatment, however, the appropriate DO concentration and operation mode are still unknown under hypersaline environment because of the restricted oxygen transfer in denser extracellular polymeric substances (EPS) barrier and the decreased carbon source consumption during the anoxic phase. Herein, two SBBRs (R1, fully aerobic mode; R2, A/O mode) were used for the treatment of hypersaline high-strength nitrogen wastewater (200 mg/L NH4+-N, COD/N of 3 and 3% salinity). The results showed that the relatively low DO (2 mg/L) could not realize effective nitrification, while high DO (4.5 mg/L) evidently increased nitrification efficiency by enhancing oxygen transfer in denser biofilm that was stimulated by high salinity. A stable SND was reached 16 days faster with a ∼10% increase of TN removal under A/O mode. Mechanism analysis found that denser biofilm with coccus and bacillus were present in A/O mode instead of filamentous microorganisms, with the secretion of more EPS. Corynebacterium and Halomonas were the dominant genera in both SBBRs, and HN-AD process might assist partial nitrification-denitrification (PND) for highly efficient TN removal in biofilm systems. By using the appropriate operation mode and parameters, the average NH4+-N and TN removal efficiency could respectively reach 100% and 70.8% under the NLR of 0.2 kg N·m-3·d-1 (COD/N of 3), which was the highest among the published works using SND-based SBBRs in treatment of saline high-strength ammonia nitrogen (low COD/N) wastewater. This study provided new insights in biofilm under hypersaline stress and provided a solution for the treatment of hypersaline high-strength nitrogen (low COD/N) water.


Asunto(s)
Biopelículas , Reactores Biológicos , Desnitrificación , Nitrificación , Nitrógeno , Aguas Residuales , Nitrógeno/metabolismo , Eliminación de Residuos Líquidos/métodos , Salinidad , Oxígeno/metabolismo
5.
J Environ Manage ; 359: 121043, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723497

RESUMEN

Fertilizer-intensive agriculture leads to emissions of reactive nitrogen (Nr), posing threats to climate via nitrous oxide (N2O) and to air quality and human health via nitric oxide (NO) and ammonia (NH3) that form ozone and particulate matter (PM) downwind. Adding nitrification inhibitors (NIs) to fertilizers can mitigate N2O and NO emissions but may stimulate NH3 emissions. Quantifying the net effects of these trade-offs requires spatially resolving changes in emissions and associated impacts. We introduce an assessment framework to quantify such trade-off effects. It deploys an agroecosystem model with enhanced capabilities to predict emissions of Nr with or without the use of NIs, and a social cost of greenhouse gas to monetize the impacts of N2O on climate. The framework also incorporates reduced-complexity air quality and health models to monetize associated impacts of NO and NH3 emissions on human health downwind via ozone and PM. Evaluation of our model against available field measurements showed that it captured the direction of emission changes but underestimated reductions in N2O and overestimated increases in NH3 emissions. The model estimated that, averaged over applicable U.S. agricultural soils, NIs could reduce N2O and NO emissions by an average of 11% and 16%, respectively, while stimulating NH3 emissions by 87%. Impacts are largest in regions with moderate soil temperatures and occur mostly within two to three months of N fertilizer and NI application. An alternative estimate of NI-induced emission changes was obtained by multiplying the baseline emissions from the agroecosystem model by the reported relative changes in Nr emissions suggested from a global meta-analysis: -44% for N2O, -24% for NO and +20% for NH3. Monetized assessments indicate that on an annual scale, NI-induced harms from increased NH3 emissions outweigh (8.5-33.8 times) the benefits of reducing NO and N2O emissions in all agricultural regions, according to model-based estimates. Even under meta-analysis-based estimates, NI-induced damages exceed benefits by a factor of 1.1-4. Our study highlights the importance of considering multiple pollutants when assessing NIs, and underscores the need to mitigate NH3 emissions. Further field studies are needed to evaluate the robustness of multi-pollutant assessments.


Asunto(s)
Agricultura , Fertilizantes , Nitrificación , Óxido Nitroso , Fertilizantes/análisis , Óxido Nitroso/análisis , Contaminantes Atmosféricos/análisis , Ozono/análisis , Amoníaco/análisis , Especies de Nitrógeno Reactivo/análisis , Nitrógeno/análisis , Contaminación del Aire/análisis
6.
Appl Microbiol Biotechnol ; 108(1): 321, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709299

RESUMEN

Most reduced organic matter entering activated sludge systems is particulate (1-100-µm diameter) or colloidal (0.001-1-µm diameter), yet little is known about colonization of particulate organic matter by activated sludge bacteria. In this study, colonization of biopolymers (chitin, keratin, lignocellulose, lignin, and cellulose) by activated sludge bacteria was compared with colonization of glass beads in the presence and absence of regular nutrient amendment (acetate and ammonia). Scanning electron microscopy and quantitative PCR revealed chitin and cellulose were most readily colonized followed by lignin and lignocellulose, while keratin and glass beads were relatively resistant to colonization. Bacterial community profiles on particles compared to sludge confirmed that specific bacterial phylotypes preferentially colonize different biopolymers. Nitrifying bacteria proved adept at colonizing particles, achieving higher relative abundance on particles compared to bulk sludge. Denitrifying bacteria showed similar or lower relative abundance on particles compared to sludge. KEY POINTS: • Some activated sludge bacteria colonize natural biopolymers more readily than others. • Nitrifying bacteria are overrepresented in natural biopolymer biofilm communities. • Biopolymers in wastewater likely influence activated sludge community composition.


Asunto(s)
Bacterias , Aguas del Alcantarillado , Aguas Residuales , Biopolímeros/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Aguas del Alcantarillado/microbiología , Aguas Residuales/microbiología , Lignina/metabolismo , Microscopía Electrónica de Rastreo , Celulosa/metabolismo , Biopelículas/crecimiento & desarrollo , Quitina/metabolismo , Nitrificación , Purificación del Agua/métodos
7.
Nat Commun ; 15(1): 4085, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744837

RESUMEN

Global riverine nitrous oxide (N2O) emissions have increased more than 4-fold in the last century. It has been estimated that the hyporheic zones in small streams alone may contribute approximately 85% of these N2O emissions. However, the mechanisms and pathways controlling hyporheic N2O production in stream ecosystems remain unknown. Here, we report that ammonia-derived pathways, rather than the nitrate-derived pathways, are the dominant hyporheic N2O sources (69.6 ± 2.1%) in agricultural streams around the world. The N2O fluxes are mainly in positive correlation with ammonia. The potential N2O metabolic pathways of metagenome-assembled genomes (MAGs) provides evidence that nitrifying bacteria contain greater abundances of N2O production-related genes than denitrifying bacteria. Taken together, this study highlights the importance of mitigating agriculturally derived ammonium in low-order agricultural streams in controlling N2O emissions. Global models of riverine ecosystems need to better represent ammonia-derived pathways for accurately estimating and predicting riverine N2O emissions.


Asunto(s)
Amoníaco , Compuestos de Amonio , Bacterias , Ecosistema , Óxido Nitroso , Ríos , Óxido Nitroso/metabolismo , Ríos/microbiología , Ríos/química , Compuestos de Amonio/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Amoníaco/metabolismo , Metagenoma , Agricultura , Nitratos/metabolismo , Desnitrificación , Nitrificación , Redes y Vías Metabólicas/genética
8.
J Environ Manage ; 359: 121007, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38703646

RESUMEN

Single-stage microaerobic systems have been proven to be effective for concurrent removal of ammonium and organic carbon from sewage. While mechanistic models derived from activated sludge models (ASMs) have simulated nutrients removal under microaerobic conditions, classic ASMs exhibit limitations in capturing the intricate effects of carbon to nitrogen (C/N) ratio on nitrogen removal performance. To address this issue, a mechanistic model modified from the classic ASMs was proposed to capture the combined inhibitory effects of carbon and ammonium on microaerobic systems. This modified model was established based on experimental data from a single-stage microaerobic reactor encompassing simultaneous nitrification-denitrification and anammox processes. The inhibition coefficient of C/N ratio was integrated into the process rate equations, and its effectiveness was validated through model performance evaluation. Compared to the classic models, the modified one achieved superior predictions for nitrite and nitrate nitrogen concentrations. Simulations revealed that under optimized conditions with a C/N of 4.57 and a dissolved oxygen (DO) of 0.41 mg/L, the system could achieve up to 95.5% of total nitrogen (TN) removal efficiency. Based on the simulation of substrate uptake/production rate, increasing the nitrogen loading rate (NLR) rather than organic loading rate (OLR) was crucial for efficient nitrogen removal. The proposed modified model served as a valuable tool for designing and optimizing similar biological wastewater treatment systems.


Asunto(s)
Carbono , Nitrógeno , Aguas del Alcantarillado , Nitrógeno/metabolismo , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Compuestos de Amonio , Nitrificación , Desnitrificación , Modelos Teóricos
9.
Sci Total Environ ; 931: 172970, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38705293

RESUMEN

Rivers in agricultural countries widely suffer from diffuse nitrate (NO3-) pollution. Although pollution sources and fates of riverine NO3- have been reported worldwide, the driving mechanisms of riverine NO3- pollution associated with mineral dissolution in piedmont zones remain unclear. This study combined hydrogeochemical compositions, stable isotopes (δ18O-NO3-, δ15N-NO3-, δ18O-H2O, and δ2H-H2O), and molecular bioinformation to determine the pollution sources, biogeochemical evolution, and natural attenuation of riverine NO3- in a typical piedmont zone (Qingshui River). High NO3- concentration (37.5 ± 9.44 mg/L) was mainly observed in the agricultural reaches of the river, with ~15.38 % of the samples exceeding the acceptable limit for drinking purpose (44 mg/L as NO3-) set by the World Health Organization. Ammonium inputs, microbial nitrification, and HNO3-induced calcite dissolution were the dominant driving factors that control riverine NO3- contamination in the piedmont zone. Approximately 99.4 % of riverine NO3- contents were derived from NH4+-containing pollutants, consisted of manure & domestic sewage (74.0 % ± 13.0 %), NH4+-synthetic fertilizer (16.1 % ± 8.99 %), and soil organic nitrogen (9.35 % ± 4.49 %). These NH4+-containing pollutants were converted to HNO3 (37.2 ± 9.38 mg/L) by nitrifying bacteria, and then the produced HNO3 preferentially participated in the carbonate (mainly calcite) dissolution, which accounted for 40.0 % ± 12.1 % of the total riverine Ca2+ + Mg2+, also resulting in the rapid release of NO3- into the river water. Thus, microbial nitrification could be a new and non-negligible contributor of riverine NO3- pollution, whereas the involvement of HNO3 in calcite dissolution acted as an accelerator of riverine NO3- pollution. However, denitrification had lesser contribution to natural attenuation for high NO3- pollution. The obtained results indicated that the mitigation of riverine NO3- pollution should focus on the management of ammonium discharges, and the HNO3-induced carbonate dissolution needs to be considered in comprehensively understanding riverine NO3- pollution in piedmont zones.


Asunto(s)
Compuestos de Amonio , Carbonato de Calcio , Monitoreo del Ambiente , Nitratos , Nitrificación , Ríos , Contaminantes Químicos del Agua , China , Ríos/química , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Carbonato de Calcio/química
10.
Chemosphere ; 358: 142216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705403

RESUMEN

As a novel biological wastewater nitrogen removal technology, simultaneous nitrification and denitrification (SND) has gained increasing attention. Iron, serving as a viable material, has been shown to influence nitrogen removal. However, the precise impact of iron on the SND process and microbiome remains unclear. In this study, bioreactors amended with iron of varying valences were evaluated for total nitrogen (TN) removal efficiencies under aerobic conditions. The acclimated control reactor without iron addition (NCR) exhibited high ammonia nitrogen (AN) removal efficiency (98.9%), but relatively low TN removal (78.6%) due to limited denitrification. The reactor containing zero-valent iron (Fe0R) demonstrated the highest SND rate of 92.3% with enhanced aerobic denitrification, albeit with lower AN removal (84.1%). Significantly lower SND efficiencies were observed in reactors with ferrous (Fe2R, 66.3%) and ferric (Fe3R, 58.2%) iron. Distinct bacterial communities involved in nitrogen metabolisms were detected in these bioreactors. The presence of complete ammonium oxidation (comammox) genus Nitrospira and anammox bacteria Candidatus Brocadia characterized efficient AN removal in NCR. The relatively low abundance of aerobic denitrifiers in NCR hindered denitrification. Fe0R exhibited highly abundant but low-efficiency methanotrophic ammonium oxidizers, Methylomonas and Methyloparacoccus, along with diverse aerobic denitrifiers, resulting in lower AN removal but an efficient SND process. Conversely, the presence of Fe2+/Fe3+ constrained the denitrifying community, contributing to lower TN removal efficiency via inefficient denitrification. Therefore, different valent irons modulated the strength of nitrification and denitrification through the assembly of key microbial communities, providing insight for microbiome modulation in nitrogen-rich wastewater treatment.


Asunto(s)
Bacterias , Reactores Biológicos , Desnitrificación , Hierro , Nitrificación , Nitrógeno , Aguas Residuales , Reactores Biológicos/microbiología , Nitrógeno/metabolismo , Aguas Residuales/química , Aguas Residuales/microbiología , Bacterias/metabolismo , Hierro/metabolismo , Hierro/química , Eliminación de Residuos Líquidos/métodos , Microbiota , Aerobiosis , Amoníaco/metabolismo , Compuestos de Amonio/metabolismo
11.
PLoS One ; 19(4): e0299518, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603769

RESUMEN

Wastewater irrigation is a common practice for agricultural systems in arid and semiarid zones, which can help to overcome water scarcity and contribute with nutrient inputs. Ammonia-oxidizing bacteria (AOB) and archaea (AOA) are key in the transformation of NH4+-N in soil and can be affected by variations in soil pH, EC, N and C content, or accumulation of pollutants, derived from wastewater irrigation. The objective of this study was to determine the changes in the ammonia oxidizing communities in agricultural soils irrigated with wastewater for different periods of time (25, 50, and 100 years), and in rainfed soils (never irrigated). The amoA gene encoding for the catalytic subunit of the ammonia monooxygenase was used as molecular reporter; it was quantified by qPCR and sequenced by high throughput sequencing, and changes in the community composition were associated with the soil physicochemical characteristics. Soils irrigated with wastewater showed up to five times more the abundance of ammonia oxidizers (based on 16S rRNA gene relative abundance and amoA gene copies) than those under rainfed agriculture. While the amoA-AOA: amoA-AOB ratio decreased from 9.8 in rainfed soils to 1.6 in soils irrigated for 100 years, indicating a favoring environment for AOB rather than AOA. Further, the community structure of both AOA and AOB changed during wastewater irrigation compared to rainfed soils, mainly due to the abundance variation of certain phylotypes. Finally, the significant correlation between soil pH and the ammonia oxidizing community structure was confirmed, mainly for AOB; being the main environmental driver of the ammonia oxidizer community. Also, a calculated toxicity index based on metals concentrations showed a correlation with AOB communities, while the content of carbon and nitrogen was more associated with AOA communities. The results indicate that wastewater irrigation influence ammonia oxidizers communities, manly by the changes in the physicochemical environment.


Asunto(s)
Amoníaco , Suelo , Suelo/química , Amoníaco/química , Aguas Residuales , ARN Ribosómico 16S , Archaea/genética , Oxidación-Reducción , Microbiología del Suelo , Filogenia , Nitrificación
12.
J Hazard Mater ; 470: 134301, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38626681

RESUMEN

Carbendazim residue has been widely concerned, and nitrous oxide (N2O) is one of the dominant greenhouse gases. Microbial metabolisms are fundamental processes of removing organic pollutant and producing N2O. Nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) can change soil abiotic properties and microbial communities and simultaneously affect carbendazim degradation and N2O emission. In this study, the comprehensive linkages among carbendazim residue, N2O emission and microbial community after the DMPP application were quantified under different soil moistures. Under 90% WHC, the DMPP application significantly reduced carbendazim residue by 54.82% and reduced soil N2O emission by 98.68%. The carbendazim residue was negatively related to soil ammonium nitrogen (NH4+-N), urease activity, and ratios of Bacteroidetes, Thaumarchaeota and Nitrospirae under 90% WHC, and the N2O emission was negatively related to NH4+-N content and relative abundance of Acidobacteria under the 60% WHC condition. In the whole (60% and 90% WHC together), the carbendazim residue was negatively related to the abundances of nrfA (correlation coefficient = -0.623) and nrfH (correlation coefficient = -0.468) genes. The hao gene was negatively related to the carbendazim residue but was positively related to the N2O emission rate. The DMPP application had the promising potential to simultaneously reduce ecological risks of fungicide residue and N2O emission via altering soil abiotic properties, microbial activities and communities and functional genes. ENVIRONMENTAL IMPLICATION: Carbendazim was a high-efficiency fungicide that was widely used in agricultural production. Nitrous oxide (N2O) is the third most important greenhouse gas responsible for global warming. The 3, 4-dimethylpyrazole phosphate (DMPP) is an effective nitrification inhibitor widely used in agricultural production. This study indicated that the DMPP application reduced soil carbendazim residues and N2O emission. The asymmetric linkages among the carbendazim residue, N2O emission, microbial community and functional gene abundance were regulated by the DMPP application and soil moisture. The results could broaden our horizons on the utilizations DMPP in decreasing fungicide risks and N2O emission.


Asunto(s)
Carbamatos , Fungicidas Industriales , Microbiota , Nitrificación , Óxido Nitroso , Pirazoles , Microbiología del Suelo , Contaminantes del Suelo , Óxido Nitroso/análisis , Contaminantes del Suelo/análisis , Microbiota/efectos de los fármacos , Bencimidazoles , Suelo/química , Bacterias/genética , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Bacterias/clasificación , Agua/química
13.
Sci Total Environ ; 930: 172715, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38663595

RESUMEN

Antibiotics and quaternary ammonium compounds (QACs) usually co-exist in wastewater treatment plants. Hence, three sequencing batch reactors were established and named as R1, R2 and R3, to investigate the effects of individual and combined exposure of different concentrations of ciprofloxacin (CIP) (0.2, 1.0 and 2.0 mg/L) and dialkyldimethyl ammonium compound (DADMAC) (0.4, 2.0 and 4.0 mg/L) on the performance, microbial community structures and resistance genes (RGs) in nitrifying system during 150 days. Results showed that CIP had a slight effect on ammonia oxidation activity, while 2.0 and 4.0 mg/L DADAMAC could obviously inhibit it, and the combination of CIP and DADMAC had a synergistic inhibitory effect. Besides, both CIP and DADMAC caused partial nitrification, and the order of nitrite accumulation rate was ranked as R3 > R2 > R1. The combination of CIP and DADMAC had an antagonistic effect on the increase of sludge particle size and α-Helix/(ß-Sheet + Random coil) was lowest in R3 (0.40). The combination of CIP and DADMAC synergistically stimulated most intracellular RGs in sludge, and the relative abundances of target RGs (e.g., qacEdelta1-01, qacH-01 and qnrS) at the end of operation in R3 were increased by 4.61-18.19 folds compared with those in CK, which were 1.34-5.57 folds higher than the R1 and R2. Moreover, the combination of CIP and DADMAC also promoted the transfer of RGs from sludge to water and enriched more potential hosts of RGs, further promoting the spread of RGs in nitrifying system. Thus, the combined pollution of CIP and DADMAC in wastewaters should attract more attentions.


Asunto(s)
Antibacterianos , Ciprofloxacina , Nitrificación , Eliminación de Residuos Líquidos , Ciprofloxacina/farmacología , Nitrificación/efectos de los fármacos , Antibacterianos/farmacología , Eliminación de Residuos Líquidos/métodos , Compuestos de Amonio Cuaternario , Contaminantes Químicos del Agua , Aguas Residuales , Reactores Biológicos , Farmacorresistencia Bacteriana/genética
14.
Chemosphere ; 357: 142068, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636921

RESUMEN

Due to limited land availability in municipal wastewater treatment plants, integrated fixed-film activated sludge (IFAS) technology offers significant advantages in improving nitrogen removal performance and treatment capacity. In this study, two systems, IFAS and Anaerobic-Anoxic-Oxic Activated sludge process (AAO), were compared by adjusting parameters such as hydraulic retention time (HRT), nitrifying solution recycle ratio, sludge recycle ratio, and dissolved oxygen (DO). The objective was to investigate pollutant removal capacity and differences in microbial community composition between the two systems. The study showed that, at an HRT of 12 h, the IFAS system exhibited an average increase of 5.76%, 8.85%, and 12.79% in COD, NH4+-N, and TN removal efficiency respectively, compared to the AAO system at an HRT of 16 h. The TP concentration in the IFAS system reached 0.82 mg/L without the use of additives. The IFAS system demonstrated superior effluent results under lower operating conditions of HRT, nitrification solution recycle ratio, and DO. The 16S rDNA analysis revealed higher abundance of denitrification-related associated flora, including Proteobacteria, Bacteroidetes, and Planctomycetota, in the IFAS system compared to the AAO system. Similarities were observed between microorganisms attached to the media and activated sludge in the anaerobic, anoxic, and oxic tanks. q-PCR analysis indicated that the incorporation of filler material in the IFAS system resulted in similar abundance of nitrifying bacteria genes on the biofilm as in the oxic tank. Additionally, denitrifying genes showed higher levels due to aeration scouring and the presence of alternating aerobic-anaerobic environments on the biofilm surface, enhancing nitrogen removal efficiency.


Asunto(s)
Reactores Biológicos , Nitrógeno , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Nitrógeno/metabolismo , Nitrógeno/análisis , Reactores Biológicos/microbiología , Anaerobiosis , Nitrificación , Desnitrificación , Aguas Residuales/química , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Oxígeno/análisis , Oxígeno/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo
15.
Bioresour Technol ; 401: 130704, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636879

RESUMEN

In this study, a SNAD-SBBR process was implemented to achieve ammonia removal and carbon reduction of mature landfill leachate under extremely low dissolved oxygen conditions (0.051 mg/L) for a continuous operation of 266 days. The process demonstrated excellent removal performance, with ammonia nitrogen removal efficiency reaching 100 %, total nitrogen removal efficiency reaching 87.56 %, and an average removal rate of 0.180 kg/(m3·d). The recalcitrant organic compound removal efficiency reached 34.96 %. Nitrogen mass balance analysis revealed that the Anammox process contributed to approximately 98.1 % of the nitrogen removal. Candidatus Kuenenia achieved a relative abundance of 1.49 % in the inner layer of the carrier. In the SNAD-SBBR system, the extremely low DO environment created by the highly efficient partial nitrification stage enabled the coexistence of AnAOB, denitrifying bacteria, and Nitrosomonas, synergistically achieving ammonia removal and carbon reduction. Overall, the SNAD-SBBR process exhibits low-cost and high-efficiency characteristics, holding tremendous potential for landfill leachate treatment.


Asunto(s)
Carbono , Desnitrificación , Nitrificación , Nitrógeno , Oxígeno , Contaminantes Químicos del Agua , Oxígeno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Amoníaco/metabolismo , Reactores Biológicos , Oxidación-Reducción , Biodegradación Ambiental , Purificación del Agua/métodos , Bacterias/metabolismo , Anaerobiosis
16.
Bioresour Technol ; 401: 130735, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670293

RESUMEN

Municipal wastewater treatment plants are mostly based on traditional activated sludge (AS) processes. These systems are characterised by major drawbacks: high energy consumption, large amount of excess sludge and high greenhouse gases emissions. Treatment through microalgal-bacterial consortia (MBC) is an alternative and promising solution thanks to lower energy consumption and emissions, biomass production and water sanitation. Here, microbial difference between a traditional anaerobic sludge (AS) and a consortium-based system (photo-sequencing batch reactor (PSBR)) with the same wastewater inlet were characterised through shotgun metagenomics. Stable nitrification was achieved in the PSBR ensuring ammonium removal > 95 % and significant total nitrogen removal thanks to larger flocs enhancing denitrification. The new system showed enhanced pathogen removal, a higher abundance of photosynthetic and denitrifying microorganisms with a reduced emissions potential identifying this novel PSBR as an effective alternative to AS.


Asunto(s)
Bacterias , Reactores Biológicos , Microalgas , Nitrógeno , Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/microbiología , Microalgas/metabolismo , Aguas Residuales/microbiología , Aguas Residuales/química , Reactores Biológicos/microbiología , Bacterias/metabolismo , Consorcios Microbianos/fisiología , Purificación del Agua/métodos , Desnitrificación , Eliminación de Residuos Líquidos/métodos , Nitrificación
17.
Chemosphere ; 357: 142034, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615962

RESUMEN

Sulfonamides, quinolones, tetracyclines, and macrolides are the most prevalent classes of antibiotics used in both medical treatment and agriculture. The misuse of antibiotics leads to their extensive dissemination in the environment. These antibiotics can modify the structure and functionality of microbial communities, consequently impacting microbial-mediated nitrogen cycling processes including nitrification, denitrification, and anammox. They can change the relative abundance of nirK/norB contributing to the emission of nitrous oxide, a potent greenhouse gas. This review provides a comprehensive examination of the presence of these four antibiotic classes across different environmental matrices and synthesizes current knowledge of their effects on the nitrogen cycle, including the underlying mechanisms. Such an overview is crucial for understanding the ecological impacts of antibiotics and for guiding future research directions. The presence of antibiotics in the environment varies widely, with significant differences in concentration and type across various settings. We conducted a comprehensive review of over 70 research articles that compare various aspects including processes, antibiotics, concentration ranges, microbial sources, experimental methods, and mechanisms of influence. Antibiotics can either inhibit, have no effect, or even stimulate nitrification, denitrification, and anammox, depending on the experimental conditions. The influence of antibiotics on the nitrogen cycle is characterized by dose-dependent responses, primarily inhibiting nitrification, denitrification, and anammox. This is achieved through alterations in microbial community composition and diversity, carbon source utilization, enzyme activities, electron transfer chain function, and the abundance of specific functional enzymes and antibiotic resistance genes. These alterations can lead to diminished removal of reactive nitrogen and heightened nitrous oxide emissions, potentially exacerbating the greenhouse effect and related environmental issues. Future research should consider diverse reaction mechanisms and expand the scope to investigate the combined effects of multiple antibiotics, as well as their interactions with heavy metals and other chemicals or organisms.


Asunto(s)
Antibacterianos , Desnitrificación , Nitrificación , Ciclo del Nitrógeno , Óxido Nitroso , Antibacterianos/farmacología , Óxido Nitroso/análisis , Óxido Nitroso/metabolismo , Nitrificación/efectos de los fármacos , Nitrógeno/metabolismo , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Microbiota/efectos de los fármacos
18.
J Environ Manage ; 359: 120969, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38678900

RESUMEN

Nitrification inhibitors (NIs) and drip irrigation are recommended to mitigate trace gas emissions from agricultural soils. However, studies comparing the effect of different NIs on the release of trace gases from soils with contrasting textures under subsurface (SBD) and surface (SD) drip irrigation are lacking. Therefore, this study aimed to assess the effectiveness of three NIs in mitigating nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) emissions from two soils with different textures under SBD, with pipe buried in 10 cm depth, and SD. Two greenhouse experiments were carried out with silt loam and loamy sand soil textures cultivated with wheat under SBD and SD to assess the effectiveness of the NIs Dicyandiamide (DCD), 3,4-Dimethylpyrazole phosphate (DMPP), and 3-Methylpyrazol combined with Triazol (MP + TZ). Ammonium sulfate was applied at a rate of 0.18 g N kg soil-1. The measured variables were daily and cumulative N2O-N, CO2-C, and CH4-C emissions, as well as soil NH4+-N and NO3--N concentrations. The NIs and SBD had additive effects on reducing N2O-N emissions in the silt loam, but not in the loamy sand soil texture. Under SBD, total N2O-N emissions were 44% and 52% lower than under SD in the silt loam and loamy sand soil textures, respectively. Moreover, DMPP kept the highest NH4+-N concentrations and promoted the lowest N2O-N release. CO2-C and CH4-C total emissions were not affected by the treatments. Our findings supported the hypothesis that SBD decreases N2O-N emissions relative to SD. Among the investigated NIs, DMPP has the highest effectiveness in retarding nitrification and mitigating N2O-N release under the studied treatments. Finally, in coarse-textured soils, the use of NIs could be sufficient to significantly abate N2O-N emissions.


Asunto(s)
Dióxido de Carbono , Nitrificación , Óxido Nitroso , Suelo , Suelo/química , Óxido Nitroso/análisis , Dióxido de Carbono/análisis , Metano , Riego Agrícola , Pirazoles/química
19.
Chemosphere ; 358: 142156, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679172

RESUMEN

Water outages caused by elevated ammonium (NH4+-N) levels are a prevalent problem faced by conventional raw water treatment plants in developing countries. A treatment solution requires a short hydraulic retention time (HRT) to overcome nitrification rate limitation in oligotrophic conditions. In this study, the performance of polluted raw water treatment using a green downflow sponge biofilm (DSB) technology was evaluated. We operated two DSB reactors, DSB-1 and DSB-2 under different NH4+-N concentration ranges (DSB-1: 3.2-5.0 mg L-1; DSB-2: 1.7-2.6 mg L-1) over 360 days and monitored their performance under short HRT (60 min, 30 min, 20 min, and 15 min). The experimental results revealed vertical segregation of organic removal in the upper reactor depths and nitrification in the lower depths. Under the shortest HRT of 15 min, both DSB reactors achieved stable NH4+-N and chemical oxygen demand removal (≥95%) and produced minimal effluent nitrite (NO2--N). DSB system could facilitate complete NH4+-N oxidation to nitrate (NO3--N) without external aeration energy requirement. The 16S rRNA sequencing data revealed that nitrifying bacteria Nitrosomonas and Nitrospira in the reactor were stratified. Putative comammox bacteria with high ammonia affinity was successfully enriched in DSB-2 operating at a lower NH4+-N loading rate, which is advantageous in oligotrophic treatment. This study suggests that a high hydraulic rate DSB system with efficient ammonia removal could incorporate ammonia treatment capability into polluted raw water treatment process and ensure safe water supply in many developing countries.


Asunto(s)
Biopelículas , Reactores Biológicos , Nitrificación , Reactores Biológicos/microbiología , Compuestos de Amonio/metabolismo , Purificación del Agua/métodos , Cinética , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Microbiota , Nitritos/metabolismo , Bacterias/metabolismo , Bacterias/genética , ARN Ribosómico 16S/genética , Nitratos/metabolismo
20.
Chemosphere ; 358: 142093, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679176

RESUMEN

COMplete AMMonia OXidizer (comammox) refers to microorganisms that have the function of oxidizing NH4+ to NO3- alone. The discovery of comammox overturned the two-step theory of nitrification in the past century and triggered many important scientific questions about the nitrogen cycle in nature. This comprehensive review delves into the origin and discovery of comammox, providing a detailed account of its detection primers, clades metabolic variations, and environmental factors. An in-depth analysis of the ecological niche differentiation among ammonia oxidizers was also discussed. The intricate role of comammox in anammox systems and the relationship between comammox and nitrogen compound emissions are also discussed. Finally, the relationship between comammox and anammox is displayed, and the future research direction of comammox is prospected. This review reveals the metabolic characteristics and distribution patterns of comammox in ecosystems, providing new perspectives for understanding nitrogen cycling and microbial ecology. Additionally, it offers insights into the potential application value and prospects of comammox.


Asunto(s)
Amoníaco , Bacterias , Ciclo del Nitrógeno , Nitrógeno , Oxidación-Reducción , Nitrógeno/metabolismo , Amoníaco/metabolismo , Bacterias/metabolismo , Bacterias/genética , Nitrificación , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...