Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.081
Filtrar
1.
Biosens Bioelectron ; 257: 116345, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692247

RESUMEN

Nitrite (NO2-) is present in a variety of foods, but the excessive intake of NO2- can indirectly lead to carcinogenic, teratogenic, mutagenicity and other risks to the human body. Therefore, the detection of NO2- is crucial for maintaining human health. In this study, an integrated array sensor for NO2- detection is developed based on molybdenum single atom material (IMSMo-SAC) using high-resolution electrohydrodynamic (EHD) printing technology. The sensor comprises three components: a printed electrode array, multichannels designed on polydimethylsiloxane (PDMS) and an electronic signal process device with bluetooth. By utilizing Mo-SAC to facilitate electron transfer during the redox reaction, rapid and efficient detection of NO2- can be achieved. The sensor has a wide linear range of 0.1 µM-107.8 mM, a low detection limit of 33 nM and a high sensitivity of 0.637 mA-1mM-1 cm-2. Furthermore, employing this portable array sensor allows simultaneously measurements of NO2- concentrations in six different foods samples with acceptable recovery rates. This array sensor holds great potential for detecting of small molecules in various fields.


Asunto(s)
Técnicas Biosensibles , Diseño de Equipo , Análisis de los Alimentos , Límite de Detección , Molibdeno , Nitritos , Molibdeno/química , Técnicas Biosensibles/instrumentación , Nitritos/análisis , Análisis de los Alimentos/instrumentación , Humanos , Dimetilpolisiloxanos/química , Electrodos , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Contaminación de Alimentos/análisis
2.
J Environ Manage ; 359: 121009, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718600

RESUMEN

Nitrification-denitrification process has failed to meet wastewater treatment standards. The completely autotrophic nitrite removal (CANON) process has a huge advantage in the field of low carbon/nitrogen wastewater nitrogen removal. However, slow start-up and system instability limit its applications. In this study, the time of the start-up CANON process was reduced by using bio-rope as loading materials. The establishing of graded dissolved oxygen improved the stability of the CANON process and enhanced the stratification effect between functional microorganisms. Microbial community structure and the abundance of nitrogen removal functional genes are also analyzed. The results showed that the CANON process was initiated within 75 days in the complete absence of anaerobic ammonium oxidizing bacteria (AnAOB) inoculation. The ammonium and nitrogen removal efficiencies of CANON process reached to 94.45% and 80.76% respectively. The results also showed that the relative abundance of nitrogen removal bacterial in the biofilm gradually increases with the dissolved oxygen content in the solution decreases. In contrast, the relative abundance of ammonia oxidizing bacteria was positively correlated with the dissolved oxygen content in the solution. The relative abundance of g__Candidatus_Brocadia in biofilm was 15.56%, and while g__Nitrosomonas was just 0.6613%. Metagenomic analysis showed that g__Candidatus_Brocadia also contributes 66.37% to the partial-nitrification functional gene Hao (K10535). This study presented a new idea for the cooperation between partial-nitrification and anammox, which improved the nitrogen removal system stability.


Asunto(s)
Procesos Autotróficos , Nitritos , Nitrógeno , Aguas Residuales , Nitrógeno/metabolismo , Nitritos/metabolismo , Nitrificación , Desnitrificación , Bacterias/metabolismo , Bacterias/genética , Eliminación de Residuos Líquidos/métodos , Biopelículas , Reactores Biológicos , Compuestos de Amonio/metabolismo
3.
Appl Microbiol Biotechnol ; 108(1): 334, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739161

RESUMEN

Aerobic granular sludge (AGS) and conventional activated sludge (CAS) are two different biological wastewater treatment processes. AGS consists of self-immobilised microorganisms that are transformed into spherical biofilms, whereas CAS has floccular sludge of lower density. In this study, we investigated the treatment performance and microbiome dynamics of two full-scale AGS reactors and a parallel CAS system at a municipal WWTP in Sweden. Both systems produced low effluent concentrations, with some fluctuations in phosphate and nitrate mainly due to variations in organic substrate availability. The microbial diversity was slightly higher in the AGS, with different dynamics in the microbiome over time. Seasonal periodicity was observed in both sludge types, with a larger shift in the CAS microbiome compared to the AGS. Groups important for reactor function, such as ammonia-oxidising bacteria (AOB), nitrite-oxidising bacteria (NOB), polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs), followed similar trends in both systems, with higher relative abundances of PAOs and GAOs in the AGS. However, microbial composition and dynamics differed between the two systems at the genus level. For instance, among PAOs, Tetrasphaera was more prevalent in the AGS, while Dechloromonas was more common in the CAS. Among NOB, Ca. Nitrotoga had a higher relative abundance in the AGS, while Nitrospira was the main nitrifier in the CAS. Furthermore, network analysis revealed the clustering of the various genera within the guilds to modules with different temporal patterns, suggesting functional redundancy in both AGS and CAS. KEY POINTS: • Microbial community succession in parallel full-scale aerobic granular sludge (AGS) and conventional activated sludge (CAS) processes. • Higher periodicity in microbial community structure in CAS compared to in AGS. • Similar functional groups between AGS and CAS but different composition and dynamics at genus level.


Asunto(s)
Bacterias , Reactores Biológicos , Microbiota , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Reactores Biológicos/microbiología , Aerobiosis , Suecia , Glucógeno/metabolismo , Amoníaco/metabolismo , Nitritos/metabolismo , Nitratos/metabolismo , Fosfatos/metabolismo , Purificación del Agua/métodos
4.
Braz J Biol ; 84: e276323, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597517

RESUMEN

Nitrogen compounds, particularly ammonium, nitrite and nitrate, are a major problem in shrimp production systems. These compounds can accumulate in the aquatic environment and reach harmful or even lethal levels. Thus, monitoring the levels of nitrogenous compounds such as ammonia and studying their effects on the animals are essential. One tool used for this purpose is acute toxicity testing based on the evaluation of LC50 values. Furthermore, tools that can help improve the performance of aquatic organisms in culture are needed. The present study aimed to evaluate the effect of salinity on the toxicity of total ammonia to postlarvae of the freshwater prawn Macrobrachium rosenbergii. For this purpose, acute toxicity testing (LC50-96h) was performed using 540 postlarvae with a mean weight of 0.13 g and a mean total length of 2.47 cm, divided into 54 experimental units of two liters each. A completely randomized design in a 3×6 factorial scheme was used, combining three salinities (0, 5, and 10 g.L-1) and six total ammonia concentrations (0, 8, 16, 32, 64, and 128 mg.L-1), with three replicates per combination. The LC50 values for M. rosenbergii postlarvae at 24, 48, 72, and 96 h and their respective confidence intervals (95%) were estimated using the trimmed Spearman-Karber method. The results showed that salinities of 5 or 10 g.L-1 did not reduce the acute toxicity of total ammonia.


Asunto(s)
Amoníaco , Palaemonidae , Animales , Amoníaco/toxicidad , Salinidad , Nitritos , Nitratos
5.
Chemosphere ; 355: 141838, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561159

RESUMEN

MXene is recognized as a promising catalyst for versatile applications due to its abundant metal sites, physicochemical properties, and structural formation. This comprehensive review offers an in-depth analysis of the incorporation of carbon into MXene, resulting in the formation of MXene-carbon-based composites (MCCs). Pristine MXene exhibits numerous outstanding characteristics, such as its atomically thin 2D structure, hydrophilic surface nature, metallic electrical conductivity, and substantial specific surface area. The introduction of carbon guides the assembly of MCCs through electrostatic self-assembly, pairing positively charged carbon with negatively charged MXene. These interactions result in increased interlayer spacing, reduced ion/electron transport distances, and enhanced surface hydrophilicity. Subsequent sections delve into the synthesis methods for MCCs, focusing on MXene integrated with various carbon structures, including 0D, 1D, 2D, and 3D carbon. Comprehensive discussions explore the distinctive properties of MCCs and the unique advantages they offer in each application domain, emphasizing the contributions and advancements they bring to specific fields. Furthermore, this comprehensive review addresses the challenges encountered by MCCs across different applications. Through these analyses, the review promotes a deeper understanding of exceptional characteristics and potential applications of MCCs. Insights derived from this review can serve as guidance for future research and development efforts, promoting the widespread utilization of MCCs across a broad spectrum of disciplines and spurring future innovations.


Asunto(s)
Carbono , Electrones , Nitritos , Elementos de Transición , Transporte de Electrón , Conductividad Eléctrica
6.
J Environ Manage ; 357: 120843, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588621

RESUMEN

Nitrite-dependent anaerobic methane oxidation (n-DAMO) is a novel denitrification process that simultaneously further removes and utilizes methane from anaerobic effluent from wastewater treatment plants. However, the metabolic activity of n-DAMO bacteria is relative low for practical application. In this study, conductive magnetite was added into lab-scale sequencing batch reactor inoculated with n-DAMO bacteria to study the influence on n-DAMO process. With magnetite amendment, the nitrogen removal rate could reach 34.9 mg N·L-1d-1, nearly 2.5 times more than that of control group. Magnetite significantly facilitated the interspecies electron transfer and built electrically connected community with high capacitance. Enzymatic activities of electron transport chain were significantly elevated. Functional gene expression and enzyme activities associated with nitrogen and methane metabolism had been highly up-regulated. These results not only propose a useful strategy in n-DAMO application but also provide insights into the stimulating mechanism of magnetite in n-DAMO process.


Asunto(s)
Óxido Ferrosoférrico , Nitritos , Nitritos/metabolismo , Transporte de Electrón , Anaerobiosis , Metano , Electrones , Desnitrificación , Oxidación-Reducción , Bacterias/metabolismo , Bacterias Anaerobias/metabolismo , Nitrógeno/metabolismo , Reactores Biológicos/microbiología
7.
Environ Sci Technol ; 58(15): 6835-6842, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38570313

RESUMEN

Artificial ion channel membranes hold high promise in water treatment, nanofluidics, and energy conversion, but it remains a great challenge to construct such smart membranes with both reversible ion-gating capability and desirable ion selectivity. Herein, we constructed a smart MXene-based membrane via p-phenylenediamine functionalization (MLM-PPD) with highly stable and aligned two-dimensional subnanochannels, which exhibits reversible ion-gating capability and ultrahigh metal ion selectivity similar to biological ion channels. The pH-sensitive groups within the MLM-PPD channel confers excellent reversible Mg2+-gating capability with a pH-switching ratio of up to 100. The mono/divalent metal-ion selectivity up to 1243.8 and 400.9 for K+/Mg2+ and Li+/Mg2+, respectively, outperforms other reported membranes. Theoretical calculations combined with experimental results reveal that the steric hindrance and stronger PPD-ion interactions substantially enhance the energy barrier for divalent metal ions passing through the MLM-PPD, and thus leading to ultrahigh mono/divalent metal-ion selectivity. This work provides a new strategy for developing artificial-ion channel membranes with both reversible ion-gating functionality and high-ion selectivity for various applications.


Asunto(s)
Canales Iónicos , Metales , Nitritos , Elementos de Transición , Iones , Cationes Bivalentes , Membranas Artificiales , Concentración de Iones de Hidrógeno
8.
Sci Rep ; 14(1): 7766, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565927

RESUMEN

The occurrence of major depressive disorder is widespread and can be observed in individuals belonging to all societies. It has been suggested that changes in the NO pathway and heightened oxidative stress may play a role in developing this condition. Anethole is a diterpene aromatic compound found in the Umbelliferae, Apiaceae, and Schisandraceae families. It has potential pharmacological effects like antioxidant, anxiolytic, analgesic, anti-inflammatory, antidiabetic, gastroprotective, anticancer, estrogenic, and antimicrobial activities. This study aimed to investigate the potential antidepressant properties of Anethole in a mouse model experiencing maternal separation stress while also examining its impact on oxidative stress and nitrite levels. The research involved the participation of 40 male NMRI mice, separated into five distinct groups to conduct the study. The control group was administered 1 ml/kg of normal saline, while the MS groups were given normal saline and Anethole at 10, 50, and 100 mg/kg doses. The study comprised various behavioural tests, including the open field test (OFT), forced swimming test (FST), and splash test, to assess the effects of Anethole on the mice. In addition to the behavioural tests, measurements were taken to evaluate the total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels in the hippocampus of the mice. According to the findings, maternal separation stress (MS) led to depressive-like conduct in mice, including a rise in immobility duration during the FST and a reduction in the duration of grooming behaviour in the splash test. Additionally, the results indicated that MS correlated with an increase in the levels of MDA and nitrite and a reduction in the TAC in the hippocampus. However, the administration of Anethole resulted in an increase in grooming activity time during the splash test and a decrease in immobility time during the FST. Anethole also exhibited antioxidant characteristics, as demonstrated by its ability to lower MDA and nitrite levels while increasing the TAC in the hippocampus. The results suggest that Anethole may have an antidepressant-like impact on mice separated from their mothers, likely partly due to its antioxidant properties in the hippocampus.


Asunto(s)
Derivados de Alilbenceno , Anisoles , Antioxidantes , Trastorno Depresivo Mayor , Humanos , Ratones , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Nitritos/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Privación Materna , Solución Salina/farmacología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Estrés Oxidativo , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Conducta Animal
9.
Water Environ Res ; 96(4): e11017, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565318

RESUMEN

This study explored the implementation of mainstream partial denitrification with anammox (PdNA) in the second anoxic zone of a wastewater treatment process in an integrated fixed film activated sludge (IFAS) configuration. A pilot study was conducted to compare the use of methanol and glycerol as external carbon sources for an IFAS PdNA startup, with a goal to optimize nitrogen removal while minimizing carbon usage. The study also investigated the establishment of anammox bacteria on virgin carriers in IFAS reactors without the use of seeding, and it is the first IFAS PdNA startup to use methanol as an external carbon source. The establishment of anammox bacteria was confirmed in both reactors 102 days after startup. Although the glycerol-fed reactor achieved a higher steady-state maximum ammonia removal rate because of anammox bacteria (1.6 ± 0.3 g/m2/day) in comparison with the methanol-fed reactor (1.2 ± 0.2 g/m2/day), both the glycerol- and methanol-fed reactors achieved similar average in situ ammonia removal rates of 0.39 ± 0.2 g/m2/day and 0.40 ± 0.2 g/m2/day, respectively. Additionally, when the upstream ammonia versus NOx (AvN) control system maintained an ideal ratio of 0.40-0.50 g/g, the methanol-fed reactor attained a lower average effluent TIN concentration (3.50 ± 1.2 mg/L) than the glycerol-fed reactor (4.43 ± 1.6 mg/L), which was prone to elevated nitrite concentrations in the effluent. Overall, this research highlights the potential for PdNA in IFAS configurations as an efficient and cost-saving method for wastewater treatment, with methanol as a viable carbon source for the establishment of anammox bacteria. PRACTITIONER POINTS: Methanol is an effective external carbon source for an anammox startup that avoids the need for costly alternative carbon sources. The methanol-fed reactor demonstrated higher TIN removal compared with the glycerol-fed reactor because of less overproduction of nitrite. Anammox bacteria was established in an IFAS reactor without seeding and used internally stored carbon to reduce external carbon addition. Controlling the influent ammonia versus NOx (AvN) ratio between 0.40 and 0.50 g/g allowed for low and stable TIN effluent conditions.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Amoníaco , Desnitrificación , Metanol , Glicerol , Nitritos , Proyectos Piloto , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos/microbiología , Bacterias , Nitrógeno , Oxidación-Reducción
10.
Sci Adv ; 10(15): eadl3262, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38598619

RESUMEN

Contact lenses (CLs) are prone to adhesion and invasion by pollutants and pathogenic bacteria, leading to infection and inflammatory diseases. However, the functionalization of CL (biological functions such as anti-fouling, antibacterial, and anti-inflammatory) and maintaining its transparency still face great challenges. In this work, as a member of the MXenes family, vanadium carbide (V2C) is modified onto CL via a water transfer printing method after the formation of a tightly arranged uniform film at the water surface under the action of the Marangoni effect. The coating interface is stable owing to the electrostatic forces. The V2C-modified CL (V2C@CL) maintains optical clarity while providing good biocompatibility, strong antioxidant properties, and anti-inflammatory activities. In vitro antibacterial experiments indicate that V2C@CL shows excellent performance in bacterial anti-adhesion, sterilization, and anti-biofilm formation. Last, V2C@CL displays notable advantages of bacteria elimination and inflammation removal in infectious keratitis treatment.


Asunto(s)
Infecciones Bacterianas , Lentes de Contacto , Humanos , Antibacterianos/farmacología , Antiinflamatorios , Bacterias , Lentes de Contacto/microbiología , Inflamación , Nitritos , Elementos de Transición , Agua , Impresión
11.
Commun Biol ; 7(1): 449, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605091

RESUMEN

Nitrite-oxidizing bacteria (NOB) are important nitrifiers whose activity regulates the availability of nitrite and dictates the magnitude of nitrogen loss in ecosystems. In oxic marine sediments, ammonia-oxidizing archaea (AOA) and NOB together catalyze the oxidation of ammonium to nitrate, but the abundance ratios of AOA to canonical NOB in some cores are significantly higher than the theoretical ratio range predicted from physiological traits of AOA and NOB characterized under realistic ocean conditions, indicating that some NOBs are yet to be discovered. Here we report a bacterial phylum Candidatus Nitrosediminicolota, members of which are more abundant than canonical NOBs and are widespread across global oligotrophic sediments. Ca. Nitrosediminicolota members have the functional potential to oxidize nitrite, in addition to other accessory functions such as urea hydrolysis and thiosulfate reduction. While one recovered species (Ca. Nitrosediminicola aerophilus) is generally confined within the oxic zone, another (Ca. Nitrosediminicola anaerotolerans) additionally appears in anoxic sediments. Counting Ca. Nitrosediminicolota as a nitrite-oxidizer helps to resolve the apparent abundance imbalance between AOA and NOB in oxic marine sediments, and thus its activity may exert controls on the nitrite budget.


Asunto(s)
Ecosistema , Nitritos , Bacterias/genética , Oxidación-Reducción , Sedimentos Geológicos/microbiología
12.
Artículo en Chino | MEDLINE | ID: mdl-38677993

RESUMEN

Nitrite has high toxicity and is commonly found in food poisoning. Poisoned patients may experience cyanosis of the skin and lips, nausea, vomiting, and difficulty breathing or coma may occur in severe cases. Four cases of nitrite poisoning patients who were transferred from primary hospitals to the Third Affiliated Hospital of Gansu University of Chinese Medicine, the First People's Hospital of Baiyin were reported. After symptomatic supportive treatment with special antidote methylene blue, oxygen inhalation, blood purification, etc., the patients recovered and were discharged after 4 days of treatment.


Asunto(s)
Enfermedades Transmitidas por los Alimentos , Nitritos , Humanos , Masculino , Adulto , Femenino , Nitritos/envenenamiento , Persona de Mediana Edad
13.
Nutrients ; 16(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38674845

RESUMEN

Nitrate (NO3-) obtained from the diet is converted to nitrite (NO2-) and subsequently to nitric oxide (NO) within the body. Previously, we showed that porcine eye components contain substantial amounts of nitrate and nitrite that are similar to those in blood. Notably, cornea and sclera exhibited the capability to reduce nitrate to nitrite. To gain deeper insights into nitrate metabolism in porcine eyes, our current study involved feeding pigs either NaCl or Na15NO3 and assessing the levels of total and 15N-labeled NO3-/NO2- in various ocular tissues. Three hours after Na15NO3 ingestion, a marked increase in 15NO3- and 15NO2- was observed in all parts of the eye; in particular, the aqueous and vitreous humor showed a high 15NO3- enrichment (77.5 and 74.5%, respectively), similar to that of plasma (77.1%) and showed an even higher 15NO2- enrichment (39.9 and 35.3%, respectively) than that of plasma (19.8%). The total amounts of NO3- and NO2- exhibited patterns consistent with those observed in 15N analysis. Next, to investigate whether nitrate or nitrite accumulate proportionally after multiple nitrate treatments, we measured nitrate and nitrite contents after supplementing pigs with Na15NO3 for five consecutive days. In both 15N-labeled and total nitrate and nitrite analysis, we did not observe further accumulation of these ions after multiple treatments, compared to a single treatment. These findings suggest that dietary nitrate supplementation exerts a significant influence on nitrate and nitrite levels and potentially NO levels in the eye and opens up the possibility for the therapeutic use of dietary nitrate/nitrite to enhance or restore NO levels in ocular tissues.


Asunto(s)
Suplementos Dietéticos , Nitratos , Nitritos , Animales , Nitratos/metabolismo , Porcinos , Nitritos/metabolismo , Ojo/metabolismo , Isótopos de Nitrógeno , Córnea/metabolismo , Dieta , Humor Acuoso/metabolismo , Cuerpo Vítreo/metabolismo , Óxido Nítrico/metabolismo , Alimentación Animal/análisis
14.
Chemosphere ; 356: 141883, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583528

RESUMEN

Comammox Nitrospira and canonical ammonia-oxidizing bacteria (cAOB) generally coexist in activated sludge. In present study, the effect of comammox Nitrospira on N2O production during nitrification of activated sludge was investigated. Comammox Nitrospira and cAOB were separately enriched in two nitrifying reactors, with respective relative abundance of approximately 98% in ammonia oxidizer community. The N2O emission factor (EF) of nitrification in comammox Nitrospira dominated reactor was 0.35%, consistently lower than that (2.2%) in cAOB dominated reactor. When increasing the relative abundance of comammox Nitrospira in ammonia oxidizer community, the N2O EF of nitrification decreased exponentially, which suggested that comammox Nitrospira not only decreased N2O production directly but also might have reduced N2O yield by cAOB. When cAOB dominated the ammonia oxidizer community of sludge, decreasing pH to 6.3, lowering DO to less than 0.5 mg/L, and increasing nitrite concentration enhanced N2O EF dramatically. When comammox Nitrospira became the dominant ammonia oxidizer, however, the N2O EF correlated to nitrite insignificantly and a low DO of 0.2 mg/L and weakly acidic pH (6.3) decreased N2O EF by approximately 70% and 60%, respectively. These results imply that enhancing the relative abundance of comammox Nitrospira in sludge is an effective way to reducing N2O emissions and can also offset the promoting effects of acidic pH, low DO, and high nitrite concentration on N2O production during nitrification.


Asunto(s)
Amoníaco , Bacterias , Nitrificación , Oxidación-Reducción , Aguas del Alcantarillado , Amoníaco/metabolismo , Aguas del Alcantarillado/microbiología , Bacterias/metabolismo , Óxido Nitroso/metabolismo , Nitritos/metabolismo , Reactores Biológicos/microbiología , Eliminación de Residuos Líquidos/métodos
15.
Bioresour Technol ; 400: 130679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588781

RESUMEN

Mainstream partial denitrification anammox was achieved through inoculation of side-stream mature partial nitritation anammox biofilm without domestication. The contribution of anammox to nitrogen removal was 29.4 %. Moreover, prolonging anoxic hydraulic retention time and introducing side-stream nitrite under different carbon/nitrogen ratios enriched anammox bacteria. The abundance of anammox bacteria increased by âˆ¼ 10 times ((2.19 ± 0.17) × 1012 copies gene / g dry sludge) with a total relative abundance of 18.51 %. During 258 days of operation, the contribution of anammox to nitrogen removal gradually increased to 68.8 %. The total nitrogen in the effluent decreased to 8.84 mg/L with a total nitrogen removal efficiency of 76.4 % under a carbon/nitrogen ratio of 3. This paper proposes a novel way to rapidly achieve mainstream partial denitrification anammox via inoculation with side-stream mature partial nitritation anammox biofilm. This method achieves advanced nitrogen removal from municipal wastewater, even under low carbon/nitrogen ratios.


Asunto(s)
Biopelículas , Desnitrificación , Nitrógeno , Aguas del Alcantarillado , Nitrógeno/metabolismo , Aguas del Alcantarillado/microbiología , Bacterias/metabolismo , Reactores Biológicos/microbiología , Anaerobiosis , Purificación del Agua/métodos , Oxidación-Reducción , Carbono/metabolismo , Nitritos/metabolismo
16.
J Environ Manage ; 358: 120826, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608579

RESUMEN

Hydroxylamine can disrupt the protein translation process of most reported nitrogen-converting bacteria, and thus hinder the reproduction of bacteria and nitrogen conversion capacity. However, the effect of hydroxylamine on the denitrification ability of strain EN-F2 is unclear. In this study, the cell growth, aerobic denitrification ability, and nitrous oxide (N2O) emission by Pseudomonas taiwanensis were carefully investigated by addition of hydroxylamine at different concentrations. The results demonstrated that the rates of nitrate and nitrite reduction were enhanced by 2.51 and 2.78 mg/L/h after the addition of 8.0 and 12.0 mg/L hydroxylamine, respectively. The N2O production from nitrate and nitrite reaction systems were strongly promoted by 4.39 and 8.62 mg/L, respectively, through the simultaneous acceleration of cell growth and both of nitrite and nitrate reduction. Additionally, the enzymatic activities of nitrate reductase and nitrite reductase climbed from 0.13 and 0.01 to 0.22 and 0.04 U/mg protein when hydroxylamine concentration increased from 0 to 6.0 and 12.0 mg/L. This may be the main mechanism for controlling the observed higher denitrification rate and N2O release. Overall, hydroxylamine supplementation supported the EN-F2 strain cell growth, denitrification and N2O emission rates.


Asunto(s)
Desnitrificación , Hidroxilamina , Óxido Nitroso , Pseudomonas , Óxido Nitroso/metabolismo , Pseudomonas/metabolismo , Hidroxilamina/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo
17.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38624180

RESUMEN

The bacterial species "Candidatus Alkanivorans nitratireducens" was recently demonstrated to mediate nitrate-dependent anaerobic oxidation of short-chain gaseous alkanes (SCGAs). In previous bioreactor enrichment studies, the species appeared to reduce nitrate in two phases, switching from denitrification to dissimilatory nitrate reduction to ammonium (DNRA) in response to nitrite accumulation. The regulation of this switch or the nature of potential syntrophic partnerships with other microorganisms remains unclear. Here, we describe anaerobic multispecies cultures of bacteria that couple the oxidation of propane and butane to nitrate reduction and the oxidation of ammonium (anammox). Batch tests with 15N-isotope labelling and multi-omic analyses collectively supported a syntrophic partnership between "Ca. A. nitratireducens" and anammox bacteria, with the former species mediating nitrate-driven oxidation of SCGAs, supplying the latter with nitrite for the oxidation of ammonium. The elimination of nitrite accumulation by the anammox substantially increased SCGA and nitrate consumption rates, whereas it suppressed DNRA. Removing ammonium supply led to its eventual production, the accumulation of nitrite, and the upregulation of DNRA gene expression for the abundant "Ca. A. nitratireducens". Increasing the supply of SCGA had a similar effect in promoting DNRA. Our results suggest that "Ca. A. nitratireducens" switches to DNRA to alleviate oxidative stress caused by nitrite accumulation, giving further insight into adaptability and ecology of this microorganism. Our findings also have important implications for the understanding of the fate of nitrogen and SCGAs in anaerobic environments.


Asunto(s)
Alcanos , Compuestos de Amonio , Nitratos , Oxidación-Reducción , Nitratos/metabolismo , Anaerobiosis , Compuestos de Amonio/metabolismo , Alcanos/metabolismo , Consorcios Microbianos , Nitritos/metabolismo , Reactores Biológicos/microbiología , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación
18.
Bioresour Technol ; 401: 130730, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657825

RESUMEN

Achieving partial denitrification (PD) by using fermentation products extracted from waste activated sludge (WAS) rather than commercial organic matters is a promising approach for providing nitrite for anammox, while sludge reduction could also be realized by WAS reutilization. This study proposed an In-situ Sludge Fermentation coupled with Partial Denitrification (ISFPD) system and explored its performance under different conditions, including initial pH, nitrate concentrations, and organic matters. Results showed that nitrite production increased with the elevation of initial pH (from 6 to 9), and the highest nitrate-to-nitrite transformation ratio (NTR) reached 77% at initial pH 9. The PD rates and NTR were observed to be minimally influenced by initial nitrate concentrations. Acetate was preferred by denitrifying bacteria, while macromolecules such as proteins necessitated be hydrolyzed to be suitable for further utilization. The insights gained through this study paved the way for efficient nitrite production and sustainable WAS reutilization in harmony.


Asunto(s)
Desnitrificación , Fermentación , Nitratos , Nitritos , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Concentración de Iones de Hidrógeno , Nitritos/metabolismo , Nitratos/metabolismo , Estudios de Factibilidad , Compuestos Orgánicos , Reactores Biológicos , Álcalis/química
19.
Arch Toxicol ; 98(6): 1573-1580, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38573336

RESUMEN

Dietary exposure to N-nitrosamines has recently been assessed by the European Food Safety Authority (EFSA) to result in margins of exposure that are conceived to indicate concern with respect to human health risk. However, evidence from more than half a century of international research shows that N-nitroso compounds (NOC) can also be formed endogenously. In this commentary of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG), the complex metabolic and physiological biokinetics network of nitrate, nitrite and reactive nitrogen species is discussed with emphasis on its influence on endogenous NOC formation. Pioneering approaches to monitor endogenous NOC have been based on steady-state levels of N-nitrosodimethylamine (NDMA) in human blood and on DNA adduct levels in blood cells. Further NOC have not been considered yet to a comparable extent, although their generation from endogenous or exogenous precursors is to be expected. The evidence available to date indicates that endogenous NDMA exposure could exceed dietary exposure by about 2-3 orders of magnitude. These findings require consolidation by refined toxicokinetics and DNA adduct monitoring data to achieve a credible and comprehensive human health risk assessment.


Asunto(s)
Aductos de ADN , Exposición Dietética , Dimetilnitrosamina , Nitrosaminas , Humanos , Medición de Riesgo , Nitrosaminas/toxicidad , Nitrosaminas/farmacocinética , Exposición Dietética/efectos adversos , Dimetilnitrosamina/toxicidad , Contaminación de Alimentos , Inocuidad de los Alimentos , Animales , Nitritos/toxicidad , Nitratos/toxicidad , Nitratos/farmacocinética , Especies de Nitrógeno Reactivo/metabolismo
20.
Chemosphere ; 358: 142066, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670502

RESUMEN

The partial denitrification (PD) coupled with anaerobic ammonium oxidation (Anammox) (PD/A) process is a unique biological denitrification method for sewage that concurrently removes nitrate (NO3--N) and ammonium (NH4+-N) in sewage. Comparing PD/A to conventional nitrification and denitrification technologies, noticeable improvements are shown in energy consumption, carbon source demand, sludge generation and emissions of greenhouse gasses. The PD is vital to obtaining nitrites (NO2--N) in the Anammox process. This paper provided valuable insight by introduced the basic principles and characteristics of the process and then summarized the strengthening strategies. The functional microorganisms and microbial competition have been discussed in details, the S-dependent denitrification-anammox has been analyzed in this review paper. Important factors affecting the PD/A process were examined from different aspects, and finally, the paper pointed out the shortcomings of the coupling process in experimental research and engineering applications. Thus, this research provided insightful information for the PD/A process's optimization technique in later treating many types of real and nitrate-based wastewater. The review paper also provided the prospective economic and environmental position for the actual design implementation of the PD/A process in the years to come.


Asunto(s)
Compuestos de Amonio , Desnitrificación , Nitratos , Oxidación-Reducción , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Aguas del Alcantarillado/microbiología , Anaerobiosis , Aguas Residuales/química , Reactores Biológicos/microbiología , Nitritos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...