Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 20(1): 139, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34281551

RESUMEN

BACKGROUND: Biological nitrogen fixation is catalyzed by Mo-, V- and Fe-nitrogenases that are encoded by nif, vnf and anf genes, respectively. NifB is the key protein in synthesis of the cofactors of all nitrogenases. Most diazotrophic Paenibacillus strains have only one nifB gene located in a compact nif gene cluster (nifBHDKENX(orf1)hesAnifV). But some Paenibacillus strains have multiple nifB genes and their functions are not known. RESULTS: A total of 138 nifB genes are found in the 116 diazotrophic Paenibacillus strains. Phylogeny analysis shows that these nifB genes fall into 4 classes: nifBI class including the genes (named as nifB1 genes) that are the first gene within the compact nif gene cluster, nifBII class including the genes (named as nifB2 genes) that are adjacent to anf or vnf genes, nifBIII class whose members are designated as nifB3 genes and nifBIV class whose members are named as nifB4 genes are scattered on genomes. Functional analysis by complementation of the ∆nifB mutant of P. polymyxa which has only one nifB gene has shown that both nifB1 and nifB2 are active in synthesis of Mo-nitrogenase, while nifB3 and nifB4 genes are not. Deletion analysis also has revealed that nifB1 of Paenibacillus sabinae T27 is involved in synthesis of Mo-nitrogenase, while nifB3 and nifB4 genes are not. Complementation of the P. polymyxa ∆nifBHDK mutant with the four reconstituted operons: nifB1anfHDGK, nifB2anfHDGK, nifB1vnfHDGK and nifB2vnfHDGK, has shown both that nifB1 and nifB2 were able to support synthesis of Fe- or V-nitrogenases. Transcriptional results obtained in the original Paenibacillus strains are consistent with the complementation results. CONCLUSIONS: The multiple nifB genes of the diazotrophic Paenibacillus strains are divided into 4 classes. The nifB1 located in a compact nif gene cluster (nifBHDKENX(orf1)hesAnifV) and the nifB2 genes being adjacent to nif or anf or vnf genes are active in synthesis of Mo-, Fe and V-nitrogenases, but nifB3 and nifB4 are not. The reconstituted anf system comprising 8 genes (nifBanfHDGK and nifXhesAnifV) and vnf system comprising 10 genes (nifBvnfHDGKEN and nifXhesAnifV) support synthesis of Fe-nitrogenase and V-nitrogenase in Paenibacillus background, respectively.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fijación del Nitrógeno/genética , Nitrogenasa/biosíntesis , Paenibacillus/genética , Proteínas Bacterianas/clasificación , Regulación Bacteriana de la Expresión Génica , Familia de Multigenes , Filogenia
2.
Int J Mol Sci ; 22(7)2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33916504

RESUMEN

NifS and NifU (encoded by nifS and nifU) are generally dedicated to biogenesis of the nitrogenase Fe-S cluster in diazotrophs. However, nifS and nifU are not found in N2-fixing Paenibacillus strains, and the mechanisms involved in Fe-S cluster biosynthesis of nitrogenase is not clear. Here, we found that the genome of Paenibacillus polymyxa WLY78 contains the complete sufCDSUB operon, a partial sufC2D2B2 operon, a nifS-like gene, two nifU-like genes (nfuA-like and yutI), and two iscS genes. Deletion and complementation studies showed that the sufC, sufD, and sufB genes of the sufCDSUB operon, and nifS-like and yutI genes were involved in the Fe-S cluster biosynthesis of nitrogenase. Heterologous complementation studies demonstrated that the nifS-like gene of P. polymyxa WLY78 is interchangeable with Klebsiella oxytoca nifS, but P. polymyxa WLY78 SufCDB cannot be functionally replaced by K. oxytoca NifU. In addition, K. oxytoca nifU and Escherichia coli nfuA are able to complement the P. polymyxa WLY78 yutI mutant. Our findings thus indicate that the NifS-like and SufCDB proteins are the specific sulfur donor and the molecular scaffold, respectively, for the Fe-S cluster formation of nitrogenase in P. polymyxa WLY78. YutI can be an Fe-S cluster carrier involved in nitrogenase maturation in P. polymyxa WLY78.


Asunto(s)
Proteínas Bacterianas/genética , Genes Bacterianos , Proteínas Hierro-Azufre/genética , Nitrogenasa/genética , Paenibacillus polymyxa/genética , Proteínas Bacterianas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Nitrogenasa/biosíntesis , Paenibacillus polymyxa/metabolismo
3.
Nat Commun ; 11(1): 1757, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32273505

RESUMEN

NifB is a radical S-adenosyl-L-methionine (SAM) enzyme that is essential for nitrogenase cofactor assembly. Previously, a nitrogen ligand was shown to be involved in coupling a pair of [Fe4S4] clusters (designated K1 and K2) concomitant with carbide insertion into an [Fe8S9C] cofactor core (designated L) on NifB. However, the identity and function of this ligand remain elusive. Here, we use combined mutagenesis and pulse electron paramagnetic resonance analyses to establish histidine-43 of Methanosarcina acetivorans NifB (MaNifB) as the nitrogen ligand for K1. Biochemical and continuous wave electron paramagnetic resonance data demonstrate the inability of MaNifB to serve as a source for cofactor maturation upon substitution of histidine-43 with alanine; whereas x-ray absorption spectroscopy/extended x-ray fine structure experiments further suggest formation of an intermediate that lacks the cofactor core arrangement in this MaNifB variant. These results point to dual functions of histidine-43 in structurally assisting the proper coupling between K1 and K2 and concurrently facilitating carbide formation via deprotonation of the initial carbon radical.


Asunto(s)
Proteínas Bacterianas/metabolismo , Methanosarcina/metabolismo , Nitrógeno/metabolismo , Nitrogenasa/biosíntesis , Alanina/genética , Alanina/metabolismo , Proteínas Bacterianas/genética , Espectroscopía de Resonancia por Spin del Electrón , Histidina/genética , Histidina/metabolismo , Ligandos , Methanosarcina/genética , Mutagénesis , Nitrogenasa/genética , Espectroscopía de Absorción de Rayos X
4.
Plant Cell Environ ; 42(4): 1180-1189, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30443991

RESUMEN

Legume-rhizobia symbioses play a major role in food production for an ever growing human population. In this symbiosis, dinitrogen is reduced ("fixed") to ammonia by the rhizobial nitrogenase enzyme complex and is secreted to the plant host cells, whereas dicarboxylic acids derived from photosynthetically produced sucrose are transported into the symbiosomes and serve as respiratory substrates for the bacteroids. The symbiosome membrane contains high levels of SST1 protein, a sulfate transporter. Sulfate is an essential nutrient for all living organisms, but its importance for symbiotic nitrogen fixation and nodule metabolism has long been underestimated. Using chemical imaging, we demonstrate that the bacteroids take up 20-fold more sulfate than the nodule host cells. Furthermore, we show that nitrogenase biosynthesis relies on high levels of imported sulfate, making sulfur as essential as carbon for the regulation and functioning of symbiotic nitrogen fixation. Our findings thus establish the importance of sulfate and its active transport for the plant-microbe interaction that is most relevant for agriculture and soil fertility.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Nitrogenasa/biosíntesis , Sulfatos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Lotus/metabolismo , Microscopía Electrónica de Transmisión , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rhizobiaceae/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/ultraestructura , Simbiosis
5.
Inorg Chem ; 57(8): 4719-4725, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29611695

RESUMEN

The P-cluster of the nitrogenase MoFe protein is a [ Fe8 S7] cluster that mediates efficient transfer of electrons to the active site for substrate reduction. Arguably the most complex homometallic FeS cluster found in nature, the biosynthetic mechanism of the P-cluster is of considerable theoretical and synthetic interest to chemists and biochemists alike. Previous studies have revealed a biphasic assembly mechanism of the two P-clusters in the MoFe protein upon incubation with Fe protein and ATP, in which the first P-cluster is formed through fast fusion of a pair of [ Fe4 S4]+ clusters within 5 min and the second P-cluster is formed through slow fusion of the second pair of [ Fe4 S4]+ clusters in a period of 2 h. Here we report a VTVH MCD and EPR spectroscopic study of the biosynthesis of the slow-forming, second P-cluster within the MoFe protein. Our results show that the first major step in the formation of the second P-cluster is the conversion of one of the precursor [ Fe4 S4]+ clusters into the integer spin cluster [ Fe4 S3-4]α, a process aided by the assembly protein NifZ, whereas the second major biosynthetic step appears to be the formation of a diamagnetic cluster with a possible structure of [ Fe8 S7-8]ß, which is eventually converted into the P-cluster.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Hierro-Azufre/química , Nitrogenasa/química , Oxidorreductasas/química , Azotobacter vinelandii , Proteínas Bacterianas/biosíntesis , Dicroismo Circular , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Hierro-Azufre/biosíntesis , Modelos Químicos , Nitrogenasa/biosíntesis , Oxidorreductasas/biosíntesis
6.
Methods Enzymol ; 595: 261-302, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28882203

RESUMEN

Nitrogenase is a metalloenzyme system that plays a critical role in biological nitrogen fixation, and the study of how its metallocenters are assembled into functional entities to facilitate the catalytic reduction of dinitrogen to ammonia is an active area of interest. The diazotroph Azotobacter vinelandii is especially amenable to culturing and genetic manipulation, and this organism has provided the basis for many insights into the assembly of nitrogenase proteins and their respective metallocofactors. This chapter will cover the basic procedures necessary for growing A. vinelandii cultures and subsequent recombinant transformation and protein expression techniques. Furthermore, protocols for nitrogenase protein purification and substrate reduction activity assays are described. These methods provide a solid framework for the assessment of nitrogenase assembly and catalysis.


Asunto(s)
Azotobacter vinelandii/enzimología , Metaloproteínas/biosíntesis , Metaloproteínas/química , Nitrogenasa/biosíntesis , Nitrogenasa/química , Amoníaco/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/crecimiento & desarrollo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Biocatálisis , Hierro/metabolismo , Metaloproteínas/genética , Metaloproteínas/aislamiento & purificación , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Nitrógeno/metabolismo , Nitrogenasa/genética , Nitrogenasa/aislamiento & purificación , Conformación Proteica
7.
Z Naturforsch C J Biosci ; 72(3-4): 99-105, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28121619

RESUMEN

Two local hydrogen-evolving strains of purple nonsulfur bacteria have been isolated, characterized, and identified as Rhodopseudomonas sp. TUT (strains Rh1 and Rh2). Lactate followed by succinate and malate supported the highest amounts of H2 production, growth (O.D.660nm, proteins and bacteriochlorphyll contents), nitrogenase activity, and uptake hydrogenase; the least of which was acetate. Alginate-immobilized cells evolved higher hydrogen amounts than free cell counterparts. Rh1 was more productive than Rh2 at all circumstances. Lactate-dependent hydrogen evolution was more than twice that of acetate, due to ATP productivity (2/-1, respectively), which is limiting to the nitrogenase activity. The preference of lactate over other acids indicates the feasibility of using these two strains in hydrogen production from dairy wastewater.


Asunto(s)
Ácido Acético/farmacología , Células Inmovilizadas/efectos de los fármacos , Metabolismo Energético , Hidrógeno/metabolismo , Ácido Láctico/farmacología , Rhodopseudomonas/efectos de los fármacos , Ácido Acético/metabolismo , Adenosina Trifosfato/metabolismo , Alginatos/química , Bacterioclorofilas/biosíntesis , Células Inmovilizadas/metabolismo , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Hidrogenasas/biosíntesis , Cinética , Ácido Láctico/metabolismo , Malatos/metabolismo , Malatos/farmacología , Nitrogenasa/biosíntesis , Fotosíntesis/fisiología , Rhodopseudomonas/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacología
8.
J Biol Inorg Chem ; 22(1): 161-168, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27928630

RESUMEN

The alternative, vanadium-dependent nitrogenase is employed by Azotobacter vinelandii for the fixation of atmospheric N2 under conditions of molybdenum starvation. While overall similar in architecture and functionality to the common Mo-nitrogenase, the V-dependent enzyme exhibits a series of unique features that on one hand are of high interest for biotechnological applications. As its catalytic properties differ from Mo-nitrogenase, it may on the other hand also provide invaluable clues regarding the molecular mechanism of biological nitrogen fixation that remains scarcely understood to date. Earlier studies on vanadium nitrogenase were almost exclusively based on a ΔnifHDK strain of A. vinelandii, later also in a version with a hexahistidine affinity tag on the enzyme. As structural analyses remained unsuccessful with such preparations we have developed protocols to isolate unmodified vanadium nitrogenase from molybdenum-depleted, actively nitrogen-fixing A. vinelandii wild-type cells. The procedure provides pure protein at high yields whose spectroscopic properties strongly resemble data presented earlier. Analytical size-exclusion chromatography shows this preparation to be a VnfD2K2G2 heterohexamer.


Asunto(s)
Azotobacter vinelandii/enzimología , Molibdeno/farmacología , Nitrogenasa/biosíntesis , Nitrogenasa/aislamiento & purificación , Azotobacter vinelandii/efectos de los fármacos , Azotobacter vinelandii/crecimiento & desarrollo , Azotobacter vinelandii/metabolismo , Biocatálisis , Medios de Cultivo/química , Relación Dosis-Respuesta a Droga , Nitrogenasa/metabolismo
9.
J Mol Evol ; 81(3-4): 84-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26374754

RESUMEN

The vast majority of Pseudomonas species are unable to fix atmospheric nitrogen. Although several studies have demonstrated that some strains belonging to the genus Pseudomonas sensu stricto do have the ability to fix nitrogen by the expression of horizontally acquired nitrogenase, little is known about the mechanisms of nitrogenase adaptation to the new bacterial host. Recently, we transferred the nitrogen fixation island from Pseudomonas stutzeri A1501 to the non-nitrogen-fixing bacterium Pseudomonas protegens Pf-5, and interestingly, the resulting recombinant strain Pf-5 X940 showed an uncommon phenotype of constitutive nitrogenase activity. Here, we integrated evolutionary and functional approaches to elucidate this unusual phenotype. Phylogenetic analysis showed that polyhydroxybutyrate (PHB) biosynthesis genes from natural nitrogen-fixing Pseudomonas strains have been acquired by horizontal transfer. Contrary to Pf-5 X940, its derived PHB-producing strain Pf-5 X940-PHB exhibited the inhibition of nitrogenase activity under nitrogen-excess conditions, and displayed the typical switch-on phenotype observed in natural nitrogen-fixing strains after nitrogen deficiency. This indicates a competition between PHB production and nitrogen fixation. Therefore, we propose that horizontal transfer of PHB biosynthesis genes could be an ancestral mechanism of regulation of horizontally acquired nitrogenases in the genus Pseudomonas.


Asunto(s)
Nitrogenasa/genética , Pseudomonas/enzimología , Evolución Molecular , Transferencia de Gen Horizontal , Genes Bacterianos , Fijación del Nitrógeno/genética , Nitrogenasa/biosíntesis , Filogenia , Pseudomonas/genética , Pseudomonas stutzeri/enzimología , Pseudomonas stutzeri/genética
10.
Biomed Res Int ; 2014: 568549, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24987692

RESUMEN

Reconciling the irreconcilable is a primary struggle in aerobic nitrogen-fixing bacteria. Although nitrogenase is oxygen and reactive oxygen species-labile, oxygen tension is required to sustain respiration. In the nitrogen-fixing Frankia, various strategies have been developed through evolution to control the respiration and nitrogen-fixation balance. Here, we assessed the effect of different oxygen tensions on Frankia sp. strain CcI3 growth, vesicle production, and gene expression under different oxygen tensions. Both biomass and vesicle production were correlated with elevated oxygen levels under both nitrogen-replete and nitrogen-deficient conditions. The mRNA levels for the nitrogenase structural genes (nifHDK) were high under hypoxic and hyperoxic conditions compared to oxic conditions. The mRNA level for the hopanoid biosynthesis genes (sqhC and hpnC) was also elevated under hyperoxic conditions suggesting an increase in the vesicle envelope. Under nitrogen-deficient conditions, the hup2 mRNA levels increased with hyperoxic environment, while hup1 mRNA levels remained relatively constant. Taken together, these results indicate that Frankia protects nitrogenase by the use of multiple mechanisms including the vesicle-hopanoid barrier and increased respiratory protection.


Asunto(s)
Frankia/metabolismo , Fijación del Nitrógeno/fisiología , Consumo de Oxígeno/fisiología , Oxígeno/metabolismo , Proteínas Bacterianas/biosíntesis , Frankia/genética , Regulación de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Nitrogenasa/biosíntesis , ARN Bacteriano/biosíntesis , ARN Mensajero/biosíntesis
12.
FEBS Lett ; 588(3): 512-6, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24374338

RESUMEN

Biosynthesis of metal clusters for the nitrogenase component proteins NifH and NifDK involves electron donation events. Yet, electron donors specific to the biosynthetic pathways of the [4Fe-4S] cluster of NifH, or the P-cluster and the FeMo-co of NifDK, have not been identified. Here we show that an Azotobacter vinelandii mutant lacking fdxN was specifically impaired in FeMo-co biosynthesis. The ΔfdxN mutant produced 5-fold less NifB-co, an early FeMo-co biosynthetic intermediate, than wild type. As a consequence, it accumulated FeMo-co-deficient apo-NifDK and was impaired in NifDK activity. We conclude that FdxN plays a role in FeMo-co biosynthesis, presumably by donating electrons to support NifB-co synthesis by NifB. This is the first role in nitrogenase biosynthesis unequivocally assigned to any A. vinelandii ferredoxin.


Asunto(s)
Compuestos de Hierro/metabolismo , Molibdoferredoxina/biosíntesis , Nitrogenasa/biosíntesis , Oxidorreductasas/biosíntesis , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Vías Biosintéticas , Electrones , Molibdoferredoxina/genética , Mutación , Nitrogenasa/genética , Nitrogenasa/metabolismo , Oxidorreductasas/metabolismo
13.
PLoS Genet ; 9(10): e1003865, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24146630

RESUMEN

Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ(70) (σ(A))-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes.


Asunto(s)
Familia de Multigenes , Fijación del Nitrógeno/genética , Nitrogenasa/biosíntesis , Paenibacillus/genética , Secuencia de Aminoácidos , Clonación Molecular , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Nitrógeno/metabolismo , Nitrogenasa/genética , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN
14.
J Biol Chem ; 288(19): 13173-7, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23539617

RESUMEN

The iron-molybdenum cofactor (the M-cluster) serves as the active site of molybdenum nitrogenase. Arguably one of the most complex metal cofactors in biological systems, the M-cluster is assembled through the formation of an 8Fe core prior to the insertion of molybdenum and homocitrate into this core. Here, we review the recent progress in the research area of M-cluster assembly, with an emphasis on our work that provides useful insights into the mechanistic details of this process.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Molibdoferredoxina/biosíntesis , Nitrogenasa/biosíntesis , Apoenzimas/biosíntesis , Apoenzimas/química , Proteínas Bacterianas/química , Dominio Catalítico , Coenzimas/biosíntesis , Coenzimas/química , Modelos Moleculares , Molibdoferredoxina/química , Nitrogenasa/química , Estructura Terciaria de Proteína , Transporte de Proteínas
15.
Proc Natl Acad Sci U S A ; 108(21): 8623-7, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21551100

RESUMEN

Assembly of nitrogenase FeMoco is one of the key processes in bioinorganic chemistry. NifB and NifEN are two essential elements immediately adjacent to each other along the biosynthetic pathway of FeMoco. Previously, an 8Fe-precursor of FeMoco was identified on NifEN; however, the identity of the biosynthetic intermediate on NifB has remained elusive to date. Here, we present a combined biochemical and spectroscopic investigation of a His-tagged NifEN-B fusion protein of Azotobacter vinelandii. Our data from the EPR and activity analyses confirm the presence of the 8Fe-precursor in the NifEN entity of NifEN-B; whereas those from the metal, EPR, and UV/Vis experiments reveal the presence of additional [Fe(4)S(4)]-type cluster species in the NifB entity of NifEN-B. EPR-, UV/Vis- and metal-based quantitative analyses suggest that the newly identified cluster species in NifEN-B consist of both SAM-motif (CXXXCXXC)- and non-SAM-motif-bound [Fe(4)S(4)]-type clusters. Moreover, EPR and activity experiments indicate that the non-SAM-motif [Fe(4)S(4)] cluster is a NifB-bound intermediate of FeMoco assembly, which could be converted to the 8Fe-precursor in a SAM-dependent mechanism. Combined outcome of this work provides the initial insights into the biosynthetic events of FeMoco on NifB. More importantly, the full capacity of NifEN-B in FeMoco biosynthesis demonstrates the potential of this fusion protein as an excellent platform for further investigations of the role of NifB and its interaction with NifEN during the process of FeMoco assembly.


Asunto(s)
Azotobacter vinelandii/química , Proteínas Bacterianas/fisiología , Vías Biosintéticas , Molibdoferredoxina/biosíntesis , Nitrogenasa/biosíntesis , Azotobacter vinelandii/enzimología , Compuestos de Hierro/metabolismo , Fijación del Nitrógeno
16.
Appl Environ Microbiol ; 77(2): 395-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21057013

RESUMEN

Photosynthetic, nitrogen-fixing Anabaena strains are native to tropical paddy fields and contribute to the carbon and nitrogen economy of such soils. Genetic engineering was employed to improve the nitrogen biofertilizer potential of Anabaena sp. strain PCC7120. Constitutive enhanced expression of an additional integrated copy of the hetR gene from a light-inducible promoter elevated HetR protein expression and enhanced functional heterocyst frequency in the recombinant strain. The recombinant strain displayed consistently higher nitrogenase activity than the wild-type strain and appeared to be in homeostasis with compatible modulation of photosynthesis and respiration. The enhanced combined nitrogen availability from the recombinant strain positively catered to the nitrogen demand of rice seedlings in short-term hydroponic experiments and supported better growth. The engineered strain is stable, eco-friendly, and useful for environmental application as nitrogen biofertilizer in paddy fields.


Asunto(s)
Anabaena/genética , Anabaena/metabolismo , Fertilizantes , Nitrógeno/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Dosificación de Gen , Expresión Génica , Ingeniería Genética , Datos de Secuencia Molecular , Nitrogenasa/biosíntesis , Oryza/crecimiento & desarrollo , Oryza/microbiología , Oxidación-Reducción , Fotosíntesis , Recombinación Genética , Análisis de Secuencia de ADN
18.
Annu Rev Microbiol ; 62: 93-111, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18429691

RESUMEN

The iron-molybdenum cofactor (FeMo-co), located at the active site of the molybdenum nitrogenase, is one of the most complex metal cofactors known to date. During the past several years, an intensive effort has been made to purify the proteins involved in FeMo-co synthesis and incorporation into nitrogenase. This effort is starting to provide insights into the structures of the FeMo-co biosynthetic intermediates and into the biochemical details of FeMo-co synthesis.


Asunto(s)
Bacterias/metabolismo , Molibdoferredoxina/biosíntesis , Nitrogenasa/biosíntesis , Secuencia de Aminoácidos , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Genes Bacterianos , Modelos Biológicos , Modelos Moleculares , Molibdeno/metabolismo , Molibdoferredoxina/química , Molibdoferredoxina/genética , Familia de Multigenes , Fijación del Nitrógeno/genética , Fijación del Nitrógeno/fisiología , Nitrogenasa/química , Nitrogenasa/genética , Estructura Cuaternaria de Proteína , Homología de Secuencia de Aminoácido
19.
J Bacteriol ; 189(20): 7392-8, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17660283

RESUMEN

Using genomic analysis, researchers previously identified genes coding for proteins homologous to the structural proteins of nitrogenase (J. Raymond, J. L. Siefert, C. R. Staples, and R. E. Blankenship, Mol. Biol. Evol. 21:541-554, 2004). The expression and association of NifD and NifH nitrogenase homologs (named NflD and NflH for "Nif-like" D and H, respectively) have been detected in a non-nitrogen-fixing hyperthermophilic methanogen, Methanocaldococcus jannaschii. These homologs are expressed constitutively and do not appear to be directly involved with nitrogen metabolism or detoxification of compounds such as cyanide or azide. The NflH and NflD proteins were found to interact with each other, as determined by bacterial two-hybrid studies. Upon immunoisolation, NflD and NflH copurified, along with three other proteins whose functions are as yet uncharacterized. The apparent presence of genes coding for NflH and NflD in all known methanogens, their constitutive expression, and their high sequence similarity to the NifH and NifD proteins or the BchL and BchN/BchB proteins suggest that NflH and NflD participate in an indispensable and fundamental function(s) in methanogens.


Asunto(s)
Proteínas Arqueales/metabolismo , Regulación de la Expresión Génica Arqueal/fisiología , Methanococcales/enzimología , Nitrógeno/metabolismo , Nitrogenasa/biosíntesis , Nitrogenasa/fisiología , Proteínas Arqueales/biosíntesis , Proteínas Arqueales/genética , Fusión Artificial Génica , Western Blotting , Genes Reporteros , Methanococcales/genética , Nitrogenasa/genética , Nitrogenasa/metabolismo , Oxidorreductasas/genética , Unión Proteica , Técnicas del Sistema de Dos Híbridos , beta-Galactosidasa/biosíntesis , beta-Galactosidasa/genética
20.
Biochemistry ; 44(39): 12955-69, 2005 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-16185064

RESUMEN

NifU is a homodimeric modular protein comprising N- and C-terminal domains and a central domain with a redox-active [2Fe-2S](2+,+) cluster. It plays a crucial role as a scaffold protein for the assembly of the Fe-S clusters required for the maturation of nif-specific Fe-S proteins. In this work, the time course and products of in vitro NifS-mediated iron-sulfur cluster assembly on full-length NifU and truncated forms involving only the N-terminal domain or the central and C-terminal domains have been investigated using UV-vis absorption and Mössbauer spectroscopies, coupled with analytical studies. The results demonstrate sequential assembly of labile [2Fe-2S](2+) and [4Fe-4S](2+) clusters in the U-type N-terminal scaffolding domain and the assembly of [4Fe-4S](2+) clusters in the Nfu-type C-terminal scaffolding domain. Both scaffolding domains of NifU are shown to be competent for in vitro maturation of nitrogenase component proteins, as evidenced by rapid transfer of [4Fe-4S](2+) clusters preassembled on either the N- or C-terminal domains to the apo nitrogenase Fe protein. Mutagenesis studies indicate that a conserved aspartate (Asp37) plays a critical role in mediating cluster transfer. The assembly and transfer of clusters on NifU are compared with results reported for U- and Nfu-type scaffold proteins, and the need for two functional Fe-S cluster scaffolding domains on NifU is discussed.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Hierro-Azufre/química , Nitrogenasa/biosíntesis , Transaminasas/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Dimerización , Proteínas Hierro-Azufre/biosíntesis , Fijación del Nitrógeno , Estructura Terciaria de Proteína , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...