Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.816
Filtrar
1.
Nat Commun ; 15(1): 3712, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697963

RESUMEN

The discovery of nitrogen fixation in unicellular cyanobacteria provided the first clues for the existence of a circadian clock in prokaryotes. However, recalcitrance to genetic manipulation barred their use as model systems for deciphering the clock function. Here, we explore the circadian clock in the now genetically amenable Cyanothece 51142, a unicellular, nitrogen-fixing cyanobacterium. Unlike non-diazotrophic clock models, Cyanothece 51142 exhibits conspicuous self-sustained rhythms in various discernable phenotypes, offering a platform to directly study the effects of the clock on the physiology of an organism. Deletion of kaiA, an essential clock component in the cyanobacterial system, impacted the regulation of oxygen cycling and hindered nitrogenase activity. Our findings imply a role for the KaiA component of the clock in regulating the intracellular oxygen dynamics in unicellular diazotrophic cyanobacteria and suggest that its addition to the KaiBC clock was likely an adaptive strategy that ensured optimal nitrogen fixation as microbes evolved from an anaerobic to an aerobic atmosphere under nitrogen constraints.


Asunto(s)
Proteínas Bacterianas , Relojes Circadianos , Cyanothece , Fijación del Nitrógeno , Oxígeno , Oxígeno/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Cyanothece/metabolismo , Cyanothece/genética , Nitrogenasa/metabolismo , Nitrogenasa/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Regulación Bacteriana de la Expresión Génica , Cianobacterias/metabolismo , Cianobacterias/genética
2.
Nat Commun ; 15(1): 4041, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740794

RESUMEN

Due to the complexity of the catalytic FeMo cofactor site in nitrogenases that mediates the reduction of molecular nitrogen to ammonium, mechanistic details of this reaction remain under debate. In this study, selenium- and sulfur-incorporated FeMo cofactors of the catalytic MoFe protein component from Azotobacter vinelandii are prepared under turnover conditions and investigated by using different EPR methods. Complex signal patterns are observed in the continuous wave EPR spectra of selenium-incorporated samples, which are analyzed by Tikhonov regularization, a method that has not yet been applied to high spin systems of transition metal cofactors, and by an already established grid-of-error approach. Both methods yield similar probability distributions that reveal the presence of at least four other species with different electronic structures in addition to the ground state E0. Two of these species were preliminary assigned to hydrogenated E2 states. In addition, advanced pulsed-EPR experiments are utilized to verify the incorporation of sulfur and selenium into the FeMo cofactor, and to assign hyperfine couplings of 33S and 77Se that directly couple to the FeMo cluster. With this analysis, we report selenium incorporation under turnover conditions as a straightforward approach to stabilize and analyze early intermediate states of the FeMo cofactor.


Asunto(s)
Azotobacter vinelandii , Molibdoferredoxina , Nitrogenasa , Selenio , Azufre , Espectroscopía de Resonancia por Spin del Electrón/métodos , Azotobacter vinelandii/enzimología , Azotobacter vinelandii/metabolismo , Nitrogenasa/metabolismo , Nitrogenasa/química , Molibdoferredoxina/metabolismo , Molibdoferredoxina/química , Selenio/metabolismo , Selenio/química , Azufre/metabolismo , Azufre/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
3.
Biosens Bioelectron ; 255: 116254, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569252

RESUMEN

Nitrogen fixation is a key process that sustains life on Earth. Nitrogenase is the sole enzyme capable of fixing nitrogen under ambient conditions. Extensive research efforts have been dedicated to elucidating the enzyme mechanism and its artificial activation through high applied voltage, photochemistry, or strong reducing agents. Harnessing light irradiation to minimize the required external bias can lower the process's high energy investment. Herein, we present the development of photo-bioelectrochemical cells (PBECs) utilizing BiVO4/CoP or CdS/NiO photoanodes for nitrogenase activation toward N2 fixation. The constructed PBEC based on BiVO4/CoP photoanode requires minimal external bias (200 mV) and suppresses O2 generation that allows efficient activation of the nitrogenase enzyme, using glucose as an electron donor. In a second developed PBEC configuration, CdS/NiO photoanode was used, enabling bias-free activation of the nitrogenase-based cathode to produce 100 µM of ammonia at a faradaic efficiency (FE) of 12%. The ammonia production was determined by a commonly used fluorescence probe and further validated using 1H-NMR spectroscopy. The presented PBECs lay the foundation for biotic-abiotic systems to directly activate enzymes toward value-added chemicals by light-driven reactions.


Asunto(s)
Técnicas Biosensibles , Nitrogenasa , Nitrogenasa/química , Nitrogenasa/metabolismo , Amoníaco/química , Fijación del Nitrógeno , Nitrógeno/química
4.
Dalton Trans ; 53(18): 7996-8004, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38651170

RESUMEN

In converting N2 to NH3 the enzyme nitrogenase utilises 8 electrons and 8 protons in the complete catalytic cycle. The source of the electrons is an Fe4S4 reductase protein (Fe-protein) which temporarily docks with the MoFe-protein that contains the catalytic active cofactor, FeMo-co, and an electron transfer cluster called the P cluster. The overall mechanism involves 8 repetitions of a cycle in which reduced Fe-protein docks with the MoFe-protein, one electron transfers to the P-cluster, and then to FeMo-co, followed by dissociation of the two proteins and re-reduction of the Fe-protein. Protons are supplied serially to FeMo-co by a Grotthuss proton translocation mechanism from the protein surface along a conserved chain of water molecules (a proton wire) that terminates near S atoms of the FeMo-co cluster [CFe7S9Mo(homocitrate)] where the multiple steps of the chemical conversions are effected. It is assumed that the chemical mechanisms use proton-coupled electron-transfer (PCET) and that H atoms (e- + H+) are involved in each of the hydrogenation steps. However there is neither evidence for, or mechanism proposed, for this coupling. Here I report calculations of cluster charge distribution upon electron addition, revealing that the added negative charge is on the S atoms of FeMo-co, which thereby become more basic, and able to trigger proton transfer from H3O+ waiting at the near end of the proton wire. This mechanism is supported by calculations of the dynamics of the proton transfer step, in which the barrier is reduced by ca. 3.5 kcal mol-1 and the product stabilised by ca. 7 kcal mol-1 upon electron addition. H tunneling is probable in this step. In nitrogenase it is electron transfer that triggers proton transfer.


Asunto(s)
Dominio Catalítico , Nitrogenasa , Protones , Nitrogenasa/química , Nitrogenasa/metabolismo , Transporte de Electrón , Electrones , Modelos Moleculares , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo
5.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526235

RESUMEN

Molecular innovations within key metabolisms can have profound impacts on element cycling and ecological distribution. Yet, much of the molecular foundations of early evolved enzymes and metabolisms are unknown. Here, we bring one such mystery to relief by probing the birth and evolution of the G-subunit protein, an integral component of certain members of the nitrogenase family, the only enzymes capable of biological nitrogen fixation. The G-subunit is a Paleoproterozoic-age orphan protein that appears more than 1 billion years after the origin of nitrogenases. We show that the G-subunit arose with novel nitrogenase metal dependence and the ecological expansion of nitrogen-fixing microbes following the transition in environmental metal availabilities and atmospheric oxygenation that began ∼2.5 billion years ago. We identify molecular features that suggest early G-subunit proteins mediated cofactor or protein interactions required for novel metal dependency, priming ancient nitrogenases and their hosts to exploit these newly diversified geochemical environments. We further examined the degree of functional specialization in G-subunit evolution with extant and ancestral homologs using laboratory reconstruction experiments. Our results indicate that permanent recruitment of the orphan protein depended on the prior establishment of conserved molecular features and showcase how contingent evolutionary novelties might shape ecologically important microbial innovations.


Asunto(s)
Fijación del Nitrógeno , Nitrogenasa , Nitrogenasa/genética , Nitrogenasa/química , Nitrogenasa/metabolismo , Fijación del Nitrógeno/genética , Nitrógeno/metabolismo
6.
Angew Chem Int Ed Engl ; 63(21): e202400273, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38527309

RESUMEN

Nitrogenase reduces N2 to NH3 at its active-site cofactor. Previous studies of an N2-bound Mo-nitrogenase from Azotobacter vinelandii suggest binding of three N2 species via asymmetric belt-sulfur displacements in the two cofactors of its catalytic component (designated Av1*), leading to the proposal of stepwise N2 reduction involving all cofactor belt-sulfur sites; yet, the evidence for the existence of multiple N2 species on Av1* remains elusive. Here we report a study of ATP-independent, EuII/SO3 2--driven turnover of Av1* using GC-MS and frequency-selective pulse NMR techniques. Our data demonstrate incorporation of D2-derived D by Av1* into the products of C2H2- and H+-reduction, and decreased formation of NH3 by Av1* concomitant with the release of N2 under H2; moreover, they reveal a strict dependence of these activities on SO3 2-. These observations point to the presence of distinct N2 species on Av1*, thereby providing strong support for our proposed mechanism of stepwise reduction of N2 via belt-sulfur mobilization.


Asunto(s)
Azotobacter vinelandii , Nitrógeno , Nitrogenasa , Nitrogenasa/metabolismo , Nitrogenasa/química , Azotobacter vinelandii/metabolismo , Azotobacter vinelandii/enzimología , Nitrógeno/química , Nitrógeno/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química
7.
World J Microbiol Biotechnol ; 40(5): 136, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38499730

RESUMEN

Photosynthetic diazotrophs expressing iron-only (Fe-only) nitrogenase can be developed into a promising biofertilizer, as it is independent on the molybdenum availability in the soil. However, the expression of Fe-only nitrogenase in diazotrophs is repressed by the fixed nitrogen of the soil, limiting the efficiency of nitrogen fixation in farmland with low ammonium concentrations that are inadequate for sustainable crop growth. Here, we succeeded in constitutively expressing the Fe-only nitrogenase even in the presence of ammonium by controlling the transcription of Fe-only nitrogenase gene cluster (anfHDGK) with the transcriptional activator of Mo nitrogenase (NifA*) in several different ways, indicating that the engineered NifA* strains can be used as promising chassis cells for efficient expression of different types of nitrogenases. When applied as a biofertilizer, the engineered Rhodopseudomonas palustris effectively stimulated rice growth, contributing to the reduced use of chemical fertilizer and the development of sustainable agriculture.


Asunto(s)
Compuestos de Amonio , Oryza , Fijación del Nitrógeno , Nitrogenasa/genética , Nitrogenasa/metabolismo , Nitrógeno/metabolismo , Suelo
8.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365250

RESUMEN

Biological nitrogen fixation by microbial diazotrophs can contribute significantly to nitrogen availability in non-nodulating plant species. In this study of molecular mechanisms and gene expression relating to biological nitrogen fixation, the aerobic nitrogen-fixing endophyte Burkholderia vietnamiensis, strain WPB, isolated from Populus trichocarpa served as a model for endophyte-poplar interactions. Nitrogen-fixing activity was observed to be dynamic on nitrogen-free medium with a subset of colonies growing to form robust, raised globular like structures. Secondary ion mass spectrometry (NanoSIMS) confirmed that N-fixation was uneven within the population. A fluorescent transcriptional reporter (GFP) revealed that the nitrogenase subunit nifH is not uniformly expressed across genetically identical colonies of WPB and that only ~11% of the population was actively expressing the nifH gene. Higher nifH gene expression was observed in clustered cells through monitoring individual bacterial cells using single-molecule fluorescence in situ hybridization. Through 15N2 enrichment, we identified key nitrogenous metabolites and proteins synthesized by WPB and employed targeted metabolomics in active and inactive populations. We cocultivated WPB Pnif-GFP with poplar within a RhizoChip, a synthetic soil habitat, which enabled direct imaging of microbial nifH expression within root epidermal cells. We observed that nifH expression is localized to the root elongation zone where the strain forms a unique physical interaction with the root cells. This work employed comprehensive experimentation to identify novel mechanisms regulating both biological nitrogen fixation and beneficial plant-endophyte interactions.


Asunto(s)
Fijación del Nitrógeno , Populus , Fijación del Nitrógeno/fisiología , Populus/genética , Populus/metabolismo , Endófitos/genética , Oxidorreductasas/genética , Hibridación Fluorescente in Situ , Nitrogenasa/genética , Nitrogenasa/metabolismo , Nitrógeno
9.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38319744

RESUMEN

Nitrogen is essential for all organisms, but biological nitrogen fixation (BNF) occurs only in a small fraction of prokaryotes. Previous studies divided nitrogenase-gene-carrying prokaryotes into Groups I to IV and provided evidence that BNF first evolved in bacteria. This study constructed a timetree of the evolution of nitrogen-fixation genes and estimated that archaea evolved BNF much later than bacteria and that nitrogen-fixing cyanobacteria evolved later than 1,900 MYA, considerably younger than the previous estimate of 2,200 MYA. Moreover, Groups III and II/I diverged ∼2,280 MYA, after the Kenorland supercontinent breakup (∼2,500-2,100 MYA) and the Great Oxidation Event (∼2,400-2,100 MYA); Groups III and Vnf/Anf diverged ∼2,086 MYA, after the Yarrabubba impact (∼2,229 MYA); and Groups II and I diverged ∼1,920 MYA, after the Vredefort impact (∼2,023 MYA). In summary, this study provided a timescale of BNF events and discussed the possible effects of geological events on BNF evolution.


Asunto(s)
Cianobacterias , Fijación del Nitrógeno , Fijación del Nitrógeno/genética , Nitrogenasa/genética , Nitrogenasa/metabolismo , Cianobacterias/genética , Archaea/metabolismo , Nitrógeno
10.
Sci Total Environ ; 919: 170648, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38336078

RESUMEN

Soil asymbiotic nitrogen (N) fixation provides a critical N source to support plant growth in alpine grasslands, and precipitation change is expected to lead to shifts in soil asymbiotic N fixation. However, large gaps remain in understanding the response of soil asymbiotic N fixation to precipitation gradients. Here we simulated five precipitation gradients (10 % (0.1P), 50 % (0.5P), 70 % (0.7P), 100 % (1.0P) and 150 % (1.5P) of the natural precipitation) in an alpine grassland of Qinghai-Tibetan Plateau and examined the soil nitrogenase activity and N fixation rate for each gradient. Quantitative PCR and high-throughput sequencing were used to measure the abundance and community composition of the soil nifH DNA (total diazotrophs) and nifH RNA reverse transcription (active diazotrophs) gene. Our results showed that the soil diazotrophic abundance, diversity and nifH gene expression rate peaked under the 0.5P. Soil nitrogenase activity and N fixation rate varied in the range 0.032-0.073 nmol·C2H4·g-1·h-1 and 0.008-0.022 nmol·N2·g-1·h-1 respectively, being highest under the 0.5P. The 50 % precipitation reduction enhanced the gene expression rates of Azospirillum and Halorhodospira which were likely responsible for the high N fixation potential. The 0.5P treatment also possessed a larger and more complex active diazotrophic network than the other treatments, which facilitated the resistance of diazotrophic community to environmental stress and thus maintained a high N fixation potential. The active diazotrophic abundance had the largest positive effect on soil N fixation, while nitrate nitrogen had the largest negative effect. Together, our study suggested that appropriate precipitation reduction can enhance soil N fixation through promoting the abundance of the soil active diazotrophs and decreasing soil nitrate nitrogen, and soil active diazotrophs and nitrate nitrogen should be considered in predicting soil N inputs in the alpine grassland of Qinghai-Tibetan Plateau under precipitation change.


Asunto(s)
Fijación del Nitrógeno , Suelo , Pradera , Tibet , Nitratos/análisis , Nitrógeno/análisis , Microbiología del Suelo , Nitrogenasa/metabolismo
11.
mBio ; 15(3): e0331423, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38377621

RESUMEN

Nitrogenases are the only enzymes able to fix gaseous nitrogen into bioavailable ammonia and hence are essential for sustaining life. Catalysis by nitrogenases requires both a large amount of ATP and electrons donated by strongly reducing ferredoxins or flavodoxins. Our knowledge about the mechanisms of electron transfer to nitrogenase enzymes is limited: The electron transport to the iron (Fe)-nitrogenase has hardly been investigated. Here, we characterized the electron transfer pathway to the Fe-nitrogenase in Rhodobacter capsulatus via proteome analyses, genetic deletions, complementation studies, and phylogenetics. Proteome analyses revealed an upregulation of four ferredoxins under nitrogen-fixing conditions reliant on the Fe-nitrogenase in a molybdenum nitrogenase knockout strain, compared to non-nitrogen-fixing conditions. Based on these findings, R. capsulatus strains with deletions of ferredoxin (fdx) and flavodoxin (fld, nifF) genes were constructed to investigate their roles in nitrogen fixation by the Fe-nitrogenase. R. capsulatus deletion strains were characterized by monitoring diazotrophic growth and Fe-nitrogenase activity in vivo. Only deletions of fdxC or fdxN resulted in slower growth and reduced Fe-nitrogenase activity, whereas the double deletion of both fdxC and fdxN abolished diazotrophic growth. Differences in the proteomes of ∆fdxC and ∆fdxN strains, in conjunction with differing plasmid complementation behaviors of fdxC and fdxN, indicate that the two Fds likely possess different roles and functions. These findings will guide future engineering of the electron transport systems to nitrogenase enzymes, with the aim of increased electron flux and product formation.IMPORTANCENitrogenases are essential for biological nitrogen fixation, converting atmospheric nitrogen gas to bioavailable ammonia. The production of ammonia by diazotrophic organisms, harboring nitrogenases, is essential for sustaining plant growth. Hence, there is a large scientific interest in understanding the cellular mechanisms for nitrogen fixation via nitrogenases. Nitrogenases rely on highly reduced electrons to power catalysis, although we lack knowledge as to which proteins shuttle the electrons to nitrogenases within cells. Here, we characterized the electron transport to the iron (Fe)-nitrogenase in the model diazotroph Rhodobacter capsulatus, showing that two distinct ferredoxins are very important for nitrogen fixation despite having different redox centers. In addition, our research expands upon the debate on whether ferredoxins have functional redundancy or perform distinct roles within cells. Here, we observe that both essential ferredoxins likely have distinct roles based on differential proteome shifts of deletion strains and different complementation behaviors.


Asunto(s)
Nitrogenasa , Rhodobacter capsulatus , Nitrogenasa/metabolismo , Fijación del Nitrógeno/genética , Ferredoxinas/metabolismo , Proteoma/metabolismo , Hierro/metabolismo , Amoníaco/metabolismo , Nitrógeno/metabolismo
12.
Plant Physiol Biochem ; 207: 108362, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38266561

RESUMEN

Nodule symbiosis is an energetic process that demands a tremendous carbon (C) cost, which massively increases in responses to environmental stresses. Notably, most common respiratory pathways (e.g., glycolysis and Krebs cycle) that sustain nitrogenase activity and subsequent nitrogen (N) assimilation (amino acid formation) display a noncyclic mode of C flux. In such circumstances, the nodule's energy charge could markedly decrease, leading to a lower symbiotic activity under stresses. The host plant then attempts to induce alternative robust metabolic pathways to minimize the C expenditure and compensate for the loss in respiratory substrates. GABA (γ-aminobutyric acid) shunt appears to be among the highly conserved metabolic bypass induced in responses to stresses. Thus, it can be suggested that GABA, via its primary biosynthetic pathway (GABA shunt), is simultaneously induced to circumvent stress-susceptible decarboxylating portion of the Krebs cycle and to replenish symbiosome with energy and C skeletons for enhancing nitrogenase activity and N assimilation besides the additional C costs expended in the metabolic stress acclimations (e.g., biosynthesis of secondary metabolites and excretion of anions). The GABA-mediated C/N balance is strongly associated with interrelated processes, including pH regulation, oxygen (O2) protection, osmoregulation, cellular redox control, and N storage. Furthermore, it has been anticipated that GABA could be implicated in other functions beyond its metabolic role (i.e., signaling and transport). GABA helps plants possess remarkable metabolic plasticity, which might thus assist nodules in attenuating stressful events.


Asunto(s)
Fabaceae , Fabaceae/metabolismo , Simbiosis/fisiología , Nitrógeno/metabolismo , Carbono/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Verduras , Plantas/metabolismo , Homeostasis , Nitrogenasa/metabolismo , Fijación del Nitrógeno/fisiología , Nódulos de las Raíces de las Plantas
13.
J Inorg Biochem ; 253: 112484, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38219407

RESUMEN

The light-driven reduction of dinitrogen (N2) to ammonia (NH3) catalyzed by a cadmium sulfide (CdS) nanocrystal­nitrogenase MoFe protein biohybrid is dependent on a range of different factors, including an appropriate hole-scavenging sacrificial electron donor (SED). Here, the impact of different SEDs on the overall rate of N2 reduction catalyzed by a CdS quantum dot (QD)-MoFe protein system was determined. The selection of SED was guided by several goals: (i) molecules with standard reduction potentials sufficient to reduce the oxidized CdS QD, (ii) molecules that do not absorb the excitation wavelength of the CdS QD, and (iii) molecules that could be readily reduced by sustainable processes. Earlier studies utilized buffer molecules or ascorbic acid as the SED. The effectiveness of ascorbic acid as SED was compared to dithionite (DT), triethanolamine (TEOA), and hydroquinone (HQ) across a range of concentrations in supporting N2 reduction to NH3 in a CdS QD-MoFe protein photocatalytic system. It was found that TEOA supported N2 reduction rates comparable to those observed for dithionite and ascorbic acid. HQ was found to support significantly higher rates of N2 reduction compared to the other SEDs at a concentration of 50 mM. A comparison of the rates of N2 reduction by the biohybrid complex to the standard reduction potential (Eo) of the SEDs reveals that Eo is not the only factor impacting the efficiency of hole-scavenging. These findings reveal the importance of the SED properties for improving the efficiency of hole-scavenging in the light-driven N2 reduction reaction catalyzed by a CdS QD-MoFe protein hybrid.


Asunto(s)
Azotobacter vinelandii , Compuestos de Cadmio , Nitrogenasa , Sulfuros , Nitrogenasa/metabolismo , Molibdoferredoxina/metabolismo , Oxidación-Reducción , Ditionita/metabolismo , Catálisis , Ácido Ascórbico/metabolismo , Azotobacter vinelandii/metabolismo
14.
Nat Struct Mol Biol ; 31(1): 150-158, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38062208

RESUMEN

Nitrogenases are best known for catalyzing the reduction of dinitrogen to ammonia at a complex metallic cofactor. Recently, nitrogenases were shown to reduce carbon dioxide (CO2) and carbon monoxide to hydrocarbons, offering a pathway to recycle carbon waste into hydrocarbon products. Among the three nitrogenase isozymes, the iron nitrogenase has the highest wild-type activity for the reduction of CO2, but the molecular architecture facilitating these activities has remained unknown. Here, we report a 2.35-Å cryogenic electron microscopy structure of the ADP·AlF3-stabilized iron nitrogenase complex from Rhodobacter capsulatus, revealing an [Fe8S9C-(R)-homocitrate] cluster in the active site. The enzyme complex suggests that the iron nitrogenase G subunit is involved in cluster stabilization and substrate channeling and confers specificity between nitrogenase reductase and catalytic component proteins. Moreover, the structure highlights a different interface between the two catalytic halves of the iron and the molybdenum nitrogenase, potentially influencing the intrasubunit 'communication' and thus the nitrogenase mechanism.


Asunto(s)
Dióxido de Carbono , Hierro , Hierro/metabolismo , Dióxido de Carbono/química , Oxidación-Reducción , Nitrogenasa/química , Nitrogenasa/metabolismo , Hidrocarburos/metabolismo
15.
J Proteomics ; 294: 105061, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38154550

RESUMEN

Paenibacillus sonchi SBR5T is a Gram-positive, endospore-forming facultative aerobic diazotrophic bacterium that can fix nitrogen via an alternative Fe-only nitrogenase (AnfHDGK). In several bacteria, this alternative system is expressed under molybdenum (Mo)-limiting conditions when the conventional Mo-dependent nitrogenase (NifHDK) production is impaired. The regulatory mechanisms, metabolic processes, and cellular functions of N2 fixation by alternative and/or conventional systems are poorly understood in the Paenibacillus genus. We conducted a comparative proteomic profiling study of P. sonchi SBR5T grown under N2-fixing conditions with and without Mo supply through an LC-MS/MS and label-free quantification analysis to address this gap. Protein abundances revealed overrepresented processes related to anaerobiosis growth adaption, Fe-S cluster biosynthesis, ammonia assimilation, electron transfer, and sporulation under N2-fixing conditions compared to non-fixing control. Under Mo limitation, the Fe-only nitrogenase components were overrepresented together with the Mo-transporter system, while the dinitrogenase component (NifDK) of Mo­nitrogenase was underrepresented. The dinitrogenase reductase component (NifH) and accessory proteins encoded by the nif operon had no significant differential expression, suggesting post-transcriptional regulation of nif gene products in this strain. Overall, this was the first comprehensive proteomic analysis of a diazotrophic strain from the Paenibacillaceae family, and it provided insights related to alternative N2-fixation by Fe-only nitrogenase. SIGNIFICANCE: In this work, we try to understand how the alternative nitrogen fixation system, presented by some diazotrophic bacteria, works. For this, we used the SBR5 lineage of P. sonchi, which presents the alternative system in which the nitrogenase cofactor is composed only of iron. In addition, we tried to unravel the proteome of this strain in different situations of nitrogen fixation, since, for Gram-positive bacteria, these systems are little known. The results achieved, through LC-MS/MS and label-free quantitative analysis, showed an overrepresentation of proteins related to different processes involved with growth under stressful conditions in situations of nitrogen deficiency, in addition to suggesting that some encoded proteins by the nif operon may be regulated at post-transcriptional levels. Our findings represent important steps toward the elucidation of nitrogen fixation systems in Gram-positive diazotrophic bacteria.


Asunto(s)
Fijación del Nitrógeno , Paenibacillus , Proteoma/metabolismo , Proteómica , Cromatografía Liquida , Espectrometría de Masas en Tándem , Nitrogenasa/metabolismo , Paenibacillus/genética , Paenibacillus/metabolismo , Molibdeno/metabolismo , Hierro/metabolismo , Nitrógeno/metabolismo
16.
mBio ; 15(2): e0308823, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38126768

RESUMEN

Biological nitrogen fixation, the conversion of inert N2 to metabolically tractable NH3, is only performed by certain microorganisms called diazotrophs and is catalyzed by the nitrogenases. A [7Fe-9S-C-Mo-R-homocitrate]-cofactor, designated FeMo-co, provides the catalytic site for N2 reduction in the Mo-dependent nitrogenase. Thus, achieving FeMo-co formation in model eukaryotic organisms, such as Saccharomyces cerevisiae, represents an important milestone toward endowing them with a capacity for Mo-dependent biological nitrogen fixation. A central player in FeMo-co assembly is the scaffold protein NifEN upon which processing of NifB-co, an [8Fe-9S-C] precursor produced by NifB, occurs. Prior work established that NifB-co can be produced in S. cerevisiae mitochondria. In the present work, a library of nifEN genes from diverse diazotrophs was expressed in S. cerevisiae, targeted to mitochondria, and surveyed for their ability to produce soluble NifEN protein complexes. Many such NifEN variants supported FeMo-co formation when heterologously produced in the diazotroph A. vinelandii. However, only three of them accumulated in soluble forms in mitochondria of aerobically cultured S. cerevisiae. Of these, two variants were active in the in vitro FeMo-co synthesis assay. NifEN, NifB, and NifH proteins from different species, all of them produced in and purified from S. cerevisiae mitochondria, were combined to establish successful FeMo-co biosynthetic pathways. These findings demonstrate that combining diverse interspecies nitrogenase FeMo-co assembly components could be an effective and, perhaps, the only approach to achieve and optimize nitrogen fixation in a eukaryotic organism.IMPORTANCEBiological nitrogen fixation, the conversion of inert N2 to metabolically usable NH3, is a process exclusive to diazotrophic microorganisms and relies on the activity of nitrogenases. The assembly of the nitrogenase [7Fe-9S-C-Mo-R-homocitrate]-cofactor (FeMo-co) in a eukaryotic cell is a pivotal milestone that will pave the way to engineer cereals with nitrogen fixing capabilities and therefore independent of nitrogen fertilizers. In this study, we identified NifEN protein complexes that were functional in the model eukaryotic organism Saccharomyces cerevisiae. NifEN is an essential component of the FeMo-co biosynthesis pathway. Furthermore, the FeMo-co biosynthetic pathway was recapitulated in vitro using only proteins expressed in S. cerevisiae. FeMo-co biosynthesis was achieved by combining nitrogenase FeMo-co assembly components from different species, a promising strategy to engineer nitrogen fixation in eukaryotic organisms.


Asunto(s)
Compuestos de Hierro , Nitrogenasa , Saccharomyces cerevisiae , Ácidos Tricarboxílicos , Nitrogenasa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Molibdoferredoxina/metabolismo , Proteínas Bacterianas/metabolismo , Mitocondrias/metabolismo , Nitrógeno/metabolismo
17.
Phys Chem Chem Phys ; 26(3): 1684-1695, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38126534

RESUMEN

The main class of nitrogenases has a molybdenum in its cofactor. A mechanism for Mo-nitrogenase has recently been described. In the present study, another class of nitrogenases has been studied, the one with a vanadium instead of a molybdenum in its cofactor. It is generally believed that these classes use the same general mechanism to activate nitrogen. The same methodology has been used here as the one used for Mo-nitrogenase. N2 activation is known to occur after four reductions in the catalytic cycle, in the E4 state. The main features of the mechanism for Mo-nitrogenase found in the previous study are an activation process in four steps prior to catalysis, the release of a sulfide during the activation steps and the formation of H2 from two hydrides in E4, just before N2 is activated. The same features have been found here for V-nitrogenase. A difference is that five steps are needed in the activation process, which explains why the ground state of V-nitrogenase is a triplet (even number) and the one for Mo-nitrogenase is a quartet (odd number). The reason an additional step is needed for V-nitrogenase is that V3+ can be reduced to V2+, in contrast to the case for Mo3+ in Mo-nitrogenase. The fact that V3+ is Jahn-Teller active has important consequences. N2H2 is formed in E4 with reasonably small barriers.


Asunto(s)
Nitrogenasa , Vanadio , Nitrogenasa/metabolismo , Molibdeno , Oxidación-Reducción , Nitrógeno
18.
Mol Cells ; 46(12): 736-742, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38052488

RESUMEN

NifB, a radical S-adenosylmethionine (SAM) enzyme, is pivotal in the biosynthesis of the iron-molybdenum cofactor (FeMo-co), commonly referred to as the M-cluster. This cofactor, located within the active site of nitrogenase, is essential for the conversion of dinitrogen (N2) to NH3. Recognized as the most intricate metallocluster in nature, FeMo-co biosynthesis involves multiple proteins and a sequence of steps. Of particular significance, NifB directs the fusion of two [Fe4S4] clusters to assemble the 8Fe core, while also incorporating an interstitial carbide. Although NifB has been extensively studied, its molecular mechanisms remain elusive. In this review, we explore recent structural analyses of NifB and provide a comprehensive overview of the established catalytic mechanisms. We propose prospective directions for future research, emphasizing the relevance to biochemistry, agriculture, and environmental science. The goal of this review is to lay a solid foundation for future endeavors aimed at elucidating the atomic details of FeMo-co biosynthesis.


Asunto(s)
Compuestos de Hierro , Nitrogenasa , Nitrogenasa/química , Nitrogenasa/metabolismo , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Compuestos de Hierro/química , Compuestos de Hierro/metabolismo , Estudios Prospectivos , Dominio Catalítico , Proteínas Bacterianas/metabolismo
19.
J Chem Phys ; 159(23)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38117020

RESUMEN

The biological reduction of N2 to ammonia requires the ATP-dependent, sequential delivery of electrons from the Fe protein to the MoFe protein of nitrogenase. It has been demonstrated that CdS nanocrystals can replace the Fe protein to deliver photoexcited electrons to the MoFe protein. Herein, light-activated electron delivery within the CdS:MoFe protein complex was achieved in the frozen state, revealing that all the electron paramagnetic resonance (EPR) active E-state intermediates in the catalytic cycle can be trapped and characterized by EPR spectroscopy. Prior to illumination, the CdS:MoFe protein complex EPR spectrum was composed of a S = 3/2 rhombic signal (g = 4.33, 3.63, and 2.01) consistent with the FeMo-cofactor in the resting state, E0. Illumination for sequential 1-h periods at 233 K under 1 atm of N2 led to a cumulative attenuation of E0 by 75%. This coincided with the appearance of S = 3/2 and S = 1/2 signals assigned to two-electron (E2) and four-electron (E4) reduced states of the FeMo-cofactor, together with additional S = 1/2 signals consistent with the formation of E6 and E8 states. Simulations of EPR spectra allowed quantification of the different E-state populations, along with mapping of these populations onto the Lowe-Thorneley kinetic scheme. The outcome of this work demonstrates that the photochemical delivery of electrons to the MoFe protein can be used to populate all of the EPR active E-state intermediates of the nitrogenase MoFe protein cycle.


Asunto(s)
Azotobacter vinelandii , Puntos Cuánticos , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Temperatura , Oxidación-Reducción , Nitrogenasa/química , Nitrogenasa/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Azotobacter vinelandii/metabolismo
20.
Molecules ; 28(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138449

RESUMEN

Only a single enzyme system-nitrogenase-carries out the conversion of atmospheric N2 into bioavailable ammonium, an essential prerequisite for all organismic life. The reduction of this inert substrate at ambient conditions poses unique catalytic challenges that strain our mechanistic understanding even after decades of intense research. Structural biology has added its part to this greater tapestry, and in this review, I provide a personal (and highly biased) summary of the parts of the story to which I had the privilege to contribute. It focuses on the crystallographic analysis of the three isoforms of nitrogenases at high resolution and the binding of ligands and inhibitors to the active-site cofactors of the enzyme. In conjunction with the wealth of available biochemical, biophysical, and spectroscopic data on the protein, this has led us to a mechanistic hypothesis based on an elementary mechanism of repetitive hydride formation and insertion.


Asunto(s)
Fijación del Nitrógeno , Nitrogenasa , Nitrogenasa/metabolismo , Catálisis , Molibdeno/química , Nitrógeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...